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Abstract—Cyber data attacks are the worst-case interacting
bad data to power system state estimation and cannot be detected
by existing bad data detectors. This paper for the first time
analyzes the likelihood of cyber data attacks by characterizing
the actions of a malicious intruder in a dynamic environment,
where power system state evolves with time, and measurement
devices could become inaccessible due to detected attacks. This
analysis is important for the operator to evaluate the vulnerability
of power systems to data attacks. A Markov decision process is
proposed to model an intruder’s strategy, with the objective to
maximize its cumulative reward across time. The optimal attack
policy is solved from the intruder’s perspective, and the attack
likelihood is then analyzed based on the obtained policy. Two
attack scenarios are studied to model different knowledge levels
of the intruder about the dynamics of power systems. Numerical
experiments are conducted on the IEEE 14-bus and 30-bus test
systems to study the intruder’s attack strategy and analyze the
attack probability.

Index Terms—Cyber data attacks, Markov Decision Process,
state estimation, power systems.

I. INTRODUCTION

STATE estimation [2] solves for power system states from
measurements. Since bad data (erroneous measurements)

can result in significant errors in the outcome of state esti-
mation and potentially lead to catastrophic consequences, bad
data detection has been extensively studied [3]–[7].

The integration of cyber infrastructures in future smart grids
increases the possibility of cyber attacks. Cyber data attacks
are viewed as “the worst interacting bad data injected by an
adversary” [8], [9]. A malicious intruder with sufficient system
configuration information can manipulate multiple measure-
ments simultaneously such that the injected errors cannot be
detected by any bad data detector that relies on measurements
obtained at a given time instant.

State estimation in the presence of cyber data attacks has
attracted much research attention recently [8]–[17]. Since cy-
ber data attacks were considered as undetectable until recently,
most efforts have been devoted to studying the requirements
to launch a cyber data attack [11], [15] and preventing these
attacks by protecting a small number of key measurement units
[10], [11], [18]. A few recent work considered the detection of
cyber data attacks [13], [14], [19], which exploited abnormal
patterns of measurements in the time series to detect attacks.

Because the interacting data attacks can also be detected,
a natural question to the intruder is to figure out the optimal
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attack strategy to maximize its overall benefit as the power
system state changes over time. The operator, however, needs
to analyze the frequency and likelihood of these attacks so
as to take preventive actions or protect highly vulnerable
components. Although the interaction of an intruder and an
operator for physical infrastructure attacks has been studied
through a game-theoretic approach [20], similar analysis is
missing for cyber data attacks.

This paper takes the first step to analyzing the likelihood of
data attacks and system vulnerability to these attacks through
studying the optimal attack strategy of an intruder. Since
existing works mostly studied cyber data attacks at a given
time instant, there exists no analysis of cyber data attacks when
the system state evolves. One contribution of this paper is the
development of a general model of an intruder’s attack process.
This model enables the first mathematical analysis of cyber
data attacks in a dynamic setup. In this model, the intruder’s
objective is to maximize its aggregate reward (e.g., financial
benefits, degradation of system stability, etc) over a given
period. If an attack is detected by the operator, the intruded
measurement units will become inaccessible to intruders,
and the corresponding measurements cannot be manipulated1.
Thus, the intruder’s current action affects its available actions
and potential benefits in the future. A Markov Decision
Process (MDP) [21] is employed to model the intruder’s attack
decision across time. Two levels of the intruder’s knowledge
about future power system states are studied in the paper. We
consider both the special case that the intruder can predict
the future states for a short time and the general case that
the intruder has less knowledge and employs a Markov Chain
to model the evolvement of the system states. The intruder’s
action process in these two scenarios are formulated as a
finite-horizon MDP and an infinite-horizon MDP respectively.
Note that although the parameters of the MDP depend on the
system’s features and the operating program, the MDP-based
approach does not. The MPD-based approach is a general
framework to study an intruder’s attack process.

The solution to the MDP is a mapping from power sys-
tem states to the intruder’s optimal actions (including which
buses to intrude and what errors to inject). The operator
can also solve the MPD and compute the attack likelihood
based on the obtained attack strategy. The operator can then
study the vulnerability of individual components and analyze
the impact of various factors (such as detection probability
and system transition probabilities) on system vulnerability.

1For example, the measurement devices and corresponding data channels
will be protected through a combination of encryption, continuous monitoring,
separation from the Internet, etc [18].



Numerical experiments demonstrate that the results of the
vulnerability analysis are robust to parameter selections of the
MPD-problem, the operator’s dispatch strategies, and minor
inaccuracies in the models to some degree. This property
enables the operator to study the vulnerability of the system
even with limited knowledge of the intruder’s behavior.

The rest of the paper is organized as follows. Section II
presents the problem motivation and introduces cyber data
attacks and MDPs. The intruder’s attack process is formulated
as MDPs in Section III. The solutions and likelihood analysis
are discussed in Section IV. Numerical experiments on the
IEEE 14-bus and 30-bus systems are presented in Section V
to illustrate our methods. Section VI concludes the paper.

II. PROBLEM MOTIVATION AND BACKGROUND

A. Cyber Data Attacks in Power Systems

The state of an n-bus power system is represented by
x = (V , θ), where Vi ∈ R and θi ∈ [−π, π) represent
the voltage magnitude and angle of bus i, respectively, and
V = [V1, ..., Vn] and θ = [θ1, ..., θn]. Each measurement
unit measures some quantities in the system, e.g., the active
power flow on a transmission line. Let vector z ∈ Rk denote
all the measurements, then z = H(x) + ω, where H is
a set of k functions, and ω ∈ Rk represents the random
measurement noise. For example, when line resistances and
shunt admittances are ignored, the real power flow from bus
i to bus j on line ij is

Pij = (Xij)
−1 · Vi · Vj · sin(θi − θj), (1)

where Xij denotes the reactance of line ij.
All the measurements are transmitted to the central operator

through the communication network. After collecting z, the
central operator solves an inverse problem to estimate the
system state, denoted by x̂, usually through solving a weighted
least square optimization problem, i.e.,

x̂ = arg min
x

(z −H(x))T ·R−1 · (z −H(x)), (2)

where R ∈ Rk×k is the covariance matrix of measurement
noise ω. Bad data in z can be detected if

(z −H(x̂))TR−1(z −H(x̂)) > τ, (3)

where τ is a prescribed threshold [2].
An intruder with sufficient system information can inject

interacting errors to multiple measurements. The attacks can
happen during the data sampling period at the measurement
devices and/or during the data transmission from the device
to the central operator. If the injected additive error vector
ez ∈ Rk to the measurements satisfies

z + ez = h(x′) + ω = h(V + eV ,θ + eθ) + ω, (4)

the operator would obtain a wrong estimate (V +eV ,θ+eθ)
instead of the actual state (V ,θ). Thus, eV and eθ represent
the resulting injected errors to state variables V and θ by
injecting errors z to the measurements. These interacting bad
data injections ez , referred to as cyber data attacks [9] in this
paper, cannot be detected by any bad data detector that only
takes measurements at one time instant as the input.

The potential financial risks of cyber data attacks were
studied in [22] and [23]. The injected errors can lead to a
change of the congestion pattern, which is referred to as the
set of lines that are estimated to be congested. The locational
marginal price (LMP) of the electricity would change accord-
ingly, which results in the finical profits of the intruder.

