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ABSTRACT

In this work, we discuss the incorporation of a priori information into the inverse problem formulation for
fluorescence optical tomography. In this respect, we first formulate the inverse problem in the optimization
framework which allows the incorporation of a priori information about the solution and its gradient. Then, we
consider the variational problem, which is equivalent to the optimization problem and prove the existence and
uniqueness of the solution. Finally, we discuss the design of the functions that incorporate the a priori information
into the inverse problem formulation and present a model problem to illustrate the design procedure.
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1. INTRODUCTION

Fluorescence optical tomography (FOT) offers the quantification, 3D imaging and depth retrieval of fluorescence
activity with high sensitivity, which in turn can be used for functional and molecular characterization of normal
and diseased tissues.1–3

Under the assumption of weak fluorescence, the inverse problem in FOT is characterized by a linear integral
equation, which is typical in many biological systems.2 Despite the simplifications granted by the linear model,
the ill-posed nature of this integral equation makes FOT a challenging inverse problem. In particular, due to the
ill-posedness, the solution of the inverse problem is not unique. Furthermore, the ill-posedness makes the solution
highly sensitive to the noise in the measurements. Hence, this linear integral equation needs to be regularized.
The regularization can be within the statistical4 or deterministic framework.5 In general, regularization will
address both the non-uniqueness problem and the potential instability of the solution due to the presence of
noise. On the other hand, regularization can be more effective if a priori information is incorporated into the
inverse problem formulation. In this respect, the a priori information can be used to increase the information
content of the imaging problem, thereby improving the accuracy of the solution.

To tackle the ill-posed nature of the inverse problem in diffuse optical tomography (DOT), a number of
approaches have been suggested to incorporate a priori information. See6 and7 and the references therein for
an extensive survey on the incorporation of a priori information in DOT. In general, the a priori information
in DOT is richer in content as compared to the a priori information in FOT. For example, in optical absorption
imaging,6, 8 given an MR-image in prior, the discrimination of the tissue types is possible, which may be used to
determine the average optical absorption coefficient properties of the medium under inspection. This is enabled
by the high spatial correlation between the anatomical images and the corresponding optical properties of the
medium.9–11 It is not viable to obtain any average value for the fluorophore absorption value inside the optical
medium, which is related to the concentration of the fluorophore. Yet, it is possible to obtain the localization
information of a certain fluorophore type based on its chemical and physical properties. For example, the
fluorophore may be targeted to the lungs. Then, an anatomical image can be useful to constrain the location of
the fluorophore concentration.12 In addition, the anatomical image can be used to determine the constraints
on the spatial variations and smoothness of the solution. In this context, the edges in the anatomical image can
be assumed to partially coincide with the edges in the fluorophore concentration image. Hence, the edges in the
anatomical image can be used as a priori information as well.
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One important restriction in the use of a priori information should be avoiding hard constraints, due to the
limited content and uncertainty in the reliability of the a priori information. Constraining the location of the
fluorophore concentration, thereby restricting the boundaries of the support of the solution can be considered
as an example of hard constraints.12 While computationally tractable, this approach may lead to erroneous
results. Such explicit constraints can be weakened by using them implicitly in the formulation of the inverse
problem. For instance, Tikhonov functionals with zeroth order spatially varying regularization terms can be
used to weaken such constraints.13

To improve the information content of the inverse problem formulation, it is important to make use of all the
available a priori information about the solution. The fluorophore localization (target) information, the internal
edge structure of the medium, and the source-detector positions are examples of different types of information.
Including as much a priori information will have two important outcomes: First, the resulting inverse problem
formulation will be tuned to the solution of the problem at hand. Second, different types of information can
complement each other and/or compensate for the correlation uncertainty of the other.

In this work, we use the a priori information about the localization of the fluorescent agent and internal
structure of the medium to formulate the inverse FOT problem within the regularization framework. For the
effective use of a priori information and convenient design of the penalty functions, we first formulate the inverse
problem as a minimization problem where the regularization terms impose penalty simultaneously on the solution
and its gradients. In this respect, we present convenient methods for the design of the regularization terms, which
is driven directly by the information about the localization of the fluorescent agent and the internal edges of the
medium of interest, provided by an anatomical imaging modality, such as MRI or x-ray. This makes the inverse
problem formulation described in this paper different from the previously reported approaches.12, 13 Next, to
solve the inverse problem, we translate the minimization problem to the variational framework, and use finite
elements to discretize the resulting variational problem. Finally, we show the uniqueness of the solutions to both
the variational problem and its discretized version.

