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Abstract—A number of empirical and analytical studies demonstrated that the ultrasound RF echo reflected
from tissue exhibits 1/f characteristics. In this paper, we propose to model 1/f characteristics of the ultrasonic RF
echo by a novel parsimonious model, namely the fractional differencing auto regressive moving average
(FARMA) process, and evaluated diagnostic value of model parameters for breast cancer malignancy differen-
tiation. FARMA model captures the fractal and long term correlated nature of the backscattered speckle texture
and facilitates robust efficient estimation of fractal parameters. In our study, in addition to the computer
generated FARMA model parameters, we included patient age and radiologist’s prebiopsy level of suspicion
(LOS) as potential indicators of malignant and benign masses. We evaluated the performance of the proposed set
of features using various classifiers and training methods using 120 in vivo breast images. Our study shows that
the area under the receiver operating characteristics (ROC) curve of FARMA model parameters alone is
superior to the area under the ROC curve of the radiologist’s prebiopsy LOS. The area under the ROC curve
of the three sets of features yields a value of 0.87, with a confidence interval of [0.85, 0.89], at a significance level
of 0.05. Our results suggest that the proposed method of ultrasound RF echo model leads to parameters that can
differentiate breast tumors with a relatively high precision. This set of RF echo features can be incorporated into
a comprehensive computer-aided diagnostic system to aid physicians in breast cancer diagnosis. (E-mail:
yazici@ecse.rpi.edu) © 2004 World Federation for Ultrasound in Medicine & Biology.
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INTRODUCTION

Breast cancer is currently the second cause of mortality
among women and affects more women in the world
than any other type of cancer (IARC, 2001). In the past
50y, the lifetime risk of breast cancer has nearly tripled
in the USA. In the 1940s, a woman’s lifetime risk of
breast cancer was 1 in 22 (NCI, 2002). In the year 2003,
the risk is 1 in 8 (ACS, 2003). Currently, X-ray mam-
mography is the primary imaging modality for breast
cancer detection, but in many cases the findings are not
sufficiently specific and subsequent diagnostic testing is
required. It has been reported that the likelihood of a
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lesion found by X-ray mammography being malignant is
less than 30% (NCI, 2002).

Ultrasound is currently the most useful adjunctive
imaging modality to X-ray mammography. Its real-time,
high resolution imaging capability has made ultrasound
an increasingly integral part of evaluation and diagnosis
of breast tumors. Typically, malignancy diagnosis is
based on the radiologist’s qualitative evaluation of the
morphological features in B-scan images. This approach,
however, is prone to variability, due to lack of quantita-
tive measures and varying degree of experience among
radiologists. In an attempt to quantify ultrasound tumor
evaluation, some cancer centers have adapted a scoring
system for research purposes, whereby radiologists as-
sign a value between a minimum and a maximum num-
ber, minimum being benign and maximum being malig-
nant tumor (TJU Radiology Department, UPENN Radi-
ology Department). This scoring system, known as level



1398 Ultrasound in Medicine and Biology

of suspicion (LOS), reflects the radiologist’s qualitative
evaluation of B-scan images of breast tumor, patient’s
overall case, as well as radiologist’s level of experience.

Many studies point out that computer-aided diagno-
sis (CAD) can improve the radiologist’s ability to differ-
entiate between benign and malignant tumors, thereby
potentially reducing unnecessary biopsies. CAD systems
attempt to extract quantitative attributes from image data
and automate lesion classification using various pattern
recognition techniques. These attributes or features are
typically based on the morphological features of tumors,
such as shape, sharpness of borders, texture, as well as
the RF echo signal reflected from tissue. Neither mor-
phological nor RF echo features alone may be sufficient
to characterize a tumor. Therefore, both humans and
computers must consider multiple features to make a
reliable diagnosis.