B. Question to address: likelihood of cyber data attacks

This paper is focused on cyber data attacks that can pass
conventional bad data detectors, i.e., satisfy (4). Note that these
attacks can still be detected by methods in [13], [14], [19].
The attack objective is quantified through financial benefits
in electricity market [22], [23]. Therefore, an attack changes
the congestion pattern to gain reward. One can generalize the
method here to study other motivations of cyber data attacks
by replacing the objective function.

Given a system state, the intruder decides which measure-
ment units to attack and what errors to inject, aiming to
maximize the sum of two rewards:
a. The net reward of the current attack.

The intruder obtains a reward if an attack is not detected by
the operator and changes the congestion pattern of the power
system. The effort to inject an attack is modeled by a “cost”.
The net reward is the reward minus the cost.
b. The aggregate reward from potential future attacks.

The future reward is affected by the current attack. If an
attack is detected, there is no immediate reward, and the
operator will protect the affected devices, which in turn limits
the future choices of attacks.

The major challenge for an intruder to find the optimal
attack strategy results from its limited knowledge of future
system states. That includes two aspects:
1. Uncertainty of the future states of measuring devices.

The intruder does not know if an attack would be detected
by the operator beforehand. It only has an estimate of the
success probability (obtained probably from trials).
2. Uncertainy of the future power system states.

This paper starts with a special case that the intruder can
accurately predict the states of the power systems for a short
period. Then the analysis is extended to the general case that
future power system states are unknown to the intruder. The
intruder is assumed to model the state evolvement of power
systems as a Markov Chain and estimate the state transition
probability from historical data. Note that the system state
depends on the operator’s control strategy, which is implicitly
modeled through state evolvement in this paper. Although the
actual power system does not evolve as a Markov Chain,
the latter is a reasonable tool for the intruder with limited
knowledge to model the system state.

The intruder’s decision process is formulated as a Markov
Decision Process [21] in this paper. The likelihood of cyber
data attacks is analyzed from the optimal attack strategy.

C. Markov Decision Processes (MDPs)

An MDP is defined as a 5-tuple (S,A,R, p, γ): S =
{s1, s2, . . . , sn} represents the set of system states; A is the set
of actions, and each state s has an associated set of available
actions A(s). p(s′|s, a) is the probability that the system



TABLE I
NOTATIONS

Vi, θi Magnitude and angle of the estimated voltage phasor of bus i

V̄i, θ̄i Discrete states of Vi and θi
Ūi State of the ith measuring device

V̄ i, θ̄i Vectors of discrete states of voltage magnitude and angle of
all buses at state si

Ū i Vector of the states of all measuring devices at state si

eV , eθ
Vectors of injected errors to voltage magnitude and angle of
all buses

R(s′|s, a) Reward after state transits from s to s′ under action a
R(s, a) Expected immediate reward from action a at state s
p(s′|s, a) Transition probability from state s to s′ with action a
G(s, a) Total cost to take action a at state s
PMij Real power flow limit on line ij (connecting bus i and bus j)

P
max(min)
ij

Upper(lower) bound of line ij’s real power estimated from the
discrete states of bus voltage phasors

pT
Probability that an inaccessible device becomes open to attack
in the next time step

Φb(a)
Set of target buses of which the voltage phasors are manipu-
lated by action a

Φl(s, a)
Set of target lines of which the congestion states are changed
by action a at state s

pd(a) Probability that attack a is detected by operators
pr(s) Stationary distribution probability of state s
pb(i) Probability that the voltage phasor of bus i is manipulated
psys Probability that there exists data attacks in the system
Φd(a) Set of the intruded measuring devices by action a
π∗, π̂ Optimal and near optimal solutions to an MDP.

transits to state s′ after taking action a in state s. G(s, a)
is the cost of taking action a at state s. R(s′|s, a) represents
the reward when the state transits from s to s′ with action
a. γ is the discount factor for future rewards. The expected
immediate reward from action a at state s is:

R(s, a) = E [R(s′|s, a)] =
∑
s′∈S

p(s′|s, a) ·R(s′|s, a). (5)

The goal is to find the optimal actions that maximize the
expected accumulated net rewards as follows

E

[
T∑
t=0

γt (R(st+1|st, at)−G(st, at))

]
. (6)

When T is finite, the problem is a finite-horizon MDP and
γ can be chosen from [0, 1]. When T is infinite, (6) is an
infinite-horizon MDP, and the discount factor γ should be in
[0, 1), since the value of (6) can be unbounded if γ = 1.

The MDP problem can be solved exactly by various meth-
ods, e.g., dynamic programming and value iteration [21]. The
computational complexity depends on the dimensionalities of
the state space and the action set. Linear programming with
sampled constraints is an efficient method to obtain the near-
optimal actions with reduced complexity [24].

III. PROBLEM FORMULATION

The intruder’s action process is formulated as an MDP. Two
types of MDPs are discussed to model the intruder’s different
knowledge levels about the dynamics of power system states.
The common settings are presented in Section III-A, and the
distinct settings are discussed in Section III-B. The notations
in this paper are summarized in Table I.
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Fig. 1. Event sequence with cyber data attacks. An intruder changes the
observations of measuring devices to mislead the operator.

A. Common settings of the formulated MDPs

1) Discrete States and Time Steps: The intruder’s estimate
of power system states are represented by discrete variables
in the formulated MDP. Let nV and nθ denote the number of
discrete states in voltage magnitudes and angles, respectively.
Let V max

i and V min
i denote the upper bound and lower bound

of Vi, voltage magnitude of bus i, respectively, and ∆Vi =
V max
i − V min

i . The discrete state of Vi is defined as

V̄i = q/nV , q ∈ {1, 2, · · · , nV }, if (7)

Vi ∈
[
V min
i + (q − 1) · ∆Vi

nV
, V min
i + q · ∆Vi

nV

)
. (8)

Then given V̄i, we know

Vi ∈ IV̄i :=
[
V min
i + V̄i ·∆Vi − ∆Vi

nV
, V min
i + V̄i ·∆Vi

)
. (9)

Similarly, let θmax
i and θmin

i denote the upper bound and
lower bound of θi, respectively, and ∆θi = θmax

i − θmin
i . The

discrete state of θi is

θ̄i = q/nθ, q ∈ {1, 2, · · · , nθ}, if (10)

θi ∈
[
θmin
i + (q − 1) · ∆θi

nθ
, θmin
i + q · ∆θi

nθ

)
. (11)

Given θ̄i, we have

θi ∈ Iθ̄i :=
[
θmin
i + θ̄i ·∆θi − ∆θi

nθ
, θmin
i + θ̄i ·∆θi

)
. (12)

Ūj denotes the state of the jth measuring device. Ūj is ‘1’
if the device is open to attack, i.e. an intruder can change
partial or all measurements of that device. ‘0’ means the
device is inaccessible for attacks. An intruder might observe
the measurements but cannot change the measurements.

Each time step of a discrete-time MDP corresponds to the
instant of state estimation. The sampling rate of measuring de-
vices can be higher than the frequency of the state estimation,
as is shown in Fig. 1.

