
1

Empower Pre-trained Large Language Models for
Building-level Load Forecasting

Yating Zhou, Student Member, IEEE, and Meng Wang, Senior Member, IEEE

Abstract—Short-term building-level load forecasting is signif-
icant for enhancing the stability and efficiency of power grids.
Despite the superior forecasting performance, machine learning
methods heavily rely on sufficient historical load data for training.
This paper addresses the challenge of limited or unavailable
historical data, which often occurs in new communities or due
to data storage issues. This paper proposes BlackInter, a novel
black-box tuning inductive adapter based on pre-trained large
language models (LLMs), specifically tailored for building-level
load forecasting. Our method leverages the inherent generaliza-
tion capabilities of LLMs with no need for pre-training on similar
domains and fine-tuning by target data. Furthermore, BlackInter
exploits spatial correlations among nearby buildings to improve
forecast accuracy. It directly adapts to different building sizes, a
feature lacking in existing approaches. Our approach does not
require prior knowledge of the LLM’s structure or parameters.
We validate the effectiveness of the LLM-based BlackInter using
real-world datasets and compare it with four existing methods.
Under the settings of limited and no historical data, the prediction
error by our method can be only 42.88% and 69.44% of the error
by the best alternative methods, respectively.

Index Terms—Load forecasting, pre-trained large language
model, spatial correlations, few-shot forecasting, zero-shot fore-
casting.

I. INTRODUCTION

W ITH the implementation of the advanced metering in-
frastructure (AMI), short-term building-level load fore-

casting has diverse applications in power systems and is crucial
for improving the stability and efficiency of power systems.
System operators need accurate building-level load forecasts
to optimize energy management, ensuring the economical and
reliable operation of power systems [1], [2]. Accurate fore-
casting is also important for demand response (DR) programs
to ensure the system stability [3]. With building-level load
forecasts, system operators can allocate pre-DR resources and
evaluate post-DR performance effectively [1], [4]. Addition-
ally, building-level load forecasts can support power market
participants in making better decisions for price schemes and
energy transactions [5], [6], thereby making energy systems
more economical and efficient. Furthermore, accurate load
forecasts help building owners better understand their energy
usage patterns, optimize the use of smart technologies, and
shift energy consumption to off-peak periods [4], [5]. This
reduces electricity bills for customers and alleviates supply
stress on power systems during peak demand times. There
has been extensive research on short-term load forecasting,
which can generally be classified into two types: statistical
methods [7], [8], [9], [10] and machine learning methods
[11], [12], [3], [13], [14], [15], [16], [17], [18], [19], [20].
Compared with statistical methods, machine learning methods

have the advantage of extracting complicated features and
spatial-temporal correlations among time series load data, re-
sulting in superior forecasting performance. However, training
an accurate machine learning model requires a large amount of
historical training data, but sufficient historical building-level
load data might not exist in practice. For example, limited
building-level historical load data is available in a newly
built community [21]. Moreover, the failure of measurement
equipment and data storage systems may also result in limited
or even no historical data at all [22].

The cases where only limited or no target data is available
for training is known as few-shot learning [23] and zero-
shot learning [24], respectively. The existing techniques for
the few-shot building-level load forecasting problem often use
source load data from other domains, which are different from
but related to the target data domain we aim to solve, to pre-
train a model and then use the limited few-shot target load data
to fine-tune the pre-trained model [21], [25], [26], [27], [22].
This technology is generally referred to as transfer learning.
For example, reference [21] combines multiple kernel learning
and transfer learning to resolve residential load forecasting
with few historical data. Reference [26] integrates graph neural
networks and transfer learning technology for load forecasting.
The key factor to the success of most transfer learning methods
is to select the source load data that is highly similar to
the target load data. Otherwise, a negative transfer might
occur, meaning that the target forecasting performance will
be impaired by the transferred knowledge [26]. In practice,
it might be difficult to obtain satisfying source domain data
because of the limited availability of public data and the
privacy concerns to obtain data from other utilities [28].
Moreover, all these existing methods require a certain amount
of target historical data to enhance the target building-level
load prediction performance and do not extend to the zero-
shot learning case.

Spatial correlations exist in building-level load patterns due
to similar weather conditions and human behaviors [18], [29].
Some load forecasting studies [18], [19], [20], [26] model
spatial correlations by a fixed graph, where each building is
a node of a graph and the corresponding load consumption is
the node features. Both the model training and testing need
to be in the same fixed graph. Thus, these methods lack the
inductive capability, which is the ability to adapt to different
graph sizes in the real-time testing stage.

To address the above issues in this paper, we pose the
following question: Can we propose an inductive method that
does not require the source load data that is similar to the
target load data but still achieves satisfying few-shot and zero-

2

shot load forecasting accuracy?
This paper answers this question by exploring the pre-

trained large language models (LLMs) with powerful gen-
eralization capabilities. The popular pre-trained LLMs, such
as GPT [30] and Llama [31], have recently been applied in
time-series data analysis and achieved satisfying results [32],
[33], [34], [35]. Trained by large-scale unstructured text data,
pre-trained LLMs contain rich knowledge and can generalize
well for various downstream tasks [36]. Moreover, pre-trained
LLMs have impressive few-shot and zero-shot learning perfor-
mance [37]. Despite the great promise of adopting pre-trained
LLMs for building-level load forecasting, some challenges
still remain to be solved. First, large-scale pre-trained LLMs
inevitably require substantial memory overhead for storage and
the computation of first-order gradients by back-propagation
[38]. Moreover, the detailed architecture and parameter infor-
mation of pre-trained LLMs are often not open-source due
to the potential risk of misuse and commercial considerations
[39], [40]. The huge memory cost and the possibility of inac-
cessible pre-trained LLMs prevent the efficient applications
of pre-trained LLMs for building-level load forecasting. In
addition, most existing pre-trained LLM-based methods do
not consider the spatial correlations among multivariate time-
series data [32], [33], [34], [35].

In this paper, we propose a black-box tuning inductive
adapter (BlackInter) to empower pre-trained LLMs for
building-level load forecasting. Specifically, the proposed
BlackInter contains three parallel components at the input side,
including the input embedding layer, the spatial embedding
layer, and the feature extraction layer, to generate input for
pre-trained LLMs. It also includes an output projection layer
that transforms the output embedding by pre-trained LLMs
to predicted load values. The input embedding layer extracts
the input load features directly. Inspired by the idea in [41],
we propose an inductive spatial embedding layer to aggregate
the spatial features of neighbors. The feature extraction layer
extracts the dominant dynamics in load data by dynamic mode
decomposition (DMD) [42] to enhance the forecasting model
performance. In order to reduce the memory cost and handle
the issue of limited access to pre-trained LLMs’ structures
and parameters, we propose a so-called Mix-Adam method
to optimize the parameters only using the inference results
of pre-trained LLMs. That is possible because pre-trained
LLMs’ owners have started releasing pre-trained LLMs as
a service, which allows users to access the model inference
results or intermediate embedding [39], [43]. To the best of
our knowledge, this paper is the first study to explore pre-
trained LLMs for building-level load forecasting so that the
resulting method is inductive to different graph sizes and
does not require information about the model architecture
and parameters of pre-trained LLMs. The proposed BlackIn-
ter is a memory-efficient, plug-in, and inductive LLM-based
approach. It can efficiently empower pre-trained LLMs to
predict accurate future load values for buildings with limited
or even no historical load data, which benefits the operation
and optimization of energy systems.