In this work, we developed a set of features ex-
tracted from ultrasound RF echo and evaluated its per-
formance in breast cancer diagnosis. The proposed set of
features capture the fractal and scaling characteristics of
backscattered RF echo in a robust and parsimonious
fashion. The motivation for our study stems from a
number of empirical and analytical studies reported in
the literature, demonstrating fractal or 1/f characteristics
of the backscattered ultrasound RF echo signals.
Karaoguz et al. (2000) has shown empirically that RF
echo signal exhibits a 1/f-like scaling characteristics.
Kutay et al. (2000, 2001) proposed a heavy-tailed shot
noise model to capture the 1/f-like scaling properties of
RF echo and reported relatively high accuracy for breast
tissue characterization. Fractional differencing autore-
gressive moving average (FARMA) is a time series
model developed to capture the long-term correlated
fractal nature of 1/f processes observed for a broad range
of scientific and engineering data. These include elec-
tronic noise in solid state devices, texture in natural and
remote sensing imagery, internet traffic and financial
data, to mention a few (Bonanno et al., 2001; Ilow, 2000;
Kashyap and Lapsa, 1984; Kashyap and Eom, 1989;
Xiong et al., 2002; Wen and Acharya, 1996). FARMA
model has several advantages compared with other 1/f
models (Kutay et al., 2001; MandelBrot and Van Ness,
1968; Yazici and Kashyap, 1996). FARMA is a discrete
stationary model that can capture both long- and short-
term correlations. Furthermore, stationary nature of
FARMA model leads to robust, efficient and consistent
estimation of model parameters that govern the fractal
and scaling properties of 1/f processes. These properties
are particularly pertinent for 1/f modeling of ultrasound
RF echo. This is because ultrasound RF echo has a
short-term correlated component due to transducer filter
response and a long-term correlated component due to
tissue response. Thus, FARMA modeling of RF echo
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allows direct parametrization of the tissue response from
the RF echo signal. Furthermore, estimation of model
parameters can be performed in a statistically efficient
and robust manner with minimal computational require-
ment, due to the stationary nature of the underlying
model (Hosking, 1981).

Apart from the studies involving 1/f-type modeling,
there are a number of alternative RF echo models re-
ported in the literature. Wagner et al. (1983) and Tuthill
et al. (1988) proposed a Rician distribution to model
envelope statistics of ultrasound RF echo. Cohen and
Georgiou (1995, 1997) proposed WOLD decomposition
of the echo to estimate mean scatterer spacing in tissue.
Shankar? (1995, 1996) proposed K-distribution for ultra-
sound RF echo by observing the deviations from
Rayleigh statistics. Narayanan et al. (1994) and Dutt and
Greanleaf (1994) proposed generalized K-distribution
and homodyned K-distribution models. Abeyratne et al.
(1997a, 1997b) used higher order statistics for feature
extraction from RF echoes. Recently, Shankar et al.
(2001a, 2001b) proposed the Nakagami distribution and
Donohue and Huang (2001) proposed the generalized
spectrum to investigate discrimination of model param-
eters for benign and malignant lesions. These studies
have reported a varying degree of complexity in RF echo
modeling and feature estimation, as well as diagnostic
accuracy.

Our study demonstrates that the FARMA modeling
of ultrasound RF echo leads to relatively high diagnostic
accuracy, with a statistically robust and efficient feature
extraction procedure. We modeled transducer filter re-
sponse as an autoregressive moving average (ARMA)
process and tissue response as a fractional differencing
(FD) process with 1/f parameter d, leading to the
FARMA modeling of ultrasound RF echo. We estimated
ARMA model parameters from phantom data, based on
the final prediction error (FDE) and residual time series
methods. Next, we estimated the mean and the variance
of the FD model parameter d from the deconvolved RF
echo using a log periodogram technique. The diagnostic
value of various combinations of features are evaluated
using 120 in vivo ultrasound breast images containing
both benign and malignant tumors (75 benign and 45
malignant). The set of feature vectors include FD model
parameters, radiologist’s prebiopsy LOS and patient’s
age. In the training and classification stage, three differ-
ent training techniques and three different classifiers
were used. These include leave-one-out, hold-out and
resubstitution methods and linear, quadratic and nonlin-
ear classifiers. Finally, the receiver operator characteris-
tics (ROC) for the proposed set of feature vectors, with
respect to various classification methods and training
technique, were derived and compared.
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Fig. 1. The double logarithmic plot of the spectrum of the
envelope of RF echo taken from (a) Inside and (b) Outside of
the tumor region.