The outline of this paper is as follows: Section 2 defines the forward problem in OFT and describes the
formulation of the inverse problem in the optimization and variational frameworks, respectively. In Section 3,
we discuss how the available a priori information can be incorporated into the inverse problem formulation.
In Section 4, we describe the discretization of the inverse problem using finite elements, which is followed by
an example which presents the procedure for incorporating the a priori information into the inverse problem
formulation. Following the Conclusion section, the Appendix presents proofs of the Lemmas which show the
uniqueness and boundedness of the solution of the inverse problem.

2. FORWARD AND INVERSE PROBLEMS IN FOT

In this section, we first state our assumptions which simply the fluorescence imaging model. Then, we define
the forward problem in FOT, which models the propagation of the excitation and emission NIR light. Next, we
briefly describe the inverse FOT problem, whose objective is to estimate the unknown fluorophore absorption
from the detected optical field on the boundary. Then, we formulate the inverse problem in the regularization
framework which allows us to incorporate a priori information into the inverse problem formulation. Finally,
we formulate the inverse FOT problem in the variational framework and discuss the existence and uniqueness of
the solution to the resulting inverse problem.

2.1. Forward Problem

We first state the assumptions that simplify the fluorescence diffuse optical tomography (FOT) analysis:

• We focus on the estimation of the unknown fluorophore concentration. In this respect, the amplitude of the
excitation light source is time-invariant, which avoids the dependence of the inverse problem formulation
on the life-time of the fluorophore.

• The excitation wavelength measurements are collected before the injection of the fluorophore. Hence, the
background absorption at the excitation wavelength consists of only the endogenous absorption coefficient.



• The endogenous absorption µλ1
a is assumed to be equal to µλ2

a , assuming that the absorption does not vary
in a small range of wavelength.

• For the weak fluorescence case, the contribution µλ2
af of the fluorophore to the total absorption at the

emission wavelength can be neglected, thus µλ2
a = µλ1

a = µa.

• The diffusion coefficient D(x) is identical during both the excitation and emission, for all x on the bounded
domain and its boundary.

Based on these assumptions, we use the following boundary value problem to model the NIR light propagation
at the excitation wavelength λ1, on a bounded domain Ω ⊂ R3 with Lipschitz boundary ∂Ω14, 15:

−∇ ·D(x)∇uλ1
j (x) + µa(x)uλ1

j (x) = Qj(x) x ∈ Ω, (1)

uλ1
j (x) + 2aD(x)

∂uλ1
j

∂n
(x) = 0 x ∈ ∂Ω, (2)

where uλ1
j (x) is the isotropic photon density at the excitation wavelength λ1 due to the jth source at x, Qj is

the point source located at xj
s, D(x) is the diffusion coefficient and µa(x) is the absorption coefficient at x, a is

a parameter governing the internal reflection at the boundary ∂Ω, and ∂ · /∂n denotes the directional derivative
along the unit normal vector on the boundary. Note that we assume the diffusion coefficient is isotropic. For the
general anisotropic material, see.16

At the emission wavelength λ2, the photon density due to the fluorophore concentration and the incident
excitation field uλ1

j is given by the following boundary value problem:

−∇ ·D(x)∇uλ2
j (x) + µa(x)uλ2

j (x) = Qyµaf (x)uλ1
j (x) x ∈ Ω, (3)

uλ1
j (x) + 2aD(x)

∂uλ1
j

∂n
(x) = 0 x ∈ ∂Ω, (4)

where uλ2
j is the photon density at the emission wavelength λ2 due to the fluorophore concentration excited by

the photon field uλ1
j .

Finally, we consider the adjoint problem15 associated with (1)-(2), whose solution is equivalent to the Green’s
function of (3)-(4)8, 15:

−∇ ·D(x)∇g∗,λ2
i (x) + µa(x)g∗,λ2

i (x) = 0 x ∈ Ω, (5)

g∗,λ2
i (x) + 2aD(x)

∂g∗,λ2
i

∂n
(x) = Q∗

i (x) x ∈ ∂Ω, (6)

where Q∗i is the adjoint source located at xi
d. In this work, we approximate the point source Qj in (1) and the

adjoint source Q∗i in (6) by Gaussian functions with sufficiently low variance, whose centers are located at xj
s

and xi
d, respectively.8

2.2. Fluorescence Imaging Model

In the following, we state the fluorescence imaging model that gives the relationship between the unknown
fluorophore absorption coefficient and the detected optical field at the emission wavelength, based on the forward
model in Section 2.1.