The rest of this paper is structured as follows. Section II
states the problem formulation, the methodology’s motivation,

and the technical challenges. Section III represents the overall
architecture and the details of the designed BlackInter method.
Section IV presents the experimental results that verify the
effectiveness of the proposed technique. Section V concludes
the paper.

II. PROBLEM FORMULATION AND CHALLENGE

A. Problem formulation

The building-level load forecasting problem aims to learn a
prediction function f(·; Θ), parameterized by trainable weights
Θ, that maps the past K steps of loads to the next F
steps of load values. After trained on historical data, f(·; Θ)
can be leveraged to forecast future loads given real-time
measurements. In the existing studies [18], [19], [20], [26],
the number of buildings in the training stage is the same as
that in the real-time testing stage. However, the expanding
and decreasing of buildings often happens in one community,
leading to different numbers of buildings in the training and
testing stages. Moreover, when the model is transferred to
other test data, the number of buildings is likely to be different.
Thus, f(·; Θ) needs to be inductive to forecast the load values
of an arbitrary number of buildings in the real-time operation
stage.

Mathematically, the problem formulation in this paper is as
follows. Let BT denote the building set in the offline training
stage, and the total number of the buildings in BT is N , i.e.,
|BT | = N . Let xit ∈ RK represent the historical loads of
building i (i ∈ BT) from time t − K + 1 to time t. Let
xit(a) denote the ath element in xit. Let N i denote the set of
neighboring buildings of building i, and N i

t = {xjt, j ∈ N i}
denote the load values of buildings in the neighbor set from
time t−K + 1 to time t. Let yit ∈ RF and ŷit ∈ RF denote
the ground-truth and predicted values of building i from time
t+1 to t+F , respectively. Then, the prediction in the training
stage is

ŷit = f(xit,N i
t ; Θ). (1)

The objective is to optimize the learnable parameters Θ so
that the predicted load values are close to the ground truth
load values, i.e.,

minΘL(Θ) :=

1

N × (T − F −K + 1)× F

∑
i∈BT

T−F∑
t=K

F∑
j=1

|ŷit(j)− yit(j)|2,

(2)

where T is the total historical time steps. ŷit(j) and yit(j)
denote the jth element of ŷit and yit, respectively. Note that
the input and target output of the function f(·; Θ), representing
load values for different time periods with varying sizes, are
denoted by xit and yit for simplicity. Let Θ∗ denote the
optimal parameters obtained in the offline training stage by
solving (2).

Let BE denote the building set in the real-time operation
stage, where the total number of buildings is M , i.e., |BE | =
M . Let fus ∈ RK denote the observed real-time measurements
of building u (u ∈ BE) from time s−K+1 to s. Let Pu denote
the neighboring buildings of building u, and Pu

s = {fjs, j ∈

3

Pu} denote the load values of buildings in the neighbor set BE

from time s−K + 1 to time s. Then, the corresponding load
values in the future F steps can be predicted by the learned
model as

p̂us = f(fus,Pu
s ; Θ

∗), (3)

where p̂us is the predicted load values of building u from time
s+ 1 to time s+ F .

The challenges of the problem result from two aspects. One
is the lack of enough training data to fully optimize Θ when
there is limited or even no historical training samples, i.e.,
T is close to K + F . The other challenge is ensuring the
model inductive capability for different numbers of buildings
in training and real-time operation stages when the spatial
correlations are considered.

B. Motivation and challenge for pre-trained LLM-based fore-
casting models

Pre-trained LLMs possess strong representation and gen-
eralization capabilities on new modalities [44], [45]. The
capability of LLMs to adapt to new modalities may result from
the learned common modality-agnostic representation features
when LLMs are trained by large text datasets over many
natural language tasks [46]. The forecasting model f(·; Θ)
can contain a pre-trained LLM as a subnetwork. Then, when
optimizing Θ in the offline stage, the parameters in the LLM
are pre-trained and provide a good initialization point. That can
ensure superior performance with limited or even no training
samples in the downstream tasks. Despite the great potential
of pre-trained LLMs, there exist technical challenges when we
adopt pre-trained LLMs in the building-level load forecasting
problem. First, storing the large-scale pre-trained LLMs takes
up huge memory space. Second, computing the first-order
gradients by the back-propagation process to optimize Θ needs
to compute ∂L(Θ)

∂ŷit

∂ŷit

∂Θ , which not only takes memory overhead
[38] but also requires knowledge of the architecture and pa-
rameters of pre-trained LLMs. However, this information may
not be open-source for commercial considerations [39], [40].
In addition, most existing pre-trained LLM-based methods do
not consider the spatial correlations among time-series data
[32], [33], [34], [35].

III. METHODOLOGY

In order to adopt pre-trained LLMs to enhance building-
level load forecasting, this paper proposes BlackInter, which
contains a few trainable layers that can be combined with
any pre-trained LLMs to achieve superior load forecasting
performance. Section III-A summarizes the overall architec-
ture of the proposed load forecasting method in this paper.
Section III-B introduces the structure details of the proposed
BlackInter. Section III-C presents the black-box optimization
method for tuning the parameters of BlackInter.

A. Overall architecture

As Fig.1 shows, the pre-trained large language model
(LLM) is regarded as a frozen and unknown backbone, which
can provide output embedding given an input. The designed

BlackInter contains three parallel layers at the input side
and an output projection layer at the output side of the pre-
trained LLM. Specifically, the three parallel layers include the
input embedding layer, the spatial embedding layer, and the
feature extraction layer. The training sample xit is sent to
the input embedding layer and the feature extraction layer to
generate the input embedding E1

it and feature embedding E3
it,

respectively. The training sample xit and its corresponding
neighbor samples N i

t = {xjt, j ∈ N i} are sent to the spatial
embedding layer to generate the spatial embedding E2

it. The
concatenated embedding of E1

it, E
2
it, and E3

it, is regarded as
the input to the pre-trained LLM, and the pre-trained LLM
generates hit, the output embedding accordingly. The output
projection layer converts the output embedding hit to the
predicted load values ŷit of building i from time t + 1 to
time t + F . Note that only the parameters in the BlackInter
are trainable, and the parameters in the pre-trained LLM are
frozen.

B. The components of BlackInter

Next, we present the structure details of each component in
BlackInter.

1) Input embedding layer: The input embedding layer
extracts input load features directly. The input embedding layer
mainly consists of three steps: normalization, patching, and
linear transformation.

Given a training sample xit ∈ RK , we first normalize the
training data by its mean and variance. Second, the normalized
training sample xn

it is divided into several patches by applying
the patching method in [47]. The benefit of patching data is to
preserve the local semantic information by grouping local time
series load data information into one patch. Let Lp denote the
patch length and S denote the stride, i.e., the non-overlapping
region between two consecutive patches. Then, the number of
patches P is calculated by

P = ⌊K − Lp

S
⌋+ 2, (4)

where ⌊·⌋ means the floor function. Let xn p
it ∈ RP×Lp denote

the training sample after patching. Finally, the sample xn p
it

after normalization and patching is sent to a linear layer, which
can be represented by

E1
it = xn p

it W⊤
1 + b1, (5)

where W1 ∈ Rdm×Lp and b1 ∈ Rdm are learnable parameters.
E1

it ∈ RP×dm is the generated input embedding, and dm is
the column size of the input for the pre-trained LLM.