The state of an MDP includes bus voltage magnitudes,
angles, and the states of measuring devices together. Suppose
a power system has n buses and m measuring devices. Let

V̄ (t) = [V̄1(t), · · · , V̄n(t)], θ̄(t) = [θ̄1(t), · · · , θ̄n(t)], (13)

and Ū(t) = [Ū1(t), · · · , Ūm(t)] (14)

denote discrete states of voltage magnitudes, angles, and
measuring devices at time step t, respectively, then the state
st at time step t of an MDP is

st =
[
V̄ (t), θ̄(t), Ū(t)

]
. (15)



2) Actions: An attack can lead to wrong estimates of the
voltages of some buses, referred to as target buses. Let Φb
denote the set of target buses. |·| denotes the cardinality of a
set. We assume at each time step the intruder can affect at most
β target buses due to its resource constraints, i.e., |Φb| ≤ β.
The intruder has at most

∑β
i=0

(
n
i

)
choices of the target buses.

Let eVi and eθi denote the resulting injected errors to
the voltage magnitude and angle of bus i respectively, when
additive errors ez are injected to the measurements. To pass
bad data detectors, eV , eθ, and ez should satisfy (4). Since
we consider discrete system states, eVi and eθi are multiples of
∆Vi
nV

and ∆θi
nθ

respectively. There are at most nV ·nθ choices to
manipulate the state of one target bus. Note that Vi + eVi and
θi+eθi should still belong to

[
V min
i , V max

i

]
and

[
θmin
i , θmax

i

]
respectively.

An action is a triplet a = {Φb(a), eV (a), eθ(a)}. pd(a)
denotes the intruder’s estimate of the probability that an action
a is detected by the network operator. Since pd(a) depends
on the specific detection method (e.g., [13], [14], [19]) and
generally increases when the injected errors increase, we
propose to quantify pd(a) by a general function

pd(a) = 1− exp

(
−C ·

n∑
i=1

(
|eVi |
∆Vi

+ η
|eθi |
∆θi

))
, (16)

where a nonnegative constant C depends on the detection
method, and the positive constant η is the weighting factor of
the errors in the magnitudes and angles. Intuitively, a larger
C means a higher detection probability.

At a given state s, some measuring devices may be inacces-
sible to the intruder and in turn limits the number of available
actions. An action is available at state s if and only if for
every nonzero entry in its corresponding injected error vector
ez , the corresponding measurement device is open to attack.

3) Rewards and Costs: An intruder obtains a reward rij
from line ij if and only if the attack is undetected and changes
the estimated congestion state of line ij2. Given discrete states
(V̄ ,θ̄), the real power flow of line ij can be estimated by upper
and lower bounds, denoted by Pmax

ij (V̄ , θ̄) and Pmin
ij (V̄ , θ̄)

respectively. From (1), we have

Pmin
ij (V̄ , θ̄) = 1

Xij
inf

Vi∈IV̄i

Vi · inf
Vj∈IV̄j

Vj · inf θi∈Iθ̄i
θj∈Iθ̄j

|θi − θj |, (17)

Pmax
ij (V̄ , θ̄) = 1

Xij
sup
Vi∈IV̄i

Vi · sup
Vj∈IV̄j

Vj · supθi∈Iθ̄i
θj∈Iθ̄j

|θi − θj |, (18)

where IV̄i , Iθ̄i are defined in (9)-(12).
rij is defined to be proportional to the gap between the line

flow limit, denoted by PM
ij , and the estimated power bounds:

rij(s, a) =



Kij ·
(
Pmin
ij (V̄ ′, θ̄′)− PM

ij

)
/PM

ij ,

if Pmin
ij (V̄ ′, θ̄′) > PM

ij > Pmax
ij (V̄ , θ̄);

Kij ·
(
PM
ij − Pmax

ij (V̄ ′, θ̄′)
)
/PM

ij ,

if Pmin
ij (V̄ , θ̄) > PM

ij > Pmax
ij (V̄ ′, θ̄′);

0, otherwise,

(19)

2One can study other attack motivations by changing the definition of the
reward. For example, a reward function could be the decrease of the system
security margin, or the decrease of some bus voltage from 1 p.u..

where Kij is the reward weight of line ij and assumed to
be constants and independent of system states in this paper
for simplicity. (V̄ ′, θ̄′) is the resulting estimates with injected
errors eV (a) and eθ(a),

V̄ ′i = V̄i +
eVi(a)

∆Vi
, θ̄′i = θ̄i +

eθi(a)

∆θi
. (20)

Let Φl(s, a) denote the set of lines of which the congestion
states are changed by action a. The expected immediate reward
from action a at state s is:

R(s, a) = (1− pd(a)) ·
∑

ij∈Φl(s,a)

rij(s, a). (21)

The cost to intrude an accessible device is assumed fixed
and known, denoted by gu. Let Φd(a) denote the smallest set
of the intruded devices to achieve action a. The attack cost is

G(s, a) = gu · |Φd(a)|. (22)

4) State Transition of Measuring Devices: The state transi-
tion of measuring devices is illustrated in Fig. 2. Given Ū(t)
and at, devices are divided into three groups.
A1(t) includes the devices that are accessible at time t and

intruded by action at. At time t+ 1, they will stay accessible
if the attack is not detected, but they will become inaccessible
if the attack is detected by the operator.
A2(t) consists of the accessible devices that are not intruded

by action at. They will stay accessible at time t+ 1.
B(t) contains all the inaccessible devices at time t. In

order to model the scenarios that an intruder might be able to
hack protected devices as its intelligence improves, we assume
each device in B(t) will become accessible independently at
time t + 1 with a fixed probability pT . Intuitively, a smaller
pT indicates that a device is likely to stay inaccessible for a
longer period of time. When pT = 0, the devices will stay
inaccessible forever.

Measuring Device Groups 
Further Divided by Action at

Group A1(t): 
devices open and 

intruded by action at

Group A2(t): 
devices open and not 
intruded by action at

... ......

U(t): State of Measuring 
Devices in time step t 

U(t+1): State of Measuring 
Devices in time step t+1 

Measuring Device Groups 
Divided by Device State

with probability of

with probability of 1

with probability of

with probability of

1-pd (at)

pd (at)

pT

1-pT

pT

1-pT

Group A(t): 
devices open 

to attack

Group B(t): 
devices protected 

from intrusion

...

Fig. 2. State transition diagram of measuring devices. Green blocks denote
the accessible devices; red blocks denote the inaccessible devices; the orange
block denotes the set of accessible devices that are intruded by action a(t);
the blue block denotes the set of accessible devices that are not intruded by
action a(t).

In this case, if k1 devices of B(t) remain inaccessible, and
k2 devices of B(t) become open to attack independently in
Ū(t+1) for any integer k1 and k2 such that k1 +k2 = |B(t)|,
then the transition probability from Ū(t) to Ū(t + 1) after



taking action at is:

p(Ū(t+ 1)|Ū(t), at) =



(1− pd(at)) · pk1

T · (1− pT )k2 ,

if at is not detected,∀k1 + k2 = |B(t)|;
pd(at) · pk1

T · (1− pT )k2 ,

if at is detected,∀k1 + k2 = |B(t)|;
0, otherwise.

(23)
where pd(at) and pT are scalers defined in (16) and the
previous paragraph.

B. Distinct attack scenarios and formulated MDPs

We assume the system state evolves independently of the
data attack actions in a short period of time. The reason is
twofold. First, the data acquisition rate is much higher than
the change of dispatch decisions. Second, an intruder might
not have enough intelligence to predict the reactions of the
operator to drastic attacks. We consider two levels of the
intruders’ knowledge about how power system state evolves.