The detected field at the emission wavelength λ2 due to the incident field uλ1
j is related to the unknown

fluorophore concentration through the following linear integral equation:

Γ̃i,j =
∫

Ω

g∗,λ2
i (x)uλ1

j (x)Λi,j(x)dx, (7)



where Γ̃i,j represents the emission measurement as a result of the fluorophore concentration at the ith detector
due to the jth excitation source and Λi,j(x) stands for

Λi,j(x) :=
[
QyΘfQλ2

effΘλ2
s (xj

s)Θ
λ2
d (xi

d)
]
µλ2

af (x), (8)

where µλ2
af is the fluorophore absorption, Qy is the quantum yield, Θf is the attenuation of the filter at the

detector side, Qλ2
eff is the detector quantum efficiency and Θλ2

s (xs), Θλ2
d (xd) are the gain factors of the source

and detector, respectively, modeling the light source strength, fiber coupling losses and attenuation in the system.
λ2 superscript is due to the fact that the detection is at wavelength λ2.

Normalization of the measurement data Γ̃i,jwith respect to the detected field uλ1
j,inc(x

i
d) at the excitation

wavelength leads to:

Γnorm
i,j =

Γ̃i,j

uλ1
j,inc(x

i
d)

=
1

uλ1
j,inc(x

i
d)

∫

Ω

g∗,λ2
i (x)uλ1

j (x)Λi,j(x)dx, (9)

where uλ1
j,inc(x

i
d) is given by

uλ1
j,inc(x

i
d) = Qλ1

effΘλ1
s (xj

s)Θ
λ1
d (xi

d)u
λ1
j (xi

d). (10)

Noting (8) and assuming the following conditions hold

Θλ1
s

Θλ2
s

≈ 1,
Θλ1

d

Θλ2
d

≈ 1,
Qλ1

eff

Qλ2
eff

≈ 1,

we arrive at the following linear integral equation, that relates the fluorophore concentration to detected emission
measurements:

Γnorm
i,j =

Θλ2
f

uλ1(xi
d;x

j
s)

∫

Ω

g∗,λ2
i (x)uλ1

j (x)α(x)dx, (11)

where α(x) := Qyµaf (x). We note that in the following sections, (11) will constitute the basis for the inverse
problem formulation.

2.3. Inverse Problem

In this section, we first give some preliminary information about the components of the inverse problem. Next,
we formulate the inverse problem in the regularization framework which provides a means to incorporate a priori
information about the unknown image α. Then, by defining appropriate boundary conditions, we convert the
inverse problem into a boundary value problem, which is followed by the variational formulation of the inverse
problem. Finally, we show the existence and uniqueness of the solution to the resulting variational problem.

2.3.1. Preliminaries

We recall the integral equation (11) where we drop the superscripts λ2 and λ1 from g∗,λ2 and uλ1 , respectively.
Letting

Γi,j = Γnorm
i,j

uλ1
j (xi

d)

Θλ2
f

,

we have
Γi,j =

∫

Ω

g∗i (x)uj(x)α(x)dx

=
∫

Ω

Hi,j(x)α(x)dx

:= Afα, (12)

where Hi,j = g∗i uj is the kernel of the integral operator Af : L2(Ω) → RNs×Nd . If we consider Gaussian
approximations of the points sources at the excitation wavelength and a Gaussian approximation for the adjoint



source at the emission wavelength, then the weak solutions g∗, u ∈ C1(Ω).8 As a result, a bound for the linear
integral operator Af can be given by:

‖Af‖L2(Ω)→l1 ≤
Nd,Ns∑

i,j

‖g∗i uj‖0. (13)

Furthermore, by the boundedness and the finite-dimensional range of the operator, Af is compact.8, 17 As a
result, the inverse problem given by (12) is ill-posed.

Let A = A∗fAf , then A : L2(Ω) → L2(Ω) is defined as follows:

(Aα)(x) :=
Nd,Ns∑

i,j

H∗
i,j(x)

∫

Ω

Hi,j(x́)α(x́)dx́

=
∫

Ω

κ(x, x́)α(x́)dx́, (14)

where κ(x, x́) stands for the kernel of the integral operator A and is given by

κ(x, x́) =
Nd,Ns∑

i,j

H∗
i,j(x)Hi,j(x́), (15)

and H∗
i,j(x) is the kernel of the adjoint operator A∗f given by:

(A∗fβ)(x) =
Nd,Ns∑

i,j

H∗
i,j(x)βi,j =

Nd,Ns∑

i,j

−g∗i (x)uj(x)βi,j , (16)

for all β ∈ RNd×Ns .

Then, equivalently, we can express (12) as follows:

γ(x) = (Aα)(x), (17)

where γ(x) = A∗fΓi,j . We note that the operator A = A∗fAf : L2(Ω) → L2(Ω) is compact and thus bounded,
which results from the compactness of the operator Af .

2.3.2. Inverse problem as an optimization problem

In order to incorporate a priori information, we formulate the inverse problem as an optimization problem:

α̂ = min
α∈H1(Ω)

J(α), (18)

where J(α) : H1(Ω) → R is the objective functional to be minimized and Ω ⊂ Rn, n = 2, 3.