MATERIALS AND METHODS

FARMA model for RF echo

In ultrasonic applications, the RF echo scattered
from tissue is typically modeled as a convolution integral
of the ultrasonic pulse and the scattering structure as
follows:

+t

¥ = [ (0t = myd() (1)

—0

where A(f) is the impulse response of the transducer and
x(#) is the ultrasonic tissue response.

It was empirically observed by Karaoguz et. al
(2000) and Kutay et. al (2001) that the tissue response
exhibits 1/f characteristics, due to the complex structure
of tissue scatterers. 1/f processes are typically character-
ized by an empirical spectrum following a scaling be-
havior of the form S(f) = 1/f*, where 0 < B < 2. Figures
1 and 2 illustrate the log-log periodogram of the enve-
lope and the in-phase components of the RF echo taken
from inside and outside of the tumor region for a ran-
domly chosen B-scan image. This linear behavior of the
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Fig. 2. The double logarithmic plot of the spectrum of the
in-phase component of RF echo taken from (a) Inside and (b)
Outside of the tumor region.

log-log spectrum is a manifestation of 1/f nature of
ultrasound RF signals reflected from tissue.

From the point of view of texture modeling, similar
observations were also made for natural terrain and tex-
ture data in remote sensing imagery (Cetin and Karl,
1998). In the latter case, self-similar and long-term cor-
related time series models were successfully used to
model and classify image texture (Langer, 2000;
Rainville and Kingdom, 1999). Recently, the FD model
was used to capture the self-similar nature of the network
traffic (Ilow 2000). FD model is a discrete stationary
process with self-similar and long-term correlated struc-
ture (Anderson, 1976; Box and Jenkins, 1976; Hosking,
1981). It can be compactly represented as follows:

x(n) = (1 =271 \/pw(n) @)

where z~' is the unit delay operator, w(n) is discrete

white Gaussian noise sequence with zero mean and unit
variance, p > 0 is a constant and 0 < d < 0.5 is the FD
model parameter. The spectral density function of FD
process is given by:

1
S.(f) = (2sin 5 N for 0<f=m. 3)
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For f — 0, it can be approximated as S (f) ~ f >
As a result, the FD model parameter d captures the
scaling and fractal nature of the process.

We model tissue response as a fractional differencing
(FD) model and transducer response as an ARMA (p,q)
model, which leads to the FARMA modeling of the ultra-
sonic RF echo. FARMA is a discrete model that can capture
both long- and short-term correlations and leads to robust,
efficient and consistent estimation of the model parameters
that govern the fractal and scaling properties of 1/f pro-
cesses. Since the ultrasound RF echo has a short-term
correlated component due to transducer filter response and
a long-term correlated component due to tissue response,
these properties are particularly pertinent for 1/f modeling
of the ultrasound RF echo. As a result, FARMA modeling
of the RF echo allows direct parametrization of the tissue
response from the RF echo signal.

FARMA model can be represented as follows:

Az Dx(n) = Bz H(1 — 271 “w(n) “

where 77! is a unit delay operator, A(z~ Yand B(z™!) are
the autoregressive and moving-average polynomials of
orders p and ¢, respectively.

The transfer function of the RF echo is given by:

1
H(Zil) = m HARMA(Zil) (5)

where

B(z™)
ARMA — m

is the auto-regressive, moving-average part represent-
ing the transducer response and

1
(I—z

is the FD model representing the tissue response.

Estimation of FARMA model parameters

We estimate the FARMA model parameters in two
steps. First, ARMA parameters of the transducer re-
sponse are estimated. Next, estimated ARMA parameters
are utilized to estimate the FD parameters of the tissue
response. The B-scan images used throughout the project
were obtained at the Radiology Department of Thomas
Jefferson University Hospital in Philadelphia, PA, USA.
Images were obtained using a flat linear broadband array
transducer with a central frequency of 7.5 MHz. The
ultrasound imaging system is Ultramark-9, HDI, manu-
factured by Advanced Technology Laboratories, Bothell,
WA, USA. The data were sampled at 20 MHz using 12
bits for quantization after applying analog time-gain con-
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trol. The digital images consist of 1024 axial points by
192 lateral points.