2) Spatial embedding layer: The spatial embedding layer
aims to aggregate the information from the neighbors to
enhance the forecasting performance. The spatial embedding
layer encompasses four steps: (i) neighbor sampling, (ii)
normalization, (iii) neighbor information aggregation, and (iv)
patching and linear transformation.

The first step is to determine the neighbor sets of each
building. The load consumption patterns have strong spatial
correlations among the same type of buildings, which is
verified in section IV-C. Thus, we randomly select B buildings

4

Pre-trained

large

language

model (LLM)

Input embedding layer

Normalization

Patching

Linear

layer

Spatial embedding layer

Normalization PatchingSpatial

aggregation

by (6)

Linear

layer

Feature extraction layer

Feature

extraction

by DMD

Linear

layer

Output projection layer

Linear

layer

Input

embedding

Feature

embedding

Spatial

embedding
Output

embedding
yit

Frozen

Training

Concatenation

BlackInter

t-K+1

t

xit

Building i

(W1, b1) � !

"

Building i

(W3, b3)t-K+1

t

xit

t-K+1

t

xit
xjt

Building i Neighbors

(W2, b2)
hit

(W4, b4)

� !

"

� !
#

($ ∈ &)

� !

Fig. 1. Overall architecture of the pre-trained LLM-based BlackInter forecasting method.

(B < N) from the N buildings of the same type to construct
the neighbor set N i for each building i. We do not choose
all other buildings as neighbors because it might lead to
data redundancy and degrade the model performance. Note
that the neighbor set in the real-time testing stage is also
constructed by the random selection. In the second step,
we apply normalization to the training sample xit and its
corresponding neighbor sample xjt ∈ RK (j ∈ N i). Let
xn
jt denote the normalized neighbor sample xjt. Then, we

aggregate the information from the training sample and its
neighbor samples by

xagg
it =

xn
it +

∑
j∈N i xn

jt

B + 1
. (6)

Since the neighbor information aggregation is performed node
(building) by node, the numbers of buildings in the offline
training and real-time testing stages can be different. Note that
the number of neighbor buildings B can be selected differently
in the offline and online testing stages, too.

After we obtain the aggregated features xagg
it ∈ RK , we

divide it into patches using the patching method mentioned in
the previous section to obtain xagg p

it ∈ RP×Lp . We then send
it to a linear layer as

E2
it = xagg p

it W⊤
2 + b2, (7)

where W2 ∈ Rdm×Lp and b2 ∈ Rdm are learnable parameters.
E2

it ∈ RP×dm is the generated spatial embedding.
3) Feature extraction layer: The feature extraction layer

extracts the dominated features for time series data dynamics
to assist the prediction model learning. The feature extraction
layer mainly contains two steps: dominated feature extraction
by the dynamic mode decomposition (DMD) [42] and linear
transformation.

First, we present how to apply DMD to extract the dominant
features behind a training sample. For an univariate training
sample xit ∈ RK , we first convert it to a multi-dimensional
augmented data matrix using the Hankel operator to fully

capture the dynamics of load series [42]. The constructed
multi-dimensional augmented data matrix using the Hankel
operator is represented as

Oit =


xit(1) xit(2) · · · xit(K + 1− c)
xit(2) xit(3) · · · xit(K + 2− c)

...
...

. . .
...

xit(c) xit(c+ 1) · · · xit(K)


= [o1,o2, · · · ,oK+1−c],

(8)

where xit(a) denote the ath element for xit.
As shown in references [48] and [49], there exist time

dependencies among load values during a local time neigh-
borhood, and the observation xit(a) can be expressed as the
linear combination of previous q observations with negligible
residual error ea, which is described by the q-order auto-
regressive model

xit(a) =

q∑
w=1

αwxit(a− w) + ea ≈
q∑

w=1

αwxit(a− w), (9)

where αw ∈ R is a weight. Then, there exists a linear operator
A ∈ Rc×c satisfying that

om+1 ≈ Aom, (10)

where m = 1, · · · ,K − c. Let two consecutive entry matrices
O1 and O2 be constructed by{

O1 = [o1, · · · ,oK−c] ∈ Rc×(K−c)

O2 = [o2, · · · ,oK−c+1] ∈ Rc×(K−c).
(11)

Following equation (10), we have

O2 ≈ AO1. (12)

The eigenvalues of the matrix A are informative about the
dynamic features of load series, such as the decay and growth
[42], [50]. Thus, we extract the eigenvalues of A to construct

5

the dominant features. The feature extraction process is as
follows.

(1) Conduct the singular value decomposition (SVD) with
rank r to approximate the matrix O1 as

O1 ≈ UrΣrV
†
r , (13)

where Σr = diag[σ1, · · · , σr] ∈ Rr×r contains the largest
r singular values in diagonal entries. Ur ∈ Rc×r and Vr ∈
R(K−c)×r include the corresponding left and right singular
vectors. † represents the conjugate transpose operation.

(2) Project A onto the r-dimensional subspace Ur as

Ã = U†
rAUr ≈ U†

rO2VrΣ
−1
r , (14)

where the approximation equality is from (12) and (13). The
r eigenvalues of the projected matrix Ã coincide with the r
dominant eigenvalues of A [51].

(3) Conduct eigendecomposition on Ã by

Ã = QΛQ†, (15)

where Q ∈ Rr×r and Λ = diag(λ1, · · · , λr) ∈ Rr×r contain
the eigenvectors and eigenvalues, respectively.

We select the top r eigenvalues of matrix A in (15) as
features, and we also note that the singular values [σ1, · · · , σr]
of O1 in (13) reflect the strength of signal component in load
series [51]. Thus, we use both the dominant eigenvalues and
singular values to construct the feature vector, denoted by
vit = (λ1; · · · , λr;σ1; · · · ;σr) ∈ R2r. Then, the constructed
vit is passed through a linear layer, which is described as

E3
it = vitW

⊤
3 + b3, (16)

where W3 ∈ Rdm×1 and b3 ∈ Rdm are learnable parameters.
E3

it ∈ R2r×dm is the generated feature embedding. The main
steps of the feature extraction layer are summarized in Fig. 2.

t-K+1

t

Building i

� !

Hankel operator

" ! =

� ! 1 � ! 2 ⋯ � ! $ − & � ! $ + 1 − &

⋮ ⋮ ⋱ ⋮ ⋮

� ! & � ! & + 1 ⋯ � ! $ − 1 � ! $

") "*

DMD algorithm

1. Conduct SVD for by (13); ")

2. Project by (14);

3. Conduct eigendecomposition on

by (15).

Linear layer

(W3, b3)

v !
" !

#

Fig. 2. Illustration of the main steps in the feature extraction layer.

The input to the pre-trained LLM is the concatenation of
the embeddings of all the three layers,

Eit =

E1
it

E2
it

E3
it

 ∈ R2(P+r)×dm . (17)

4) Output projection layer: Let hit ∈ Rd denote the
embedding of the last hidden layer of the pre-trained LLM.
In natural language tasks, the output tokens are typically gen-
erated with randomness based on hit by a decoding strategy
[52], [53]. Unlike in natural language tasks, here we use a
linear layer to transform hit to the predicted load values, which
can be described by

ŷit = hitW
⊤
4 + b4, (18)

where W4 ∈ RF×d and b4 ∈ RF are learnable parameters.
ŷit ∈ RF is the predicted load values corresponding to the
training sample xit.