To incorporate a priori information, we consider penalty terms in addition to the data likelihood term∫
Ω

[
γ(x)− (Aα)(x)

]2
dx in the objective functional. As a result, the inverse problem becomes

α̂ = min
α∈H1(Ω)

∫

Ω

F (x, α, αt)dx

= min
α∈H1(Ω)

∫

Ω

[
γ(x)− (Aα)(x)

]2
dx + β1

∫

Ω

q(x)
[
α(x)− αm(x)

]2
dx + β2

∫

Ω

n∑
t=1

pt(x)
[ ∂α

∂xt
(x)− άt(x)

]2
dx,

(19)

where x = [x1, · · · , xn] ∈ Ω is the position vector, q ∈ L∞(Ω) is a positive function that weights the penalty
on the error between the image and the image model αm; pt ∈ L∞(Ω), t = 1, · · · , n is a positive function that



weights the penalty on the error between the image gradient αt = ∂α/∂xt and the model of the image gradient
άt. β1, β2 > 0 are the regularization parameters.

In (19), the first penalty term can be used to constrain the solution on only admissible local regions inside
the domain, by using the weighting function q properly. By the careful choice of pt, the second penalty term
can serve both to eliminate and preserve the high-frequency components of the image α. Note that pt ensures
an anisotropic penalty term for the image gradient. The scalars β1 and β2 control the balance between the
data-fit term, the first, and the second penalty terms. We finally note that the regularization terms address the
ill-posedness of (17) as well.

Note that if there is a priori quantitative spatial information about the fluorophore absorption value, then
one can design an image model αm and/or άt. Otherwise, the models can be taken to be zero. In this case, the
weighting functions q and pt can be designed based on the available a priori information (see Section 3).

The convexity of the function F (x, α, αt) with respect to the variable αt ensures a minimizer for the opti-
mization problem in (19).18 Clearly

∣∣∂F

∂α
(x, α, αt)

∣∣ ≤ C1(1 + |α|+
∣∣ ∂α

∂xt

∣∣2),
∣∣ ∂F

∂αt
(x, α, αt)

∣∣ ≤ C2(1 + |α|2 +
∣∣ ∂α

∂xt

∣∣),

for some constant C1 > 0 and C2 > 0, as a result of the quadratic terms in the integrand F (x, α, αt). Hence,
the minimizer of (19) satisfies the following integro-differential equation. This is a necessary condition for the
objective functional J(α) in (19) to have an extremum:

∂F

∂α
−

n∑
t

∂

∂xt

∂F

∂αt
= 0. (20)

In particular, we have the following lemma.

Lemma 1: Let

f(x) := A∗γ(x) + β1q(x)αm(x) + β2

n∑
t=1

[
pt(x)άt(x)

]
t
. (21)

Then, the minimizer α̂ of the functional in (19) satisfies the following integro-differential equation for x ∈ Ω:

A∗Aα(x) + β1q(x)α(x)− β2

n∑
t=1

[pt(x)
∂α

∂xt
(x)]t = f(x). (22)

Proof. A necessary condition for J(α) to have an extremum for a given function α̂ is that α̂ satisfy the Euler-
Lagrange equation, which can be obtained by computing the first variation of J(α) in (19). Using (21)
and (20) results in Lemma 1. ¤

Remarks:

1. Note that for β1, β2 = 0, the solution of the minimization problem satisfies (17).

2. Penalizing the image imposes a penalty on the image gradient as well; however the converse is not true.

3. The integro-differential equation requires that the first and second derivatives of α exist. We note that the
solution for which the functional has its extremum may not satisfy these requirements. In the following
section, we will formulate the inverse problem in the variational framework, which seeks a less smooth
solution as compared to (22).

4. We note that the operator A is self-adjoint, hence A∗ = A.



3. INCORPORATION OF THE A PRIORI INFORMATION

In order to incorporate the a priori information, we first turn back to the minimization problem (19). Next, we
consider the corresponding weak problem with the assigned boundary conditions.