Estimation of ARMA parameters

ARMA parameter estimation is based on the trans-
ducer impulse response data, obtained using pulse-echo
measurements from a flat surface reflector in water. Figure
3 presents (a) B-scan, (b) A-scan and (c) greater detailed A-
scan around first reflection region measurements of the
transducer response for a randomly chosen image.

Final prediction error (FPE) criterion is used to
estimate the order of the ARMA type transducer re-
sponse. Akaike’s final prediction error (Akaike, 1970) is
a well-known statistical measure for the goodness-of-fit
of ARMA (p, ¢) model. FPE is a function of residuals
given by:

1+n/N

FPE:l—n/NV

(6)

where V is the variance of model residuals, N is the
length of the time series and n = p + ¢ is the number of
estimated parameters in the ARMA model.

Two windows, composed of 30 consecutive scan
lines with data length of 1X256, were used to estimate
the ARMA model order and parameters. A window
selection criterion for the estimation procedure is given
in Figure 4. The windows were selected from the first
reflection region of the ultrasonic RF pulse. The FPE is
computed for various candidate model orders and the
model order with the lowest FPE was selected as the
best-fit model. Based on our numerical studies and ex-
perimental data, we concluded that the best estimated
model order is an ARMA (3,1) for the transducer re-
sponse obtained from a flat surface reflector in water.

After the estimation of ARMA model orders,
ARMA model parameters p and g were estimated using
the well-known residual time series model estimation
technique (Brockwell and Davis, 1991; Chatfield, 1975;
Roger, 1999). In this estimation procedure, the ARMA
parameters p and g were estimated for 30 scanlines taken
for the two windows. Sixty parameters obtained from
two selected windows for each coefficient are averaged
to estimate the ARMA model coefficients. The estima-
tion resulted in the following AR and MA polynomials:

Az =1-1.192z + 0.064047* — 0.4332  (7)
Bz )Y=1+0.7347z 8)
where z ' is a unit delay operator.
Estimation of fractional differencing model parameter

After the estimation of ARMA model parameters,
the transducer response is deconvolved from the RF echo
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Fig. 3. (a) B-scan image of RF echo obtained from water/flat

reflector surface. (b) A-scan data sequence of RF echo obtained

from a flat-surface reflector in water. (c) A-scan data sequence
zoomed around first reflection region.
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Fig. 4. Window selection for the estimation of ARMA param-
eters. The windows were chosen from the first reflection region
from water surface.

and the FD model parameter d is estimated from the
resulting data. The estimation procedure is based on the
log-periodogram method that uses linear least-squares
procedure (Kashyap and Eom, 1987). Recall that the FD
model is given by:

K =(1=z7)""\/pw(n) ©)

where w(n) is a zero mean, unit variance discrete white
noise process. The periodogram of x(n) is given by:

fk/N) = IX(k)P/N (10)

where X(k) is the N point discrete Fourier transform
(DFT) of x(n). Using the FD model, it is straightforward
to show that:

Fk/N) = 2sin (mk/N)I"2pf,(k/N) (11)

where f,, is the N point DFT of the white noise process
w(n). Thus, combining eqns (11) and (12) and taking the
logarithms of both sides, we obtain:

log IX(k)?/N =1log f(k/N)
= —2dlog 12sin (wk/N)| + log p + log If,(k/N)I. (12)
Note that the FD model parameter d and logp are
linear in logf(k/N). Thus, d and logp can be estimated

using linear least-squares technique. The estimates are
given by the following standard formula:

-1

N2 N2
[d,log pl = | 2 Z(0Z'(k) | | X ZKklog f.(k/N)

k=1 k=1
(13)
where Z(k) = [—2log|2sin(mk/N)| —117.
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Fig. 5. Ultrasonic B-scan images of a benign and a malignant
tumor. (a) Benign tumor. (b) Malignant tumor.