1) Scenario I – Known future states of the power system:
The intruder can accurately predict the discrete system states
for some time. This happens when the system is stationary or
follows a repetitive pattern. Thus, bus voltage magnitudes and
angles during the predicted period are deterministic functions
of time t, represented by (V̄ (t), θ̄(t)). Then, the state transi-
tion is fully determined by the intruder’s action and devices’
states, i.e.,

p(V̄ (t+ 1), θ̄(t+ 1), Ū(t+ 1)|V̄ (t), θ̄(t), Ū(t), at)

=p(Ū(t+ 1)|Ū(t), at). (24)

The number of states is reduced to 2m · T , where m is the
number of deployed measuring devices, and T is the total
number of time steps. Since the intruder aims to maximize its
expected cumulative reward in (6) during the prediction period,
the problem can be formulated as a finite-horizon MDP.

2) Scenario II – Known state transition probabilities of the
power system: The intruder does not know the future system
states but can employ a Markov Chain to model the state
evolution of the power system. The transition probabilities of
system states can be estimated from historical data. Let N
denote the number of states of the power system, then the
total number of states in the MDP problem is N · 2m. The
system transition probability from si to sj with action a is:

p(sj |si, a) = p(V̄ j , θ̄j |V̄ i, θ̄i, a) · p(Ū j |V̄ i, θ̄i, Ū i, a)

= p(V̄ j , θ̄j |V̄ i, θ̄i, a) · p(Ū j |Ū i, a),
(25)

where p(V̄ j , θ̄j |V̄ i, θ̄i, a) is the intruder’s estimation on the
transition probability from system state (V̄ i, θ̄i) to (V̄ j , θ̄j)
under attack a. The horizon T of the MDP is infinite here.

C. A small example to illustrate the problem formulation

The problem formulation is illustrated on a small system in
Fig. 3. For each line, the power limit is 1.3 per unit (p.u.),
and the reactance is 0.04 p.u.. Each bus voltage magnitude
has 2 discrete states. State 1 is 1.00~1.03 p.u., and state 2 is
1.03~1.06 p.u.. Each bus voltage angle has five states with a

resolution of 0.2◦. The allowable ranges for voltage angles of
bus 1, 2 and 3 are −0.5◦~0.5◦,−0.7◦~0.3◦ and −3.4◦~−2.4◦,
respectively. The load has 2 states, and the corresponding
discrete system states are shown in Table II.

Line 13 Line 23

Bus 1 Bus 2

Bus 3

Measuring 
device #2

Measuring 
device #1

Generator #1 G G

Load Center

Generator #2

Fig. 3. A simple example of power network

TABLE II
DISCRETE BUS STATES UNDER ALL LOAD STATES

Load State Discrete States of Bus Voltage Mangitudes and Angles
Bus 1 Bus 2 Bus 3

1 2/2, 3/5 2/2, 3/5 1/2, 5/5
2 2/2, 3/5 2/2, 2/5 1/2, 1/5

The congestion state of each line can be calculated from (17)
and (18). Take the line 23 with load state 2 as an example.
From the discrete states, we know

V2 ∈ [1.03, 1.06) , θ2 ∈ [−0.5◦,−0.3◦) ;

V3 ∈ [1.00, 1.03) , θ3 ∈ [−3.4◦,−3.2◦) ;

inf |θ2 − θ3| = 2.7◦, sup |θ2 − θ3| = 3.1◦;

Pmax
23 = 0.04−1 · 1.06 · 1.03 · sin(3.1◦) = 1.47 > 1.3,

Pmin
23 = 0.04−1 · 1.03 · 1.00 · sin(2.7◦) = 1.21 < 1.3.

In this case, the congestion state of line 23 cannot be deter-
mined. Hence we do not consider any reward from line 23.
Following this method, line 13 and 23 are uncongested under
load state 1, and line 13 is congested under load state 2.

Then all the available actions and the corresponding rewards
can be determined. A simple case is provided here that an
intruder injects error (0,−0.6◦) to the voltage phasor of bus
3 when the load is at state 1.

V ′3 ∈ [1.00, 1.03) , θ′3 ∈ [−3.2◦,−3.0◦) , inf |θ1 − θ′3| = 2.9◦,

Pmin
13 = 0.04−1 · 1.03 · 1.00 · sin(2.9◦) = 1.303 > 1.3.

With the injected error, line 13 becomes congested, and the
resulting reward r13 is K13 · (1.303 − 1.3) = 0.003K13. All
the available actions and the corresponding rewards when the
number of target buses β = 1 are shown in Table III.

TABLE III
ALL AVAILABLE ACTIONS AND CORRESPONDING REWARDS WHEN β=1

Load Target Target Injected Errors Resulting Reward
State Bus Lines eVi , eθi r13 + r23

1

3 13 0, −0.6◦ 0.003K13

3 13 0.03 p.u., −0.6◦ 0.042K13

3 13,23 0, −0.8◦ 0.093K13 + 0.003K23

3 13,23 0.03 p.u., −0.8◦ 0.134K13 + 0.042K23

2 3 13 0, 0.8◦ 0.014K13

The state transition of devices and the transition probability
can be determined from (16) and (23). Take the first action
in Table III for example, the attack detection probability is
1−exp(− 3

5Cη). In the next step, the measuring devices on Bus
1 and 2 are both protected with probability 1 − exp(− 3

5Cη)
and both open with probability exp(− 3

5Cη).
We further consider to the case that β = 2. Part of the

available actions in this case are shown in Table IV.



TABLE IV
PART OF THE AVAILABLE ACTIONS AND CORRESPONDING REWARDS

WHEN β = 2

Load Target Target Injected Errors Resulting Reward
State Buses Lines eVi , eθi r13 + r23

1
1, 3 13 0, 0.2◦; 0, −0.4◦ 0.003K13

2, 3 13, 23 0, 0.4◦; 0, −0.6◦
0.003K13

+0.393K23

2 1, 3 13 0, −0.4◦; 0, 0.4◦ 0.014K13

1, 3 13 0, −0.2◦; 0, 0.8◦ 0.109K13

IV. ATTACK PROBABILITY ANALYSIS BY SOLVING MDPS

Although parameters like pd, pT , and p(st+1|st, at) depend
on the operating programs of the system, the MDP-based
approach is general and does not depend on the system
operation. From an intruder’s perspective, it solves the MDP
to obtain the optimal attack strategy offline. In the attack
process, it first estimates system states from full or partial
measurements and then picks the corresponding optimal action
accordingly. From the operator’s perspective, it can compute
the attack likelihood of components in the system based on the
MDP solution. It can then take preventive actions to protect
the most vulnerable components.

Note that we assume in the attack process, an intruder has
access to a sufficient number of measurements to determine
the system state. Thus, it only needs to decide which mea-
surements to attack at each time instant. If it can only observe
partial measurements and further needs to decide which mea-
surements to observe at each time instant, the problem could be
formulated as a Partially Observable Markov Decision Process
(POMDP) [25]. We do not follow this direction because an
intruder might not have sufficient resource to solve the much
more complicated POMDP problem. Moreover, as shown in
the later numerical experiments (Section V-D, E), the results
of the analysis of the attack likelihood almost stay the same if
an intruder’s estimation of system state has minor inaccuracies.
Thus, the MDP solution is sufficient for the operator to
evaluate the system vulnerability.