3.1. The penalty on the image α

The second term in (19) penalizes the difference between the solution α and an a priori image model αm,
depending on the spatially varying function q. Hence, we need to decide about q and αm, together with the
positive parameter β1 that controls the impact of the penalty term. In general, there is no exact prior information
about the magnitude of the solution, which can be used as the image model αm. On the other hand, one can
know the spatial distribution of the fluorophore concentration, that is, where the fluorophore is expected to exist
and where it is expected not to exist. Let αm

b be a piece-wise constant function defined as follows:

αm
b (x) :=

{
1, x ∈ Ωe

0, x ∈ (
Ω \ Ωe

) ,

where Ωe is the region where the fluorophore is expected to exist. To model the uncertainties about the boundaries
of αm

b , we use a smoothing Gaussian kernel to obtain

α̃m
b (x) :=

∫

Ω

Gσ(x-y)αm
b (y)dy,

where Gσ is a normalized Gaussian kernel with equal variance σ2. Then, q can be defined as

q(x) :=
Q

ε + α̃m
b (x)

, x ∈ Ω, (23)

where, Q > 0 is a scalar, and 0 < ε ¿ 1. Note that q ∈ L∞(Ω). We note that one way to obtain an image
model αm is to formulate the least squares problem (β1 = β2 = 0) and solve the resulting weak problem (14)
on a finite-dimensional sub-space with a low dimension, such that the resulting linear equations do not pose an
increase on the computational complexity.

3.2. The penalty on the image gradient ∂α/∂xt

The last term in (19) penalizes the deviations of the solution gradient from a prior image gradient model, άt,
for t = 1, · · · , n. The function pt provides a spatially varying penalty term on the gradient. In general, it is not
possible to find an exact image gradient model άt, thus one can assume that άt = 0. In this case, pt can be used
to suppress or allow the variations in the image gradient, by appropriately designing pt.

Let αm
s be a segmented image which shows the internal structure of the medium of interest. Depending on

the criterion for the segmentation, αm
s (x) may be identical to αm

b (x), or αm
s (x) can be given by

αm
s (x) := r, x ∈ Ωr, r = 0, · · · , R− 1,

where
⋃R−1

r=0 Ωr = Ω, and R is the total number of labels in the segmented image. For example, each label may
indicate a different tissue type, or organ, in which the fluorophore may exist or not. In this case, αm

s (x) differs
from αm

b (x) due to the difference in the segmentation criterion.

Next, we consider the edge map e extracted from the segmented image αm
s , which can be obtained by applying

a simple edge detection algorithm on the segmented image αm
s :

e(x) :=
{

1, ‖x− xe‖ ≤ d, xe on an edge
0, elsewhere ,

where ‖x− xe‖ is the Euclidean distance between x and an edge point xe, and d is a predefined distance value.
Then, we apply a smoothing kernel on the edge map e and obtain:

ẽ(x) :=
∫

Ω

Gσ(x-y)e(y)dy. (24)



The smoothing kernel Gσ provides an uncertainty bound for the location of the edges. Furthermore, the resulting
function ẽ becomes sufficiently smooth to take derivatives. Then, we can define pt as follows:

pt(x) := Pt/

(
ε +

∣∣∣∣
∂ẽ

∂xt

∣∣∣∣
)

,x ∈ Ω, (25)

where Pt > 0 is scaling factor. As a result, pt is large where there is no edge, and small where there is an edge.
Note that pt(x) > 0 for all x ∈ Ω and pt ∈ L∞(Ω).

3.2.1. Inverse problem formulation in the variational framework

The inverse problem in the optimization framework involves a functional minimization. Instead, we consider the
variational formulation of the inverse problem, after defining appropriate boundary conditions.

Consider (22) with the boundary condition:

pt(x)
∂α

∂n̂t
(x) = Bt(x), x ∈ ∂Ω. (26)

where Bt ∈ H1(Ω).

In order to obtain the variational (weak) problem, we multiply both sides of (22) by a function ψ ∈ H1(Ω),
and integrate on Ω:

∫

Ω

ψ(x)
[
A∗Aα(x) + β1q(x)α(x)

]
dx− β2

∫

Ω

ψ(x)
n∑

t=1

[
pt(x)

∂α

∂xt
(x)

]
t
dx =

∫

Ω

ψ(x)f(x). (27)

Noting pt ∈ L∞(Ω) and α ∈ H1(Ω), we can apply the integration by parts formula for the second integral on
the left hand side of (27).14 As a result

∫

Ω

ψ(x)
[
A∗Aα(x) + β1q(x)α(x)

]
dx + β2

n∑
t=1

∫

Ω

pt(x)
∂α

∂xt
(x)

∂ψ

∂xt
(x)dx

− β2

n∑
t=1

∫

∂Ω

ψ(x)pt(x)
∂α

∂n̂t
(x)ds =

∫

Ω

ψ(x)f(x), (28)

where ∂ · /n̂t denotes the directional derivative along the unit normal vector in xt direction t = 1, · · · , n.