The FD parameter, d, is estimated from 120 differ-
ent B-scan images acquired from 90 patients. Thirty-five
of these patients have malignant breast tumors and 55 of
them have benign breast tumors. Figure 5a and b shows
two sample B-scan images with benign and malignant
tumor regions, respectively. The smallest tumor is 6 X
5 mm? and the largest is 15 X 8 mm”. We have 30 scan
lines and 128 RF points per scan line, providing 3840
points per estimation. This corresponds to a window size
of 5.925 X 4.8 mm?. For each B-scan image, 30 scan
lines from inside and outside the tumor region were
taken with data lengths of 1 X 128 to estimate the
fractional differencing parameter d. Hence, we have 30
estimates of d from inside and 30 estimates of d from
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Fig. 6. Window selection for the estimation of FD parameter d.
The windows were chosen from inside and outside the tumor
region.

outside the tumor region. Figure 6 illustrates the win-
dows taken from inside and outside the tumor region for
a random B-scan image. The selection of windows can
be automated in a CAD system, once the radiologist
identifies a region-of-interest. For each B-scan image,
mean and variance of the fractional differencing param-
eter d were estimated for classification purposes. In
Figures 7 and 8, the mean values of the parameter d
obtained from inside and outside the suspected tumor
region are presented for 31 patients with benign and 29
patients malignant tumors, respectively.

Feature analysis and classification for tissue character-
ization

In this subsection, we present the set of tumor
classification features and the malignancy differentiation
criteria. F1 and F2 denote the mean and variance of FD
parameter d, F3 denotes radiologist’s prebiopsy level of
suspicion (LOS) and F4 denotes the patient age informa-
tion. Number of lesions were evaluated by experienced

BENIGN CASE

o
|| O d-inside
® d-outside

Mean value of estimated FD
parameter value
2 8 & 2
o w T

o

1 21 2 3t
Case Number

Fig. 7. Mean value of fractional differencing parameter d for
inside and outside the tumor region for 31 patients with benign
tumor in breast.
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Fig. 8. Mean value of fractional differencing parameter d for
inside and outside the tumor region for 29 patients with ma-
lignant tumor in breast.

radiologists. Lesions were categorized based on shape,
orientation, margin sharpness and posterior acoustic fea-
tures. The level of suspicion was classified as (1) normal,
(2) benign, (3) probably benign, (4) moderate suspicious
and (5) highly suspicious for malignancy. The ages of the
patients ranged from 18 to 86 y, with the average being
47 y. We evaluate the malignancy differentiation capa-
bility of the individual features and various combinations
of the these features.

As a malignancy differentiation criterion, we used
the Neyman-Pearson hypothesis testing method (Fuku-
naga, 1990). Neyman-Pearson decision rule maximizes
true positive rate subject to a given false positive rate.
True positive rate is defined as the ratio between the
number of correct malignant decisions and total number
of malignant cases. False positive rate is the ratio be-
tween the number of incorrect malignant decisions and
total number of benign cases. Let F be a set of features
chosen from F1 to F4. The Neyman-Pearson statistics is
given by the following likelihood ratio:

P(FIH,)

pEH,) 1P (14

where P(FIH,) is the conditional probability of F, given
that the tumor is benign and P(FIH;) is the conditional
probability of F, given that the tumor is malignant. In
Neyman-Pearson likelihood ratio test, a threshold value
T, 1s chosen so that the false positive probability is equal
to a, i.e.,

a = P(I(F)> 1,|H,). (15)

This results in the following malignancy differenti-
ation criteria:

Hy: |(Fy<r, O Benign tumor

Hy: |(Fy>r7, O Malignant tumor

Neyman-Pearson test is implemented using a linear
classifier (minimum least-squares linear classifier), a
quadratic classifier (Gaussian normal density based qua-
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Fig. 9. Linear classifier and LOS vs patient age information 2-D
data clustering.

dratic classifier) and a nonlinear classifier (Parzen clas-
sifier) (Fukunaga, 1990). The 95% confidence interval
for the area under the ROC curves is obtained by using
three different training techniques, namely resubstitu-
tion, leave-one-out and hold-out methods (Duda, 2000;
Fukunaga, 1990; Hastie, 2001). Figures 9, 10, and 11
show the distribution of various subsets of features ex-
tracted from benign and malignant tissues and the thresh-
olds computed using linear and quadratic classifiers.
Figure 12 shows the data scatter information for the
complete set of features.