C. Mix-Adam training method

The typical way to optimize the trainable parameters uses
back-propagation to compute the first-order gradients and
apply gradient descent based optimization methods. Because
the memory cost for the back-propagation throughout the pre-
trained LLM is high and the model parameters of the pre-
trained LLM may be inaccessible, we propose an optimization
method, referred to as Mix-Adam, to learn the trainable
parameters in BlackInter. In Mix-Adam, we compute the first-
order gradients for the parameters W4 and b4 in the output
linear layer, and compute the zero-order gradients using model
inference results for the parameters {Wj ,bj ; j = 1, 2, 3} in
the linear layers at the input side. In this way, we avoid back-
propagation throughout the backbone pre-trained LLM and do
not need to know the architecture and parameter information of
the pre-trained LLM. We name the proposed method as “mix”
because it involves computing both first-order gradients and
zero-order gradients. After we obtain the gradients, an adaptive
moment estimation (Adam) method [54] is applied to optimize
the parameters using the computed gradients. Adam has the
advantages of adaptive learning rate and fast convergence rate
[54]. Next, we present the calculation details of the proposed
Mix-Adam.

1) Compute the first-order gradients of W4 and b4: We
apply chain rule to calculate the first-order gradients of W4

and b4 using (18) and (2), which can be described as{
∇W4 := ∂L

∂W4
= ∂L

∂ŷit

∂ŷit

∂W4

∇b4 := ∂L
∂b4

= ∂L
∂ŷit

∂ŷit

∂b4
,

(19)

where ∇W4 and ∇b4 represent the first-order gradients of W4

and b4, respectively.
2) Compute the zero-order gradients for the parameters

{Wj ,bj ; j = 1, 2, 3}: We adopt the classic zero-order gra-
dient estimator, simultaneous perturbation stochastic approxi-
mation (SPSA) [55], [56], to estimate the zero-order gradients
using only the model inference results. SPSA is proven to
converge theoretically [55] and demonstrates superior perfor-
mance in optimizing neural network problems [57], [58], [59].
The estimation process can be described as

∇̂Θ′ =
L(Θ′ + ϵz)− L(Θ′ − ϵz)

2ϵ
z, (20)

where Θ′ = {Wj ,bj ; j = 1, 2, 3} and ∇̂Θ′ denotes the zero-
order gradient of Θ′. z is a random vector drawn from the

6

standard Gaussian distribution N (0, I) and the size of z is the
same as the size of Θ′. ϵ is the perturbation scale parameter.

3) Optimize the parameters Θ by Adam: Let ∇Θ =
{∇̂Θ′,∇W4,∇b4} denote the computed gradients of all pa-
rameters. In the iteration t, the parameter optimization process
can be described by

M(t) = β1M(t−1) + (1− β1)∇Θ(t−1)

V(t) = β2V(t−1) + (1− β2)(∇Θ(t−1))
2

M̂(t) =
M(t)

1−β
(t)
1

V̂(t) =
V(t)

1−β
(t)
2

Θ(t) = Θ(t−1) − αM̂(t)/(
√
V̂(t) + γ),

(21)

where M(t) and V(t) denote the biased first moment estimate
and second raw moment estimate at iteration t, respectively.
M̂(t) and V̂(t) are the biased-corrected first moment estimate
and second raw moment estimate at iteration t, respectively.
β1, β2 ∈ [0, 1) are the hyperparameters that control the
exponential decay rates. α is the learning rate and γ is a small
constant for numerical stability. Θt is the updated trainable
parameters at iteration t. The iterative process for updating Θ
stops when the loss function values from (2) converges.

Fig. 3 shows the main process of the designed Mix-Adam
method. In summary, we first calculate the first-order gradients
for the parameters W4 and b4 by (19), and then estimate the
zero-order gradients for the parameters {Wj ,bj ; j = 1, 2, 3}
by (20) using model inference results. After calculating the
gradients, we adopt Adam to optimize all the trainable param-
eters, which is described as (21).

Frozen

Training

(W1, b1)

(W3, b3)

(W2, b2)
Pre-trained

LLM
(W4, b4)

Step 1: Calculate first-order

gradients by (19). (W4, b4)∇ ∇

Step 2: Estimate zero-order

gradients by (20). ∇Θ"

Step 3: Optimize parameters by (21) using .∇Θ = { ∇Θ", }W4, b4 ∇ ∇

Fig. 3. Illustration for the Mix-Adam method.

IV. NUMERICAL EXPERIMENTS

A. Experimental setup

Dataset description: All the load data used in this paper
are selected from the one-year hourly load in the Typical
Meteorological Year 3 (TMY3) [20]. Specifically, we select
the residential and hotel load data from Colorado (CO), Hawaii
(HI), and Washington (WA). The characteristics of these load
data will be analyzed in Section IV-C.

Our method applies to different load types. Here we use
residential and hotel load as examples. Note that the residential
and hotel load data are used for training and testing separately.
Some descriptions used in the experiments are explained as
follows.

• Target load data: The load data in CO are used as the
target data for the forecasting methods. The selected time

periods and the number of buildings in the CO dataset
vary in different experiments and will be described later.

• Similar source load data: The one-year load data of
ten residential buildings (or ten hotels) in WA are set
as the similar source load data, which have similar data
characteristics as the target load data in CO.

• Dissimilar source load data: We choose the one-year
hourly data of ten residential buildings (or ten hotels) in
HI as the dissimilar source data, which have dissimilar
data characteristics from the target load data.

Both the similar and dissimilar source load data are used
to pre-train prediction models in some experimental settings.
During the pre-training stage, 70% of the data starting from
January are the training data, and the following 10% of the
data are used for the validation.

Experiment setting: We mainly evaluate BlackInter on
few-shot and zero-shot load forecasting cases, for which the
method is designed. The main experimental settings in Section
IV-C are described as follows and summarized in Table I. Our
model training in all the following settings refers to training
the three input layers and one output layer, while the pre-
trained LLM remains fixed.

1) Few-shot evaluation: This experiment aims to show the
model’s capability to learn from few-shot target samples. Ten
days of load data are selected from ten residential buildings
(or ten hotels) in CO as the target data. The default selected
time period is from December 22nd to December 31st for
few-shot evaluation, except in the seasonal impact study in
Section IV-C(5), where we use the summer data from July
22nd to July 31st. The ten-day load data are divided into
training, validation, and testing datasets by the ratio of 0.3:
0.1: 0.6.

According to the availability of source load data, we design
three few-shot experimental cases, and also construct one
baseline setting to verify the effectiveness of few-shot learning.

• F1: Train the models from scratch only using the few-shot
target training and validation data.

• F2: Pre-train using dissimilar source data and then fine-
tune using few-shot target samples.

– Pre-training: Pre-train the models using the dissim-
ilar source load data in HI.

– Fine-tuning: Fine-tune the pre-trained models using
the few-shot target training and validation data.

• F3: Pre-train using similar source data and then fine-tune
using few-shot target samples.

– Pre-training: Pre-train the models using the similar
source load data in WA.

– Fine-tuning: Fine-tune the pre-trained models using
the few-shot target training and validation data.

• Baseline F: Train the models from scratch using 70% of
the one-year data from the target ten residential buildings
(or ten hotels) in CO as the training data and the following
10% of the data as the validation data.

For all the settings F1, F2, F3, and Baseline F, the testing
dataset is the six-day load data from ten residential buildings
(or ten hotels) in CO.