A. Background of MDP solutions

In an MDP, a policy π is a mapping π : S 7→ A, where
π(s) is the action taken at state s. We define Wπ(s) as the
expected cumulative net reward by starting from state s till
terminal time T and following policy π,

Wπ(s) = E
[
T∑
t=τ

γt−τ (R(st+1|st, π(st))−G(st, π(st)))

∣∣∣∣sτ = s

]
, (26)

where τ is the first time step when state s appears.
W ∗(s) is the value of state s, which is defined as the

maximal cumulative reward starting from state s. Then

W ∗(s) = max
π∈Π

Wπ(s)

= max
a∈A(s)

(R(s, a)−G(s, a) + γ
∑
s′∈S

p(s′|s, a) ·W ∗(s′)), (27)

where Π is the set of all available policies. The optimal policy
that achieves the maximum in (27) is denoted as π∗. The
optimal action π∗(s) at state s is defined as

arg max
a∈A(s)

(R(s, a)−G(s, a)+γ
∑
s′∈S

p(s′|s, a) ·W ∗(s′)). (28)

B. Attack probability analysis in scenario I

The formulated finite-horizon MDP can be solved by
backward dynamic programming [21]. The values of states
after terminal step T are zeros, since no further attacks are
considered. The value of states at time T can be computed as

W ∗(sT ) = max
aT∈A(sT )

(R(sT , aT )−G(sT , aT )) . (29)

Then we can follow (27) to compute the value of states at
time step t = T − 1, · · · , 1 sequentially after computing the
state values at time step t+ 1.
Zi(st) is defined as the expected number of time steps

during which bus i is under attack from step t to terminal
step T with the initial state of st. With the optimal attack
policy π∗ determined from (28), we have

Zi(st) = 1[i∈Φb(π∗(st))] +
∑
st+1

p(st+1|st, π∗(st)) · Zi(st+1), (30)

where 1[A] is an indicator function that takes value ‘1’ if event
A happens and takes value ‘0’ otherwise.

Since no further attacks after time step T are considered,
Zi(sT ) = 1[i∈Φb(π∗(sT ))]. Thus Zi(s0) can be computed
recursively following (30). The attack probability of bus i is
defined as the ratio of Zi(s0) to the total number of steps T .

C. Attack probability analysis in scenario II

1) Solution of the formulated infinite-horizon MDP
Considering the computational complexity to solve an MDP

exactly [26], a near-optimal policy is determined with ap-
proximate linear programming [24]. State value W ∗(s) is
approximated by a linear combination of K predefined basis
functions yk ∈ R|S|, k = 1, ...,K, where K is much less
than |S|. The goal is to find the weight vector d ∈ RK
such that W ∗(s) ≈

∑K
k=1 yk(s)dk = Y (s)d, where Y =

[y1,y2, · · · ,yK ]. Moreover, the constraints in the LP are
sampled and relaxed to further simplify the computation [24],
[27]. The ALP method computes the near-optimal policy π̂
through solving the following optimization problem:

min
d∈RK
z(s)

∑
s∈Ψ(s)

c(s)Y (s)d+ λz(s)

s.t. z(s) ≥ −Y (s)d+R(s, a)−G(s, a)

+ γ
∑
s′

P (s′|s, a) · Y (s′)d, ∀a ∈ A(s),

z(s) ≥ 0, ∀s ∈ Ψ(s),

(31)

where c(s) is the state-relevance weight, z(s) denotes the
penalty of violating a constraint, λ is a positive weight, Ψ(s)
is the set of sampled states. The states are sampled uniformly
in this paper. Once d is computed through (31), π̂(s) can be
determined by (28).
2) Attack probability analysis

The stationary distribution pr(s) of state s can be obtained
from the following equation:

pr(s
i) =

∑
sj∈S

p(si|sj , π̂(sj)) · pr(sj), ∀si ∈ S, (32)

Note that
∑
si∈S pr(s

i) = 1. Then the attack probability of
bus i, denoted by pb(i), can be calculated as



pb(i) =
∑
s∈S

1i∈Φb(π̂(s)) · pr(s). (33)

The computational complexity depends on the size of the state
space, which is N · 2m. It could be time-consuming in large
power systems.

The computational time can be reduced in the case that the
transition probability from any system state (V̄ j , θ̄j) to state
(V̄ i, θ̄i) is equal and given, denoted by q(V̄ i, θ̄i). One can
easily verify that q(V̄ i, θ̄i) is also the stationary distribution
probability of (V̄ i, θ̄i). Furthermore, the distribution proba-
bilities of system states (V̄ , θ̄) and the states of measuring
devices Ū become mutually independent, i.e.,

pr(s
i) = pr(V̄

i, θ̄i, Ū i) = q(V̄ i, θ̄i) · pr(Ū i), (34)

where pr(Ū i) denotes the stationary distribution of measuring
devices at state Ū i. In this case, the number of variables re-
duces to 2m in order to compute pr(Ū i) from (32). P (Ū i|Ū j)
can be computed from

P (Ū i|Ū j) =
∑

(V̄ k,θ̄k) P (Ū i|V̄ k, θ̄k, Ū j , π̂) · q(V̄ k, θ̄k), (35)

where we skip the derivations due to space limitations.
The computational complexity can be further reduced by

sub-sampling the states and approximating P (Ū i|Ū j) by

P (Ū i|Ū j) ≈
∑

(V̄ k,θ̄k,Ūj)∈Ψ(s)
P (Ūi|V̄ k,θ̄k,Ūj ,π̂)·pr(V̄ k,θ̄k)∑

(V̄ k,θ̄k,Ūj)∈Ψ(s)
pr(V̄ k,θ̄k)

, (36)

where Ψ(s) is the set of sampled states.
After obtaining pr(s

i), the attack probability pb(i) of bus
i and the attack probability psys of the whole system can be
estimated with the sampled states as follows:

pb(i) ≈
∑
sk∈Ψ(s) 1[i∈Φb(π̂(sk))] · pr(sk)∑

sk∈Ψ(s) pr(s
k)

, (37)

psys ≈
∑
sk∈Ψ(s) 1[Φb(π̂(sk))is not empty] · pr(sk)∑

sk∈Ψ(s) pr(s
k)

. (38)

V. SIMULATION

We test our method in the IEEE 14-bus and 30-bus test
systems, as shown in Fig. 4. Each measuring device records
the voltage phasor of its located bus and the current phasors
of incident lines. The system parameters are available in [28].

Given load conditions, the system states are determined
from the economic dispatch (ED) (expect for Section V-D),
which is implemented with MATPOWER toolbox [29] in
MATLAB. The objective of economic power dispatch is to
minimize the aggregate fuel cost,

N∑
i=1

Ci(Pi) =

N∑
i=1

ai + biPi + ciP
2
i , (39)

where Ci(Pi) is the fuel cost of generator i to generate
Pi active power, and ai, bi, ci are the cost coefficients of
generator i. We relax the constraints concerning real power to
Pij ≤ 1.2PMij in economic dispatch. In the 14-bus system, the
capacities of line 1-2 and 1-5 are 100MW, and the capacities
of other lines are 50MW. The coefficients of fuel cost and the
line capabilities of the 30-bus system are provided in [28].