RESULTS AND DISCUSSION

ROC analysis of individual and combined features
We evaluated the malignancy differentiation capa-
bility of the following individual and combined features:

F1-F2: Computer generated FD parameters
F3: Radiologists’ prebiopsy LOS

F4: Patient age information

F1-F2-F3: FD parameters and LOS
F1-F2-F4: FD parameters and patient age
F3-F4: LOS and patientage

F1-F2-F3-F4: All features.

The evaluation is based on receiver operating char-
acteristics (ROC) methodology. The ROC curve is ob-
tained by plotting the probability of false positive versus
the probability of detection. Figure 13 shows the ROC
curves of individual features using the linear classifier
and the leave-one-out method of training. The observed
area under the ROC curve ranges from 0.62 to 0.79 for
four different features. The best-performing feature set is
the combination of the computer generated features, that
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is, the mean and variance of the FD parameter d, with an
A, (area under ROC) of 0.7973. The A, values of radi-
ologist’s prebiopsy level of suspicion (LOS) and patient
age are 0.7411 and 0.6243, respectively.

The area under the ROC curve indicates that the
computer-generated FD features provides approximately
6% improvement over the radiologist’s prebiopsy LOS
and 18% improvement over the patient age information.
However, since A, the area under the ROC curve, is
obtained from patient data, we proposed a hypothesis-
testing method to compare the ROC performance of the
computer generated features, F1 and F2, with that of F3,
i.e., radiologist’s prebiopsy level of suspicion. The
method is based on the difference of the area of ROC
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Fig. 11. Linear classifier and LOS vs FD parameter 2-D data
clustering.
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Fig. 12. LOS vs FD parameter vs patient age 3-D data
clustering.

curve statistics, A_(F1, F2)-A(F3). Here, A(F1, F2)
denotes the area under the ROC curve of F1 and F2 and
A_(F3) denotes the area under the ROC curve of F3. The
null hypothesis, H,, is that there is no difference in
performance between FD features, F1 and F2, and radi-
ologist’s LOS, F3, against the alternative hypothesis, H,,
that the performance of F1 and F2 is better than the
performance of F3.

Hy: A(F1,F2)=A/(F3) =
No difference in performance
H,: A(F1,F2)>A(F3) =

Statistical difference in performance.

o
=]
T

o
-
T

o
(2]
T

o
(4]
T

o
=
T

F1-F2 Az=0.7983 4
F3  Az=0.7411
F4  Az=06243 .

Probability of Detection

o
[N]

o
P
1

08T 07 03 04 05 o8 o7 05 09
Probability of False Alarm

Fig. 13. ROC curves for individual features using a linear
classifier with leave-one-out technique.
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Fig. 14. Four ROC curves for the mean, variance of fractional
differencing parameter d (F1 and F2) and radiologist’s prebi-
opsy level of suspicion, patient age (F3 F4), F1-F2-F3 and
F1-F2-F4 using a linear classifier with leave-one-out technique.

We use the P-value in the hypothesis-testing. A
P-value is a measure of how much evidence there is
against the null hypotheses. We reject the null hypothesis
H, if the P-value is smaller than « (a predefined signif-
icance level), otherwise we accept the null hypothesis. In
our study, we used a significance level of 5%. As a result,
the hypothesis test described above is reexpressed as
follows:

H,: P>0.05 = No difference in performance
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Fig. 15. ROC curve for the complete feature set, which are
mean and variance of fractional differencing parameter (F1 and
F2), radiologist’s prebiopsy level of suspicion (F3) and patient
age (F4) using a linear classifier with leave-one-out technique.

Table 1. Performance of combined features fused with linear
classifier at a significance level of 0.05. A_ is the area under
the ROC curve, a and (3 are positive and negative error
bounds, respectively.

Linear Linear
resubstitution leave-one-out Linear-hold-out
A, 0.88 0.87 0.80
A+ 0.90 0.89 0.83
A, — B 0.86 0.85 0.79

H;: P<0.05 = Statistical difference in performance.