Inserting (26) into (28) leads to

∫

Ω

ψ(x)
[
A∗Aα(x) + β1q(x)α(x)

]
dx + β2

n∑
t=1

∫

Ω

pt(x)
∂α

∂xt
(x)

∂ψ

∂xt
(x)dx

=
∫

Ω

ψ(x)f(x)dx + β2

n∑
t=1

∫

∂Ω

ψ(x)Bt(x)ds. (29)

Equivalently, we can express (29) as follows:

Π(ψ, α) + β2

n∑
t=1

( ∂ψ

∂xt
, pt

∂α

∂xt

)
= (ψ, f) + β2

n∑
t=1

< ψ,Bt >, (30)

where
Π(ψ, α) := (ψ, A∗Aα) + β1(ψ, qα) = (Aψ, Aα) + β1(ψ, qα),

(k, l) :=
∫

Ω

k(x)l(x)dx,

< k, l > :=
∫

∂Ω

k(x)l(x)ds.



Let b(ψ, α) : H1(Ω)×H1(Ω) → R be a bilinear form given by

b(ψ, α) := Π(ψ, α) + β2

n∑
t=1

(
∂ψ

∂xt
, pt

∂α

∂xt
). (31)

Then, we consider the following weak formulation for the inverse problem:

b(ψ, α) = G(ψ), (32)

where G(ψ) ∈ H−1(Ω) is a continuous linear functional given by

G(ψ) := (ψ, f)− β2

n∑
t=1

< ψ, Bt > . (33)

Remark:

1. The solution of the integro-differential equation (22) together with the boundary conditions (26) satisfies
the weak problem.

In the following, we will show the existence and uniqueness of the solution to the weak formulation.

Lemma 2: Let

B1 :=
(‖A∗A‖L2(Ω)→L2(Ω) + β1‖q‖L∞(Ω) + β2 max

t
‖pt‖L∞(Ω)

)
, (34)

B2 := min(qLβ1, pLβ2), (35)

where

qL := min
x∈Ω

‖q(x)‖L∞(Ω),

pL := min
t

min
x∈Ω

‖pt(x)‖L∞(Ω).

The bilinear form b(ψ, α) in (31) is bounded and coercive. Hence, b(ψ, α) satisfies respectively

|b(ψ, α)| ≤ B1‖ψ‖H1(Ω)‖α‖H1(Ω),

b(α, α) ≥ B2‖α‖2H1(Ω).

Proof. See Appendix A. ¤

Lemma 2 results in important conclusions:

Corollary 1: There exists a unique solution α ∈ H1(Ω) for the inverse problem (32). The existence and
uniqueness is a direct result of the coercivity and boundedness of the bilinear form b(ψ, α) and Lax-Milgram
theorem.14

Corollary 2: The unique solution α ∈ H1(Ω) of the inverse problem (32) is bounded by

‖α‖H1(Ω) ≤
1

B2
‖G‖H−1(Ω), (36)

where

‖G‖H−1(Ω) ≤ ‖f‖L2(Ω) + Cβ2

n∑
t=1

‖Bt‖H1(Ω), (37)

where C > 0 is a constant.

Proof. See Appendix B. ¤



4. DISCRETIZATION OF THE INVERSE PROBLEM

In practice, we seek a finite-dimensional approximation to the solution of the inverse problem (32). Therefore,
we discretize (32) by projecting it onto a finite dimensional subspace. In this work, we use the variational
formulation for the inverse problem and thus consider the Galerkin method for projection.17

Let Xn ⊂ X denote a sequence of finite-dimensional subspaces of dimension n, spanned the by piecewise
linear Lagrange basis functions {L1, . . . , Ln}, and {xp}, p = 1, . . . , n, be a set of points on Ω. Replacing ψ
in (32) by Ψ ∈ Xn

Ψ :=
n∑

i=1

PiLi(x),

and α in (32) by αn ∈ Xn

αn :=
n∑

i=1

aiLi(x)

results in the discretized inverse problem:
b(Ψ, αn) = G(Ψ). (38)

Replacing ψ in (32) by Ψ ∈ Xn and subtracting (38) from the resulting equation leads to

b(Ψ, αn − α) = 0. (39)

This last equation implies an orthogonality condition with respect to the bilinear operator b(ψ, α), which defines
an inner product and b(ψ,ψ) is a norm. As a result, the discretization in (38) defines an orthogonal projection.17

Lemma 3: The solution to the discretized inverse problem (38) defined by the bilinear form b(ψ, α) exists and
is unique.

Proof. The proof uses the coercivity property of the bilinear form b(ψ, α) shown in Lemma 2. For the rest of
the proof see Theorem 13.27 in.17 ¤

5. AN EXAMPLE

In this section, we describe the procedure to design the weighting functions q and pt when there is only localization
information (i.e. αm

b for all x ∈ Ω ⊂ R2) and edge information (i.e. e(x) for all x ∈ Ω), but no model for the
image or the image gradient.