The common settings except for Section V-C are as follows:

Bus 1

Bus 2 Bus 3

Bus 7

Bus 5

Bus 6

Bus 8

Bus 4

Bus 9

Bus 10Bus 11

Bus 14Bus 13

Bus 12
Synchronous  
Compensators

Generators

G C C

Measuring  
Devices

G C

G

C

Load

(a) IEEE 14-bus test system

13

17

12 16

18

15 19

20 22
21

9 11

10

23 24 25

26
29

30

27

1 2 5 7 28

3 4 6 8

G G

G

G

G

GMeasuring Devices

14

Load
GeneratorsG

(b) IEEE 30-bus test system

Fig. 4. IEEE test systems

1) Discrete System States. The range of bus voltage magnitude
is 0.96 p.u. to 1.06 p.u., and nV = 5. Each bus voltage angle
has 9 intervals with a resolution of 1◦, thus nθ = 9. Then
there are 5× 9 = 45 ways to inject errors to one target bus.
2) Transition Probability of Measuring Devices. pT = 0.5.
The attack detection probability is computed from (16), where
η = 5.
3) Rewards and Costs. β = 2. C = 1 in (16). gu = 0.01 in
(22). Kij’s in (19) are all set to be 1.
A. Attacks with knowledge of future system states

The prediction time is 1 hour, during which each load
follows the curve in Fig. 5. The system operator conducts
state estimation once every five seconds. Thus there are 720
time steps, and 26 · 720 = 46080 (six measuring units) and
210 · 720 = 737280 (ten measuring units) states in the 14-
bus and 30-bus systems, respectively. The discount factor for
future rewards γ = 1.
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TABLE V
EXPECTED ATTACK PROBABILITIES OF FIVE MOST VULNERABLE BUSES

WITH VARYING INITIAL DEVICE STATES IN THE 14-BUS SYSTEM.

Initial Device States Expected Attack Probability
on Bus 2,4,6,7,10,13 Bus 10 Bus 2 Bus 8 Bus 9 Bus 7

0, 0, 0, 0, 0, 0 23.15% 11.14% 10.44% 9.90% 7.34%
0, 0, 0, 0, 1, 1 23.25% 11.14% 10.44% 9.90% 7.34%
0, 0, 0, 1, 1, 1 23.24% 11.13% 10.44% 9.90% 7.37%
1, 1, 1, 1, 1, 1 23.25% 11.12% 10.44% 9.88% 7.40%

Table V records the attack probabilities of top five most
vulnerable buses in the 14-bus system with different initial



states of the measuring devices. ‘0’ and ‘1’ correspond to
inaccessible and open to attacks respectively. There is a slight
variation in the expected attack probabilities when the initial
states vary, because 720 time steps are long enough to mitigate
the influence of initial states.

Bus 10 is the most vulnerable one. The reason is twofold.
The line connecting bus 9 and bus 10 has a smaller reactance
than other lines, then with the same errors injected to the bus
voltage phasors, the resulting reward from this line is larger.
An adversary only needs to intrude the device on bus 10 to
change the bus’s state, hence the attack cost is small.

Similar phenomenon is observed in the 30-bus system. The
top five most vulnerable buses are shown in Table VI.

TABLE VI
EXPECTED ATTACK PROBABILITIES OF FIVE MOST VULNERABLE BUSES IN

THE FORMULATED FOUR MDP CASES.

MDP Case Attack Probabilities of
Top Five Most Vulnerable Buses

14-bus Bus 10 Bus 2 Bus 8 Bus 9 Bus 7
finite-horizon 23.25% 11.12% 10.44% 9.88% 7.40%

14-bus Bus 10 Bus 7 Bus 9 Bus 2 Bus 8
infinite-horizon 25.00% 18.06% 4.43% 4.00% 2.82%

30-bus Bus 24 Bus 22 Bus 15 Bus 14 Bus 19
finite-horizon 27.29% 24.69% 23.21% 19.20% 17.09%

30-bus Bus 19 Bus 24 Bus 18 Bus 22 Bus 15
infinite-horizon 29.68% 27.72% 18.96% 18.71% 14.46%

B. Attacks with knowledge of state transition probabilities

Each load is assumed to have three states with the ratios
of the actual load to the base load being 1/2, 1 and 3/2
respectively. We consider the simple case that at each time
instant, every load transits to any state with possibility 1/3.
Then the stationary distribution of each state is 1/3. γ = 0.95.

The basis functions are defined as follows:
1) Basis functions only related to each bus.
For bus i, there are five functions: V̄i, V̄ 2

i , θ̄i, θ̄
2
i , V̄i · θ̄i.

2) Basis functions only related to each line.
For line ij, there are two basis functions: V̄iV̄j , θ̄iθ̄j .
3) Basis functions related to each measuring devices.
For measuring device k, if it needs to be intruded to manipulate
the state of bus i, then there are three basis functions: ŪkV̄i,
Ūkθ̄i, ŪkV̄iθ̄i.
4) Constant basis function of 1.

There are 189 basis functions for the 14-bus system and
371 functions for the 30-bus system in total.

We sample 2500 load states uniformly, conduct economic
dispatch, and discretize the observed continuous system states.
Then 2500 device states are sampled to obtain the state in (15).
The state-relevance weight c(s) = 1

2500 for all sampled states.
The penalty weight λ = 0.025. We use CPLEX to solve (31)
and obtain the near-optimal actions of the 2500 states.

Additional 10000 states are further sampled uniformly. With
the 12500 samples in total, the approximate state distribution
probability of measuring devices is computed following (36).
The attack probability of each bus is estimated from (37).

The top five most vulnerable buses in this scenario are
shown in Table VI. The time requirements for different prob-
lem setups implemented on MATLAB on a desktop with 3.4
GHz Intel Core i7 are summarized as follows:

TABLE VII
RUNNING TIME OF SIMULATIONS

Formulated MDPs Running Time of Each Procedure (second)
1 2 3

14-bus Finite-horizon 201.92 35.66 3.55
30-bus Finite-horizon 521.30 3140.43 115.50

14-bus Infinite-horizon 246.93 149.38 0.23
30-bus Infinite-horizon 725.64 2863.85 2.61

Note that we do not optimize the codes to reduce compu-
tational time, and the MATLAB environment adds overhead
to the computation. In Table VII, Procedure 1 finds all the
available attack actions and corresponding rewards for each
sampled state. Procedure 2 computes the optimal or near-
optimal attack policy. Procedure 3 calculates the attack likeli-
hood of each bus based on the obtained policy.

C. Discussions on the influences of various parameters.

We study the impact of several parameters on the attack
probabilities of buses.
1) Parameter C in attack detection probability.
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Fig. 6. Attack probabilities of part of buses in the 14-bus system

Fig. 6 shows that the attack probabilities of some buses
generally decrease as C increases. The same trend is observed
regarding the attack probability of the whole 14-bus system
in Fig. 7. That is because when C increases, the detection
probability of attacks in (16) increases, and the expected
immediate reward in (21) decreases. Bus 10 is always the most
vulnerable bus, same as in the finite-horizon MDP.
2) Average cost gu to intruder one device.
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Fig. 7. Influence of attack cost and parameter C on the attack probability
of the 14-bus system, pT = 0.5

As shown in Fig. 7, the likelihood of cyber data attacks
in the 14-bus system decreases when gu increases. Same
phenomenon is observed in the 30-bus system. Thus, a large
intrusion cost contributes positively to preventing the system
from cyber data attacks.
3) Device’s state transition probability pT .