The A, difference between F1-F2 and F3, using a
linear classifier and leave-one-out technique, is 0.0572
with a P-value of 0.0246. Similarly, the ROC area dif-
ference between F1-F2 and the patient age, F4, is 0.1740
with a P-value of 0.0012. Therefore, we concluded that
the ROC performance of computer-generated FD param-
eters is statistically better than that of LOS and patient
age information.

Figure 14 presents a comparison between various
subsets of features, including F1-F2, F1-F2-F3 and F1-
F2-F4 and F3-F4. The performance of fractional differ-
encing parameter d is better than the radiologist’s deci-
sion and patient age information by 5%, which is a
crucial percentage when we think of unnecessary biop-
sies. When the radiologists’ prebiopsy LOS is combined
with the patient age information, the area under the ROC
curve is better than ROC area of the LOS parameter
alone. This result indicates that the radiologist’s prebi-
opsy LOS does not contain the patient’s age information.
When LOS or age is combined with FD parameter, the
performance of classification increases. The addition of
different features to the computer-generated features im-
proves the results that made us think increasing the
number of features. This study is currently underway and
will be reported in the near feature.

Figure 15 shows the ROC curve for the feature set
F1-F2-F3-F4. The best classification results are obtained
when all four features are fused. Combining the features
F3 and F4 with the features extracted from RF echo
modeling increased the area under the ROC curve from

Table 2. Performance of combined features fused with
quadratic classifier at a significance level of 0.05. A, is the
area under the ROC curve, « and 3 are positive and negative
error bounds, respectively.

Quadratic Quadratic Quadratic

resubstitution leave-one-out hold-out
A, 0.85 0.82 0.77
A+« 0.86 0.84 0.80
A.— B 0.82 0.79 0.75
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Table 3. Performance of combined features fused with non-
linear classifier at a significance level of 0.05. A_ is the area
under the ROC curve, o and 8 are positive and negative
error bounds, respectively.

Nonlinear Nonlinear Nonlinear

resubstitution leave-one-out hold-out
A, 0.84 0.81 0.76
A+ 0.83 0.86 0.78
A, — B 0.83 0.80 0.75

0.79 to 0.87. Alternatively, one can conclude that the
addition of RF echo model parameters to radiologist’s
LOS increased the value from 0.74 to 0.87, an approxi-
mate 13% improvement over the LOS feature alone.

Tables 1, 2 and 3 tabulate the performance of the
combined features, i.e., F1-F2-F3-F4, with respect to
linear, quadratic and nonlinear classifiers for three dif-
ferent training techniques. Our study shows that the
linear classifier yields better results in comparison with
the other two classifiers. As expected, the resubstitution
method provides the best results in comparison with
hold-out and leave-one-out method. Leave-one-out-
method provides better results than hold-out method
which divides the total number of cases into two as the
training and test sets.

In conclusion, our study indicates that the proposed
set of features form a good candidate to extract diagnos-
tic information from the RF echo. We believe that this set
of features will lead to a computer-aided diagnosis sys-
tem that can reduce the number of unnecessary biopsies
performed on benign masses.

SUMMARY

In this paper, we showed that features obtained by
statistical modeling of RF echo can be used as a
decision criterion for tissue characterization. In par-
ticular, we propose FARMA model to capture I/f
characteristics of the RF echo backscattered from tis-
sue and evaluate their potential malignancy differen-
tiation. Additionally, we used radiologist’s prebiopsy
LOS and patient age information as potential malig-
nancy differentiators. We used a database of in-vivo
B-scan images to generate the features. Features are
evaluated using different classifiers and training tech-
niques, based on ROC methodology. The observed
area under the ROC of the computer-generated fea-
tures yields an approximate 6% improvement over that
of radiologist’s prebiopsy LOS criteria. The best per-
formance is obtained when all features are fused using
a linear classifier, yielding an area of 0.87 with 95%
confidence interval under the area of the ROC curve.
This is an improvement of 13% over that of radiolo-

Volume 30, Number 10, 2004

gist’s prebiopsy LOS alone. Our study indicates that
the proposed RF echo model and associated model
parameters provide relatively high malignancy differ-
entiation information. We believe that, when this set
of features are combined with morphological image
analysis features, it will lead to a comprehensive com-
puter-aided diagnosis system that can aid radiologists
in breast cancer diagnosis.
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