7

2) Zero-shot evaluation: The experiment evaluates the
models’ zero-shot learning ability. That means the models are
trained by the external load data completely, and we evaluate
their generalization ability to forecast the target load values
without any fine-tuning. The target task here is to predict the
load values from ten residential buildings (or ten hotels) in CO
in one month, while the models are trained by the historical
data not in CO. We set two zero-shot experimental cases and
one experimental case for the baseline as follows.

• O1: Train the prediction models using the dissimilar
source load data in HI.

• O2: Train the prediction models using the similar source
load data in WA.

• Baseline O: The training process is the same as the
setting Baseline F.

For all settings O1, O2, and Baseline O, the default target
testing data are from the ten residential buildings (or ten
hotels) in CO in one month of December, except in the
seasonal impact study in Section IV-C(5), where we use the
data from the ten residential buildings (or ten hotels) in CO
in July.

3) Inductive ability evaluation: This experiment is designed
to verify the inductive ability of the proposed pre-trained
LLM-based BlackInter on the target data with different num-
bers of buildings in the training and testing stages. There are
two experimental cases and two baselines in the inductive
ability evaluation.

• I1: Train on ten buildings and test on five buildings.
– Training: The same as the setting Baseline F.
– Testing: Test the models on the load values in

December from five residential buildings (or five
hotels) in CO.

• I2: Train on ten buildings and test on fifteen buildings.
– Training: The same as the setting Baseline F.
– Testing: Test the models on the load values in De-

cember from fifteen residential buildings (or fifteen
hotels) in CO.

• Baseline I1: Train and test on the same set of five
buildings.

– Training: Train and validate our model using the
first 70% and the following 10% of the one-year data
from the five residential buildings (or five hotels).

– Testing: The same as the testing process in I1.
• Baseline I2: Train and test on the same set of fifteen

buildings.
– Training: Train and validate our model using the

first 70% and the following 10% of the one-year
data from the fifteen residential buildings (or fifteen
hotels).

– Testing: The same as the testing process in I2.
We adopt the pre-trained Llama-7B [31] as the pre-trained

LLM backbone in this paper [60]. Llama-7B is a transformer-
based larger language model and contains 7 billion parameters.
Note that in all experimental cases, the parameters of Llama-
7B are frozen, and only the parameters in BlackInter are
trainable. In all the experiments in Section IV-C, we use

the past 18 hours’ load data to forecast the future 3-hour
load values, i.e., K = 18 and F = 3. For the critical
hyperparameters in BlackInter, we use the validation errors to
select the optimal values. The critical hyperparameter settings
in the residential load forecasting experiments are as follows:
Lp = 6, P = 5, B = 4, r = 1. In the hotel load forecasting
experiments, the parameters are set as: Lp = 8, P = 4, B =
5, r = 2. The required input column size dm of Llama-7B is
4096.

TABLE I
SUMMARY OF EXPERIMENTAL SETTINGS

Setting Abbreviation Pre-training Fine-tuning Testing

Few-shot

F1 N/A
Target data Six days of

target data
F2 Dissimilar source data
F3 Similar source data

Baseline F Target data N/A

Zero-shot
O1 Dissimilar source data

N/A One month of
target dataO2 Similar source data

Baseline O Target data

Inductive

I1 Ten buildings

N/A

Five buildings
I2 Ten buildings Fifteen buildings

Baseline I1 Five buildings Five buildings
Baseline I2 Fifteen buildings Fifteen buildings

B. Method and evaluation metric
To compare to the proposed method in this paper, we select

four recent forecasting methods: (i) graph wavenet (GW) [18],
(ii) spatial-temporal graph neural network (STGCN) [61], (iii)
patch time series transformer (PatchTST) [47], and (iv) de-
composition transformers with auto-correlation (Autoformer)
[62]. GW contains eight spatial-temporal blocks, and each
block includes a gated temporal convolution layer and a
graph convolution layer. STGCN includes two spatial-temporal
blocks, and each block contains two temporal convolution
layers and a graph convolution layer between the two temporal
layers. PatchTST is a channel-independent patch time series
transformer. Autoformer is a decomposition architecture by
integrating the time-series decomposition block.

The hyperparameter settings of GW, STGCN, and Auto-
former, follow the original settings in the references [18], [61],
[62]. In PatchTST, the two critical parameters, the number
of patches and patch length, are selected according to the
validation errors of our experiments. Specifically, the number
of patches and the patch length are set as 6 and 4 for the
residential load experiments, and set as 6 and 3 for the hotel
load experiments. The other parameters in PatchTST are the
same as those in the open-source code published in [47].

We employ two evaluation metrics for comparisons, includ-
ing the mean absolute percentage error (MAPE) and the nor-
malized root mean squared error (NRMSE). Mathematically,
the two evaluation metrics can be described by

MAPE =
100%

M × T ′ × F

M∑
i=1

T ′∑
t=1

F∑
j=1

|ŷit(j)− yit(j)|
|yit(j)|

NRMSE =

√√√√∑M
i=1

∑T ′

t=1

∑F
j=1 |ŷit(j)− yit(j)|2∑M

i=1

∑T ′

t=1

∑F
j=1 |yit(j)|2

× 100%,

(22)

where M denotes the total buildings in the testing stage, and
T ′ represents the total time steps that are required to forecast
in the testing stage.

8

C. Result analysis

1) Spatial correlation verification: First, we analyze the
spatial correlations among the load values of residential build-
ings and hotels, respectively. We calculate Pearson correlation
coefficients [63] among the load values in CO, HI, and
WA, respectively. The heatmaps of correlation coefficients are
shown in Fig. 4-6. As Fig. 4 shows, the load values in CO have

� �

�������

�

�

�

�

�

�
���

��
�

����������

����

����

����

��	�

��	�

����
��

���
��
���

�

� �

�������

�

�

�

�

�

�
���

��
�

�����

��	�

��	�

��	�

����

��
���

��
���

�

Fig. 4. Pearson correlation coefficients of load values in CO.

� �
	�������

�

�

�

�

�

	�
���
��
�

���������
�

����

����

����

����

����

����

�
���
�

���
�

� �
	�������

�

�

�

�

�

	�
���
��
�

�����

�����

�����

�����

�
���
�

���
�

Fig. 5. Pearson correlation coefficients of load values in HI.

� �

�������

�

�

�

�

�

�
���

��
�

����������

����

����

����

��	�

��	�

����

��
���

��
���

�

� �

�������

�

�

�

�

�

�
���

��
�

�����

���

��	

���

��
���

��
���

�

Fig. 6. Pearson correlation coefficients of load values in WA.

strong spatial correlations within the same type of buildings,
especially the hotels. Fig. 5 shows that the load values in HI
have stronger spatial correlations in both residential buildings
and hotels. As Fig. 6 shows, the minimum Pearson correlation
coefficients among the load values for residential and hotel
buildings in WA are both greater than 0.7. This shows the
load values in WA also exhibit strong spatial correlations.

2) Data characteristic analysis: Here, we analyze the load
data characteristics in CO, WA, and HI. Fig. 7 and Fig. 8
show the probability density distributions of residential load
values and hotel load values, respectively. We can see the load
data characteristics in CO and WA are similar, and the data
characteristics in CO and HI are dissimilar.

3) Few-shot learning evaluation: We evaluate the few-
shot learning ability of the proposed pre-trained LLM-based

Fig. 7. Residential load data probability density.

Fig. 8. Hotel’s load data probability density.