Intuitively, the intruder should be more cautious to launch
attacks with a smaller pT , because devices are more likely to
stay inaccessible for a longer time.



Table VIII records the expected attack probabilities of some
buses in the 14-bus system with varying pT . As pT increases
from 0, the expected attack probability of each bus first
increases. Then the target buses gradually concentrate on a few
buses. The attack probabilities of these buses further increase
as pT increases, while the probabilities of other buses decrease.
4) Maximum number of target buses at each step.

The attack probability of each bus in the 14-bus system
is computed with β varying from one to three. Table VIII
records the result. One can see the order of buses by the attack
probability almost stays the same when β changes. Thus, β
does not affect the relative vulnerability of buses much.

TABLE VIII
EXPECTED ATTACK PROBABILITIES OF PART OF BUSES
THE INITIAL STATES OF ALL DEVICES ARE OPEN TO ATTACK, C = 1.

β pT
Expected attack probability

Bus 1 Bus 6 Bus 7 Bus 10 Bus 13

1
0 0.16% 0.15% 0.16% 0.15% 0%

0.5 5.46% 2.76% 7.42% 23.34% 0%
1 8.03% 0.21% 12.10% 30.47% 0%

2
0 0.16% 0.15% 0.16% 0.15% 0.15%

0.5 5.45% 3.05% 7.40% 23.19% 3.05%
1 7.98% 0.39% 19.44% 31.09% 0.39%

3
0 0.16% 0.15% 0.16% 0.15% 0.15%

0.5 5.16% 3.19% 6.87% 21.87% 3.19%
1 7.59% 1.19% 10.09% 30.53% 1.19%

5) Discretization of power system states.
We vary nV and nθ to study the impact of state discretiza-

tion on the attack probability of each bus in the 14-bus system.

TABLE IX
EXPECTED ATTACK PROBABILITIES OF FIVE MOST VULNERABLE BUSES

WITH VARYING DISCRETIZATION LEVELS OF POWER SYSTEM STATES.

nV nθ
Attack Probabilities of Five Most Vulnerable Buses (%)

1 2 3 4 5

3
5 10 (23.02) 9 (5.57) 7 (3.80) 8 (0.26) 2 (0)
7 10 (22.91) 8 (10.53) 7 (7.82) 9 (6.18) 2 (0)
9 10 (25.08) 7 (7.86) 9 (5.75) 8 (5.41) 2 (1.30)

5
5 10 (22.18) 9 (5.63) 7 (3.81) 8 (0.33) 2 (0)
7 10 (24.68) 8 (10.75) 7 (7.47) 9 (5.79) 2 (3.30)
9 10 (23.25) 2 (11.12) 8 (10.44) 9 (9.88) 7 (7.40)

As shown in Table IX, there is only slight variation of attack
probabilities when the discretization level changes. The set of
most vulnerable buses does not change much.
D. Attacks under different dispatch strategies of the operator

We study the attack likelihood when the operator employs
different dispatch strategies with the same set of loads. The
intruder does not know the dispatch strategies directly, while
it observes the system states resulting from the dispatch
strategies.

We employ the environmental/economic dispatch (EED)
[30] to obtain variants of dispatch solutions. Besides the fuel
cost in (39), EED also considers the pollutant emission. The
pollutant emission of the i generator modeled by [30]

Ei(Pi) = di + eiPi + fiP
2
i , (40)

where di, ei, fi are the emission coefficients of generator i.
EED minimizes the weighted sum of fuel cost in (39) and the
pollutant emission in (40), which is

(1− δ)
N∑
i=1

Ci(Pi) + δ

N∑
i=1

Ei(Pi),

where δ is constant in [0, 1]. EED reduces to ED when δ = 0.
We employ the coefficients of generator unit 1 to 5 listed in
Table I of [30] to measure the emission of generators and
compensators in 14-bus system.

We assume that the load state is the same as that in Section
V-A, i.e., each load follows the curve of Fig. 5. We solve
EED with different δ’s to obtain different dispatch solutions.
Table X compares some resulting bus voltages at time t =
1360s by choosing δ = 0 and δ = 0.5, respectively.

TABLE X
SYSTEM STATES UNDER DIFFERENT DISPATCH SOLUTIONS.

Bus Voltage Magnitude and Angle
Economic Dispatch Environmental/Economic Dispatch

(δ = 0) (δ = 0.5)
1 1.06 p.u., 0◦ 1.06 p.u., 0◦

4 1.01 p.u., -8.17◦ 1.02 p.u., -7.85◦

6 1.06 p.u., -12.27◦ 1.06 p.u., -11.18◦

13 1.04 p.u., -13.15◦ 1.04 p.u., -12.10◦

We assume that the intruder predicts the system states
accurately and solves a finite-horizon MDP. The resulting
attack likelihood with varying δ is shown in Table XI, where
all the measuring units are initially open for attacks. When
δ ≤ 0.15, the set of most vulnerable buses are almost the
same as that in Table V, i.e., when δ = 0. When δ increases,
the set of most vulnerable buses changes slightly. Therefore,
although different dispatch solutions result in different system
states and in turn lead to different optimal attack strategies of
the intruder, the set of vulnerable buses do not change much.
Therefore, the solution is robust to the intruder’s behavior to
some degree, and the operator can exploit it to evaluate the
system vulnerability.

TABLE XI
EXPECTED ATTACK PROBABILITIES WITH VARYING δ

δ
Attack Probabilities of Five Most Vulnerable Buses (%)

1 2 3 4 5
0.15 10 (22.38) 7 (11.28) 9 (9.71) 2 (8.93) 8 (6.37)
0.3 10 (23.03) 7 (15.87) 9 (9.15) 6 (6.17) 13 (6.17)
0.7 10 (19.18) 7 (16.45) 9 (12.36) 2 (5.88) 1 (5.84)
1 9 (23.54) 10 (10.37) 1 (4.89) 2 (3.83) 7 (1.04)

E. Deviation from the optimal attack strategy.

In practice, the intruder may not always follow the optimal
attack strategy due to either insufficient knowledge about the
system state to implement the optimal strategy or the intension
to hide its attack pattern. We study the deviation from the
optimal strategy with a model that at each time instant, the
intruder takes the optimal action with probability popt. With
probability 1 − popt, it selects one available action (including
no attack) uniformly at random. When popt = 0, the attack
strategy is completely random. Table XII compares the attack
probabilities in the IEEE 30-bus system with finite-horizon
attack when popt changes. All devices are initially accessible.

One can see that as long as popt is not too small, the set of
most vulnerable buses does not change much for the one with
the optimal attack strategy.