In our example study, we consider the optical medium on the bounded rectangular domain Ω with size 5 cm
along x- and 6 cm along y-direction, as shown in figure 1(a), where the circular inclusion indicates the fluorophore
concentration. In the following subsections, we will discuss the available a priori information and how we process
this information to design the regularization terms, in particular, the functions q and pt.

5.1. Available a priori information
Figure 1(b) shows the internal structure of the medium except for the inclusion which corresponds to the
fluorophore concentration. This picture is analogous to an anatomical image that can be acquired from a
secondary imaging modality such as MR or x-ray. In this case, the two inclusions at the top can be considered
to mimic the lungs, and the inclusions below to the liver and kidneys. Assume that the fluorophore is known to
exist in only the lungs. Then, figure 5.1 shows the function αm

b , which denotes the regions where the fluorophore
is expected to exist. Figure 2(b) shows the edges of the segmented image shown in figure 1(b). Note that, for
the edge information, we preferred the image shown in figure 1(b), but not the function αm

b shown in figure 5.1.
Hence, we are taking into account the possibility that the actual solution can have edges outside the lungs as
well.

Next, we will use the images shown in figure 2 to design the weighting functions q and pt in the regularization
terms.



(a) The medium under inspection for the exam-
ple study.

(b) The segmented image that mimics the inter-
nal organs of a mouse.

Figure 1. The medium considered in the example study (left) and the internal organ structure of the medium representing
the anatomical image which can be acquired from a secondary imaging modality such as MR or x-ray.

(a) The function αm
b . (b) The edges of the image shown in figure 1(b).

Figure 2. The binary image that indicates the regions where the fluorophore is expected to exist and the edges of the
segmented image shown in figure 1(b).

5.2. Design of the functions q and pt

In this section, we will design the weighting functions q and pt, which constitute the core of the regularization
terms.

To start, we consider the function αm
b shown in figure 5.1. To impose an uncertainty on the boundaries

indicated by this function, we use a smoothing Gaussian kernel with equal variance σ2 = 0.1. The resulting
function α̃m

b is shown in figure 5.2. We note the effect of filtering on the edges of the lungs as compared to
the function αm

b shown in figure 5.1. Similarly, we filter the edge function e by a Gaussian kernel to obtain a
differentiable function and introduce an uncertainty on the exact locations of the edges.

Next, we will design the weighting functions q and pt by using α̃m
b and ẽ, respectively.

In order to design the regularization term to penalize the solution, we define the weighting function q in (23).
In this example, we set Q = 1 and ε = 10−2 in (23). For comparison, in figure 4, we show both the functions
α̃m

b and q, which is obtained by using α̃m
b according to (23). In figure 4(b), it is seen that q is large where α̃m

b is
small and vice-versa. In the regularization framework, this corresponds penalizing the high values in the solution
on regions where we do not expect the fluorophore to exist. Similarly, on the regions where the fluorophore is
expected to exist, the penalty is less due to the low value of q on such regions.

For the design of the function pt, for t = 1, 2, we look into (25). First, we compute the partial derivative
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(a) The function α̃m
b , obtained by filtering αm

b by
a Gaussian kernel.
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(b) The function ẽ, obtained by filtering the edge
function e by a Gaussian kernel.

Figure 3. (a) The filtered version of αm
b and (b) the edge function e after filtering.
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(a) The function α̃m
b , obtained by filtering αm

b by
a Gaussian kernel.
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(b) The function q defined by (23).

Figure 4. The functions α̃m
b and q, which is obtained by using according to (23). (a) α̃m

b and (b) the weighting function
q.

of the differentiable function ẽ along x- and y-directions. We show the resulting images in figures 5.2 and 5.2,
respectively. In figure 5.2, we see that the derivative of ẽ along x-direction is high across the edges along y-
direction and small across the edges along x-direction. Similarly, in figure 5.2, we see that the derivative of ẽ
along y-direction is high across the edges along x-direction and small across the edges along y-direction.

In order to design the functions p1 and p2, we note (25). In this example, we set Pt = 1, for t = 1, 2 and
ε = 10−2. The resulting functions are shown in figures 5(b) and 6(b), respectively. Note that p1 is large where
the gradient of ẽ along x-direction is small and vice-versa. Similarly, p2 is large where the gradient of ẽ along
y-direction is small and vice-versa. For comparison, we display p1 and the gradient of ẽ along x-direction in
figure 5, and p2 and the gradient of ẽ along y-direction in figure 6.

6. CONCLUSION

In this work, we discuss the incorporation of a priori information into the inverse problem formulation for
fluorescence optical tomography. The a priori information consists of the information regarding the localization
region of the fluorescent agent and the internal structure of the medium of interest. To make use of the available a
priori information fully, we design regularization terms which impose spatially-varying penalties simultaneously
on the solution and its gradients within the optimization framework. In this respect, we discuss the use of a
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(a) The partial derivative of ẽ along x-direction.
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(b) pt on Ω for t = 1 (i.e. x-direction).