BlackInter in the experimental settings described in Section
IV-A. Table II shows the residential load forecasting results.

TABLE II
COMPARISONS ON FEW-SHOT RESIDENTIAL LOAD FORECASTING

Methods From scratch (F1) From dissimilar (F2) From similar (F3) Baseline F

MAPE NRMSE MAPE NRMSE MAPE NRMSE MAPE NRMSE

STGCN 32.84% 28.69% 25.28% 26.06% 10.71% 11.25% 8.11% 8.86%
GW 24.47% 20.66% 16.67% 15.81% 13.59% 13.73% 8.89% 9.74%

PatchTST 23.02% 21.68% 12.62% 12.82% 9.72% 10.57% 8.97% 9.15%
Autoformer 26.64% 25.77% 17.81% 17.62% 11.07% 11.17% 11.55% 10.77%

BlackInter (ours) 9.87% 10.75% 9.73% 10.78% 9.01% 9.89% 7.98% 8.65%

Under the F1 setting where all these models are trained
by few-shot target samples from scratch, the proposed pre-
trained LLM-based BlackInter has much smaller forecasting
errors compared with other methods. Specifically, for the
residential load, the MAPE error by BlackInter is only 42.88%
(9.87%/23.02%) of the MAPE error by PatchTST, which has
the smallest error among alternative methods. Moreover, when
the prediction models are pre-trained by source load data,
either similar or dissimilar(F2 or F3), the proposed pre-trained
LLM-based BlackInter shows the best forecasting performance
on the few-shot target task. Even when there exists sufficient
target residential load data for training (Baseline F), the
proposed pre-trained LLM-based BlackInter still achieves the
best accuracy. In addition, BlackInter has the least forecasting
performance variation among different settings compared with
other methods.

Table III represents the few-shot experimental results for
forecasting hotel loads. As Table III shows, the pre-trained
LLM-based BlackInter also outperforms the other four meth-
ods for hotel load forecasting in all few-shot cases. In partic-
ular, under F1, the MAPE error by BlackInter is only 58.74%
(10.11%/17.21%) of the MAPE error by GW, which has the

9

smallest error among alternative approaches. When sufficient
target training data are available for training, BlackInter is
better than PatchTST and Autoformer, while underperforming
STGCN and GW. However, BlackInter is defined for few-shot
and zero-shot learning when limited target data are available
for training. The results in Table II and Table III demonstrate
for the few-shot task, the proposed pre-trained LLM-based
BlackInter does not require similar source load data for pre-
training like other methods to achieve satisfying forecasting
performance. When similar source load data is accessible, the
proposed method still outperforms the other four methods for
the few-shot task.

TABLE III
COMPARISONS ON FEW-SHOT HOTEL LOAD FORECASTING

Methods From scratch (F1) From dissimilar (F2) From similar (F3) Baseline F

MAPE NRMSE MAPE NRMSE MAPE NRMSE MAPE NRMSE

STGCN 26.22% 29.11% 16.06% 17.67% 9.17% 11.88% 4.02% 4.51%
GW 17.21% 19.76% 10.93% 13.03% 8.31% 10.26% 5.08% 5.17%

PatchTST 26.01% 30.37% 12.36% 16.28% 10.67% 13.22% 10.05% 12.22%
Autoformer 23.61% 27.08% 14.59% 18.42% 11.45% 14.67% 9.59% 11.76%

BlackInter (ours) 10.11% 11.84% 9.38% 10.32% 7.91% 8.97% 7.82% 8.13%

4) Zero-shot learning evaluation: We employ the forecast-
ing models trained by the load data in WA and HI to predict
the load values in CO to evaluate the zero-shot learning
ability of these models. Table IV represents the residential
load forecasting results of the zero-shot experimental cases
described in Section IV-A. The proposed pre-trained LLM-
based BlackInter outperforms the other four methods no matter
whether the model is transferred from dissimilar source data
(O1) or similar source data (O2). Even with sufficient target
load data for training (Baseline O), the proposed method still
achieves the best accuracy for residential load forecasting.
Table V represents the hotel load forecasting results, where our
method is the best when the prediction model is transferred
from other source domain data (O1 and O2) for the zero-shot
task. With sufficient target load data for training, our method is
better than PatchTST and Autoformer, while underperforming
STGCN and GW. In particular, under the setting O1 in Table
IV and Table V, the MAPE error by our method is only
82.61% (11.87%/14.37%) and 69.44% (10.16%/14.63%) of
the MAPE error by PatchTST in residential and hotel data,
respectively, where PatchTST performs the best among other
methods for comparison. The zero-shot experimental results
show that even without any target load data for fine-tuning, the
pre-trained LLM-based BlackInter can still maintain satisfy-
ing forecasting performance, demonstrating the generalization
ability of the proposed method on the unseen task.

TABLE IV
COMPARISONS ON ZERO-SHOT RESIDENTIAL LOAD FORECASTING

Methods From dissimilar (O1) From similar (O2) Baseline O

MAPE NRMSE MAPE NRMSE MAPE NRMSE

STGCN 36.79% 31.92% 13.23% 12.58% 12.21% 11.01%
GW 38.53% 35.11% 14.36% 14.64% 11.71% 11.54%

PatchTST 14.37% 12.68% 12.37% 10.79% 11.27% 9.99%
Autoformer 26.69% 23.47% 13.92% 13.11% 11.28% 10.07%

BlackInter (ours) 11.87% 11.73% 10.74% 9.76% 10.06% 9.32%

5) Seasonal impact evaluation: In the previous experi-
ments, we evaluate the prediction models on the load data in

TABLE V
COMPARISONS ON ZERO-SHOT HOTEL LOAD FORECASTING

Methods From dissimilar (O1) From similar (O2) Baseline O

MAPE NRMSE MAPE NRMSE MAPE NRMSE

STGCN 20.58% 22.29% 10.06% 12.56% 5.66% 8.74%
GW 23.57% 18.25% 8.46% 10.58% 5.35% 7.71%

PatchTST 14.63% 16.07% 11.19% 13.44% 9.99% 12.47%
Autoformer 18.88% 24.03% 12.41% 15.82% 8.18% 10.12%

BlackInter (ours) 10.16% 11.92% 8.27% 9.59% 7.89% 8.46%

the winter. Since the load patterns from different seasons are
different, this section evaluates our method on summer data,
under few-shot settings, including F1, F2, and F3, as well as
zero-shot settings O1 and O2. Few-shot settings adopt the ten
days of load data, from July 22nd to July 31st, as the target
data. Zero-shot settings adopt the load data in July as the target
testing data. We present the results on hotel load and skip the
results on residential load as the conclusions are similar.

As Table VI shows, our proposed LLM-based BlackInter
can achieve the best forecasting performance in all few zero-
shot and zero-shot settings when tested on the summer load
data, which is consistent with the results obtained from the
winter load data.

To illustrate how these methods capture the load trends, we
draw the predicted and real one-day load values for a hotel
under few-shot settings. Figs. 9-11 correspond the settings
F1 (from scratch), F2 (from dissimilar source), and F3 (from
similar source), respectively. The prediction results obtained
from our method are the closest to the real load data across
all the three settings. The prediction results under the setting
F1 deviate the most from the real data. That is because the
setting F1 has no source load data for pre-training and all the
trainable parameters are trained from scratch by few target
samples, which leads to insufficient parameter optimization.
Even in this case, our model can still capture the trend of the
real load data and shows the best prediction accuracy. The
prediction results under the setting F3 closely align with the
actual load data, particularly in the valley and peak load values
observed at around 4 pm and 9 pm. That is because the setting
F3 involves similar source load data for pre-training, which
enhances the prediction performance.