F. Inaccuracies in the intruder’s estimation of system states

So far, the intruder’s predictions of the system states are
assumed to be accurate. In practice, its predictions may be
inaccurate for various reasons. For example, it may not have



TABLE XII
EXPECTED ATTACK PROBABILITIES OF FIVE MOST VULNERABLE BUSES

WITH DEVIATIONS FROM THE OPTIMAL ATTACK POLICY.

popt
Attack Probabilities of Top Five Most Vulnerable Buses (%)

1 2 3 4 5
0 29 (14.90) 28 (12.53) 24 (11.64) 19 (11.30) 25 (10.25)

0.25 24 (13.84) 19 (13.09) 28 (12.74) 29 (12.63) 15 (11.60)
0.5 24 (17.25) 15 (15.14) 19 (14.61) 22 (13.97) 28 (13.04)
0.75 24 (21.81) 15 (18.98) 22 (18.95) 19 (15.93) 14 (15.27)

1 24 (27.29) 22 (24.69) 15 (23.21) 14 (19.20) 19 (17.09)

access to enough measurements; it may have limited intelli-
gence; or the operator may change its dispatch decision due
to the injected data attacks. We next analyze the vulnerability
of different components when the intruder’s estimation of the
system states are not accurate.
1) Inaccuracies in the finite-horizon MDP
In the finite-horizon MDP, we consider the case that an
intruder’s prediction of the loads deviates from the actual
loads. We consider two types of deviation:
(a) the prediction deviates from the actual state with a linearly
increasing positive (or negative) drift as time evolves;
(b) at each time instant, the prediction error is a random value
drawn from N (0, σ2).
In the simulation, we set the terminal relative deviation to the
base load in type (a) to be 0.1, and σ = 0.05 in type (b). The
corresponding load states are demonstrated in Fig. 8.
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(a) Actual load states with linearly increasing deviations
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(b) Actual load states with Guassian deviation

Fig. 8. Equivalent influence of the operator’s response

TABLE XIII
EXPECTED ATTACK PROBABILITIES OF FIVE MOST VULNERABLE BUSES

WITH DEVIATIONS IN THE LOAD ESTIMATION.

Deviation Type Attack Probabilities of
Top Five Most Vulnerable Buses

Positive drift Bus 10 Bus 9 Bus 2 Bus 7 Bus 8
19.79% 12.18% 10.42% 9.17% 7.22%

Negative drift Bus 10 Bus 7 Bus 9 Bus 2 Bus 8
22.48% 10.75% 9.94% 8.16% 7.98%

Gaussian error Bus 10 Bus 7 Bus 9 Bus 2 Bus 8
22.21% 10.84% 9.46% 8.18% 6.26%

Table XIII records the top five most vulnerable buses in the
14-bus system with the above deviation models. All measuring
devices are initially open to attacks. The most vulnerable

buses are almost the same as the results in Table V when
the intruder’s state estimation is accurate.
2) Inaccuracies in the infinite-horizon MDP
In the infinite-horizon MDP, we assume that the system
evolves following a Markov Chain that is different from the
intruder’s estimated Markov Chain. We first consider the case
that the intruder’s estimation of the stationary distribution is
accurate, but its estimated state transition probabilities are
not. In the numerical experiment, every load transits from
one state to any of the three states with probability 1/3. The
intruder’s estimation, however, is that each load state stays
the same with a probability of ps and transits to any of the
other two states with a probability of (1 − ps)/2. Although
the estimated stationary distribution is still uniform among the
three states, the estimated state transmission probabilities are
not accurate (unless ps = 1/3). Table XIV records the set of
most vulnerable buses when ps varies. Compared with Table
VI, one can see that the set of top five most vulnerable buses
is robust to small variations in ps, i.e., the inaccuracy in the
estimation of the state transition probability.

TABLE XIV
EXPECTED ATTACK PROBABILITIES OF FIVE MOST VULNERABLE BUSES

WITH VARYING STATE TRANSITION PROBABILITIES.

ps
Attack Probabilities of

Top Five Most Vulnerable Buses

0 Bus 10 Bus 7 Bus 13 Bus 2 Bus 6
26.66% 16.34% 11.98% 11.95% 8.30%

0.2
Bus 10 Bus 7 Bus 9 Bus 8 Bus 2
27.16% 17.29% 7.42% 3.35% 3.33%

0.4
Bus 10 Bus 7 Bus 9 Bus 8 Bus 2
26.99% 16.56% 7.60% 3.37% 3.36%

We further study the case that the intruder’s estimation of
the stationary distribution is not accurate either. In the actual
case, every load transits from one state to any state with prob-
ability 1/3. The intruder’s estimation, however, is that every
load transits from any state to state 1, 2 and 3 with probability
of p1, p2, and p3, respectively, with p1 + p2 + p3 = 1. Then
the estimated stationary distribution of load state 1, 2, and 3 is
also p1, p2, and p3, respectively. Unless p1 = p2 = p3 = 1/3,
both the estimated stationary distribution and the estimated
transition probabilities are inaccurate. Table XV records part
of the results of the vulnerability analysis.

TABLE XV
EXPECTED ATTACK PROBABILITIES OF FIVE MOST VULNERABLE BUSES

WITH VARYING STATE STATIONARY DISTRIBUTIONS.

p1, p2, and p3
Attack Probabilities of

Top Five Most Vulnerable Buses

0.40, 0.30, 0.30 Bus 10 Bus 7 Bus 9 Bus 8 Bus 2
27.15% 17.29% 7.44% 3.35% 3.33%

0.40, 0.20, 0.40 Bus 10 Bus 7 Bus 9 Bus 8 Bus 2
26.59% 17.58% 8.32% 5.09% 2.86%

0.35, 0.30, 0.35 Bus 10 Bus 7 Bus 9 Bus 2 Bus 3
26.98% 14.52% 8.54% 3.92% 2.76%

0.50, 0.25, 0.25 Bus 13 Bus 10 Bus 2 Bus 6 Bus 7
19.30% 17.84% 14.00% 13.98% 12.57%

When all pi’s are between 0.2 and 0.4, the set of top five
most vulnerable buses are almost the same as the results in
Table VI, which corresponds to the accurate estimation. Thus,
when the estimated distribution does not deviate much from
the actual uniform distribution, the results of the vulnerability
analysis do not change much. Therefore, even if the intruder



has limited information about the system state, the proposed
MDP-based approach helps the operator to evaluate the vul-
nerability of the power system.
Discussions and Summary of Numerical Studies

One important observation from the above study is that the
set of most vulnerable components does not change much,
when various parameters in the MPD problem change (V-C);
or the operator employs different dispatch strategies (V-D); or
the intruder’s attack strategy deviates from the optimal attack
strategy (V-E); or the intruder’s estimation about the system
states are not accurate (V-F). This property is especially
important for the practical application of our method. Some
parameters are assumed to be known and accurate in our
method, while in practice, the detection probability varies with
the specific choice of the detection method; the cost to inject
an attack depends on the system’s defense mechanism; and the
intruder may have limited knowledge about the system state
and limited resources to carry out the optimal attacks. Still, the
result of our method is robust to these uncertainties to some
degree, and the operator can implement our method to study
the intruder’s attack behavior and evaluate the vulnerability of
the system.

VI. CONCLUSIONS

This paper for the first time analyzes the likelihood of cyber
data attacks to power systems. We model an intruder’s attack
strategy by a Markov Decision Process (MDP). The attack
likelihood is analyzed based on the obtained optimal attack
strategy of an intruder.

We conduct experiments on IEEE 14-bus and 30-bus sys-
tems and study the impact of several factors on the MDP
solution and the attack likelihood. We demonstrate that the
operator can also implement out method to study the system
vulnerability. Future work includes finding the optimal defense
policy for the system operator and updating it in real time.
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