Figure 5. (a)The partial derivative of ẽ along x-direction and (b) pt computed according to (25) for t = 1.
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(a) The partial derivative of ẽ along y-direction.
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(b) pt on Ω for t = 2 (i.e. y-direction).

Figure 6. (a)The partial derivative of ẽ along y-direction and (b) pt computed according to (25) for t = 2.

priori information for designing the appropriate regularization terms. We describe the design procedure in an
experimental study.

Our future work will focus on the estimation of the parameters in the proposed inverse problem formulation
and the validation of the proposed inverse problem formulation in experimental studies.

APPENDIX A. PROOF OF LEMMA 2

Clearly,

|b(ψ, α)| ≤ |Π(ψ, α)|+ β2

∣∣
n∑

t=1

(
∂ψ

∂xt
, pt

∂α

∂xt
)
∣∣,

and

|Π(ψ, α)| ≤
∫

Ω

|(A∗Aα)(x)β(x)|dx + β1

∫

Ω

|q(x)α(x)β(x)|dx
≤ ‖A∗Aα‖L2(Ω)‖β‖L2(Ω) + β1‖q‖L∞(Ω)‖α‖L2(Ω)‖β‖L2(Ω)

≤ ‖A∗A‖L2(Ω)→L2(Ω)‖α‖L2(Ω)‖β‖L2(Ω) + β1‖q‖L∞(Ω)‖α‖L2(Ω)‖β‖L2(Ω)

≤ (‖A∗A‖L2(Ω)→L2(Ω) + β1‖q‖L∞(Ω)

)‖α‖H1(Ω)‖β‖H1(Ω), (40)



and

β2|
n∑

t=1

(
∂ψ

∂xt
, pt

∂α

∂xt
)
∣∣ ≤ β2

n∑
t=1

∫

Ω

∣∣pt(x)
∂ψ

∂xt
(x)

∂α

∂xt
(x)

∣∣dx

≤ β2 max
t
‖pt‖L∞(Ω)

∫

Ω

|∇α| · |∇β|dx
≤ β2 max

t
‖pt‖L∞(Ω)‖α‖H1(Ω)‖β‖H1(Ω).

Hence,

|b(ψ, α)| ≤ (‖A∗A‖L2(Ω)→L2(Ω) + β1‖q‖L∞(Ω) + β2 max
t
‖pt‖L∞(Ω)

)‖α‖H1(Ω)‖β‖H1(Ω)

≤ B1‖α‖H1(Ω)‖β‖H1(Ω), (41)

where B1 is given by (34). For the second inequality, we first write

b(α, α) = Π(α, α) + β2

n∑
t=1

(
∂α

∂xt
, pt

∂α

∂xt
).

Since A is self-adjoint,

(A∗Aα,α) = (Aα,Aα) ≥ 0.

Thus, together with the non-negativity of the functions q and pt, and the positive parameters β1, β2, we see

b(α, α) ≥ β1(qα, α) + β2

n∑
t=1

(
∂α

∂xt
, pt

∂α

∂xt
)

≥ qLβ1(α, α) + pLβ2

n∑
t=1

(
∂α

∂xt
,

∂α

∂xt
)

≥ min(qLβ1, pLβ2)‖α‖2H1(Ω)

≥ B2‖α‖2H1(Ω),

where B2 is given by (35).

APPENDIX B. PROOF OF COROLLARY 2

The inequality (36) is a direct result of the coercivity of the bilinear form b(ψ, α)19:

‖G‖H−1(Ω) = sup
0 6=ψ∈H1(Ω)

G(ψ)
‖ψ‖H1(Ω)

= sup
0 6=ψ∈H1(Ω)

b(α, ψ)
‖ψ‖H1(Ω)

≥ b(α, α)
‖ψ‖H1(Ω)

≥ B2‖α‖H1(Ω).

The norm ‖G‖H−1(Ω) is given by

‖G‖H−1(Ω) = sup
0 6=ψ∈H1(Ω)

(ψ, f) + β2

∑n
t=1 < ψ,Bt >

‖ψ‖H1(Ω)

≤
(‖f‖L2(Ω) + Cβ2

∑n
t=1 ‖Bt‖H1(Ω)

)‖ψ‖H1(Ω)

‖ψ‖H1(Ω)
,

where the second term in the inequality results from the trace theorem14:

‖Bt‖L2(∂Ω) ≤ C‖Bt‖1/2
L2(Ω)‖Bt‖1/2

H1(Ω)

for C > 0 and Bt ∈ H1(Ω), where the boundary ∂Ω of Ω is Lipschitz.
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