���� ���� ����� �� � 	� �
����

���

���

���

����

����

����

����

�
��
�%
��
$�
"��
��

�

�����

$#���!��!
��#�����

��
�$!"
����

Fig. 9. Load visualization under the setting F1 (from scratch).

6) Inductive ability evaluation: Here, we verify the induc-
tive ability of pre-trained LLM-based BlackInter when consid-
ering the spatial correlations among time-series load values.

10

TABLE VI
PREDICTION EVALUATION FOR HOTEL’S SUMMER LOAD DATA

Methods
Few-shot Zero-shot

From scratch (F1) From dissimilar (F2) From similar (F3) From dissimilar (O1) From similar (O2)

MAPE NRMSE MAPE NRMSE MAPE NRMSE MAPE NRMSE MAPE NRMSE

STGCN 15.29% 17.63% 11.56% 13.28% 8.42% 9.54% 14.23% 16.43% 8.62% 9.25%
GW 15.17% 15.50% 9.60% 13.54% 7.59% 9.77% 13.04% 15.98% 8.71% 11.19%

PatchTST 15.08% 17.10% 13.44% 14.02% 9.85% 10.64% 13.58% 13.93% 10.32% 10.64%
Autoformer 22.73% 22.37% 10.21% 11.59% 8.39% 9.68% 13.82% 15.74% 9.58% 11.21%

BlackInter (ours) 10.80% 9.98% 8.45% 8.33% 7.39% 7.47% 9.01% 11.44% 7.87% 8.17%

���� ���� ����� �� � 	� �
����

���

���

���

����

����

����

����

�
��
�%
��
$�
"��
��

�

�����

$#���!��!
��#�����

��
�$!"
����

Fig. 10. Load visualization under the setting F2 (from dissimilar source).

���� ���� ����� �� � 	� �
����

���

���

����

����

����

����

�
��
�%
��
$�
"��
��

�

�����

$#���!��!
��#�����

��
�$!"
����

Fig. 11. Load visualization under the setting F3 (from similar source).

As Table VII shows, the pre-trained LLM-based BlackInter
trained on the load values from ten buildings can be used to
predict the load values of five buildings and fifteen buildings
accurately. Hence, the pre-trained LLM-based BlackInter can
handle different numbers of buildings in the training and
testing stages. The prediction errors in the setting I1 are
slightly smaller than those in the corresponding baseline set-
ting Baseline I1. That is because in Baseline I1, the training
data are from five buildings only, while the models are trained
using the data from ten buildings in the setting I1, resulting in
better performance. In contrast, the prediction performance in
the setting Baseline I2 is more accurate than that in I2 because
there are more training data from fifteen buildings in setting
Baseline I2.

7) Ablation study: This section evaluates the effectiveness
of the spatial embedding layer, the feature extraction layer,
and the optimization method Mix-Adam. Here, we follow
the experiment setting F1 in the few-shot evaluation. To

TABLE VII
INDUCTIVE ABILITY VERIFICATION OF BLACKINTER

Experimental case Residential Hotel

MAPE NRMSE MAPE NRMSE

Test on five buildings (I1) 10.93% 9.67% 7.46% 8.42%
Baseline I1 11.96% 9.98% 7.71% 8.85%

Test on fifteen buildings (I2) 9.22% 9.11% 7.84% 8.39%
Baseline I2 8.98% 8.81% 7.56% 8.37%

evaluate the spatial embedding layer and feature extraction
layer, we eliminate these two layers in both the training and
testing stages. To validate the effectiveness of Mix-Adam, we
compare it with the white-box setting, where the parameters of
BlackInter are optimized using first-order gradients and Adam
(FO-Adam), requiring the knowledge of the structure and
weights of the pre-trained LLM Llama-7B. From the results in
Table VIII, we can see the prediction performance decreases
if the spatial embedding layer or the feature extraction layer is
removed, which thus demonstrates the effectiveness of the two
layers. As expected, the prediction performance in the white-
box setting is slightly higher than that of the pre-trained LLM-
based BlackInter, but the performance gap is small. Moreover,
BlackInter does not require any knowledge of the structure and
parameters of the LLM model.

TABLE VIII
ABLATION STUDY OF BLACKINTER

Variants Residential Hotel

MAPE NRMSE MAPE NRMSE

w/o Spatial embedding layer 10.61% 11.88% 10.41% 12.45%
w/o Feature extraction layer 10.48% 10.94% 10.37% 12.39%

White-box 9.31% 9.84% 10.05% 10.93%
BlackInter (ours) 9.87% 10.75% 10.11% 11.84%

D. Efficiency analysis

This section is to analyze the efficiency of the proposed
pre-trained LLM-based BlackInter. The experiment setting is
F1 in the few-shot evaluation described in Section IV-A. We
analyze the memory consumption and computational time of
the forecasting models in both the offline training and real-
time testing stages in Table IX. Since the pre-trained LLM
Llama-7B is accessed through the model owner’s service in
this paper, and only BlackInter is performed on the user side,
we do not consider the memory requirement of the pre-trained
LLM in our proposed method. In the offline training stage, the

11

memory overhead of BlackInter is approximately 50% higher
than that of the STGCN and GW. However, the memory usage
of BlackInter is significantly lower than that of PatchTST and
Autoformer. In the real-time testing stage, the memory usage
of BlackInter can be comparable to STGCN and GW, and
significantly lower than that of PatchTST and Autoformer.
In both the offline training and real-time testing stages, the
computational time of the pre-trained LLM-based BlackInter,
PatchTST, and Autoformer are higher than that of STGCN and
GW. That is because the pre-trained LLM-based BlackInter,
PatchTST, and Autoformer involve transformer modules and
take longer computational time.

TABLE IX
EFFICIENCY COMPARISONS IN THE OFFLINE AND ONLINE STAGES

Methods Offline training Online testing

Mem(MiB) Time(s) Mem(MiB) Time(s)

STGCN 292 79.3 257 4.2
GW 332 87.6 259 4.37

PatchTST 1296 1250.1 1103 56.94
Autofomer 2801 527.9 1372 61.37
White-box 9688 676.7 9196 47.2

BlackInter (ours) 458 763.5 278 46.1

In addition, we also compare the efficiency of BlackInter
to the pre-trained LLM-based method in the white-box setting
to verify the superiority of the black-box setting. As Table
IX shows, the memory overhead of the proposed BlackInter
is significantly lower than that of the model in the white-box
setting. That is because storing the weights of the pre-trained
LLM and computing the first-order gradients takes up huge
memory space. In the offline stage, the computational time
of BlackInter is slightly higher than that of the model in the
white-box setting. The reason is that the optimization method
Mix-Adam employed in BlackInter converges a bit slower due
to the estimations of gradients. However, the online inference
time of BlackInter and the model in the white-box setting are
comparable.

E. LLM’s size and type impacts

This section evaluates the impacts of different types and
sizes of pre-trained LLMs. Here, we follow the experiment
setting F1 in the few-shot evaluation. To evaluate the impacts
of different model sizes, we adopt the pre-trained Llama-3B
and Llama-7B as the LLM backbone of BlackInter, respec-
tively. Both Llama-3B and Llama-7B belong to the Llama
model family [64] but differ in size. Llama-3B consists of
3.21 billion parameters, while Llama-7B comprises 7 billion
parameters. In order to evaluate the impacts of different model
types, we also adopt the pre-trained Phi-2 [65] and RedPajama-
3B [66] as the LLM backbone, respectively. Phi-2 is developed
by Microsoft and contains 2.7 billion parameters. RedPajama-
3B is from RedPajama-INCITE family and contains 2.8 billion
parameters.

From Table X, we can see that for the results from the
same type of model Llama, the performance decreases when
the size of the pre-trained model decreases from 7 billion to
3.21 billion. The model size of Phi-2 is slightly smaller than

that of RedPajama-3B, but Phi-2 still outperforms RedPajama-
3B in our load forecasting task. The superior performance of
Phi-2 compared to RedPajama-3B may be attributed to its use
of high-quality data for pre-training [65].

TABLE X
LLM’S SIZE AND TYPE IMPACTS

Model Residential Hotel

MAPE NRMSE MAPE NRMSE

Phi-2 10.79% 11.16% 11.03% 11.44%
RedPajama-3B 11.11% 11.35% 11.21% 12.78%

Llama-3B 10.65% 10.86% 10.49% 12.47%
Llama-7B (ours) 9.87% 10.75% 10.11% 11.84%

V. CONCLUSION

Accurate building-level load forecasting helps to improve
the stability and flexibility of power grids. Insufficient his-
torical load data for training poses a challenge to achieving
superior prediction performance. Thus, this paper develops
a memory-efficient, plug-in, and inductive pre-trained LLM-
based adapter, referred to as BlackInter, to empower pre-
trained LLMs for building-level load forecasting, especially
when few or even no historical data are available. The pa-
rameters of BlackInter are optimized by the proposed Mix-
Adam using the model inference results without knowing
the information of pre-trained LLMs. It can thus be imple-
mented with memory and computation efficiency. The pro-
posed method demonstrates its superior few-shot and zero-
shot load forecasting performance over the other methods.
The prediction error by our method can be only 42.88% and
69.44% of the error by the best alternative approach in the
few-shot and zero-shot cases, respectively. Even with sufficient
historical datasets for training, the proposed method still shows
satisfying performance. Future work includes how to protect
the load data privacy. After building-level load data are sent
to LLMs, the owners of LLMs can utilize the data to infer
the buildings’ information, such as daily routine, appliance
usage, and occupancy level [67], which exposes the privacy
of the buildings. We plan to explore encryption techniques to
resolve this issue. Another future direction is to evaluate the
LLM-based BlackInter considering different demographics of
building owners or homeowners.

REFERENCES

[1] J. Wang, X. Chen, F. Zhang, F. Chen, and Y. Xin, “Building load
forecasting using deep neural network with efficient feature fusion,”
Journal of Modern Power Systems and Clean Energy, vol. 9, no. 1,
pp. 160–169, 2021.

[2] N. Tsalikidis, A. Mystakidis, C. Tjortjis, P. Koukaras, and D. Ioanni-
dis, “Energy load forecasting: One-step ahead hybrid model utilizing
ensembling,” Computing, vol. 106, no. 1, pp. 241–273, 2024.

[3] W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, “Short-term
residential load forecasting based on lstm recurrent neural network,”
IEEE transactions on smart grid, vol. 10, no. 1, pp. 841–851, 2017.

[4] M. Cai, M. Pipattanasomporn, and S. Rahman, “Day-ahead building-
level load forecasts using deep learning vs. traditional time-series
techniques,” Applied energy, vol. 236, pp. 1078–1088, 2019.

[5] Y. Li, F. Zhang, Y. Liu, H. Liao, H.-T. Zhang, and C. Chung, “Residential
load forecasting: An online-offline deep kernel learning method,” IEEE
Transactions on Power Systems, 2023.

12

[6] J.-W. Xiao, P. Liu, H. Fang, X.-K. Liu, and Y.-W. Wang, “Short-term
residential load forecasting with baseline-refinement profiles and bi-
attention mechanism,” IEEE Transactions on Smart Grid, 2023.

[7] S. S. Pappas, L. Ekonomou, D. C. Karamousantas, G. Chatzarakis,
S. Katsikas, and P. Liatsis, “Electricity demand loads modeling using
autoregressive moving average (arma) models,” Energy, vol. 33, no. 9,
pp. 1353–1360, 2008.

[8] C.-M. Lee and C.-N. Ko, “Short-term load forecasting using lifting
scheme and arima models,” Expert Systems with Applications, vol. 38,
no. 5, pp. 5902–5911, 2011.

[9] W. Christiaanse, “Short-term load forecasting using general exponential
smoothing,” IEEE Transactions on Power Apparatus and Systems, no. 2,
pp. 900–911, 1971.

[10] J. Munkhammar, D. van der Meer, and J. Widén, “Very short term load
forecasting of residential electricity consumption using the markov-chain
mixture distribution (mcm) model,” Applied Energy, vol. 282, p. 116180,
2021.

[11] I. Drezga and S. Rahman, “Short-term load forecasting with local ann
predictors,” IEEE Transactions on Power Systems, vol. 14, no. 3, pp.
844–850, 1999.

[12] J. Che and J. Wang, “Short-term load forecasting using a kernel-based
support vector regression combination model,” Applied energy, vol. 132,
pp. 602–609, 2014.

[13] H. Shi, M. Xu, and R. Li, “Deep learning for household load fore-
casting—a novel pooling deep rnn,” IEEE Transactions on Smart Grid,
vol. 9, no. 5, pp. 5271–5280, 2017.

[14] G. Chitalia, M. Pipattanasomporn, V. Garg, and S. Rahman, “Robust
short-term electrical load forecasting framework for commercial build-
ings using deep recurrent neural networks,” Applied Energy, vol. 278,
p. 115410, 2020.

[15] X. Tang, H. Chen, W. Xiang, J. Yang, and M. Zou, “Short-term
load forecasting using channel and temporal attention based temporal
convolutional network,” Electric Power Systems Research, vol. 205, p.
107761, 2022.

[16] S. M. J. Jalali, S. Ahmadian, A. Khosravi, M. Shafie-khah, S. Nahavandi,
and J. P. Catalão, “A novel evolutionary-based deep convolutional neural
network model for intelligent load forecasting,” IEEE Transactions on
Industrial Informatics, vol. 17, no. 12, pp. 8243–8253, 2021.

[17] Y. Jiang, T. Gao, Y. Dai, R. Si, J. Hao, J. Zhang, and D. W. Gao,
“Very short-term residential load forecasting based on deep-autoformer,”
Applied Energy, vol. 328, p. 120120, 2022.

[18] W. Lin, D. Wu, and B. Boulet, “Spatial-temporal residential short-
term load forecasting via graph neural networks,” IEEE Transactions
on Smart Grid, vol. 12, no. 6, pp. 5373–5384, 2021.

[19] H. Zhao, Y. Wu, L. Ma, and S. Pan, “Spatial and temporal attention-
enabled transformer network for multivariate short-term residential load
forecasting,” IEEE Transactions on Instrumentation and Measurement,
2023.

[20] Z. Wu, Y. Mu, S. Deng, and Y. Li, “Spatial–temporal short-term load
forecasting framework via k-shape time series clustering method and
graph convolutional networks,” Energy Reports, vol. 8, pp. 8752–8766,
2022.

[21] D. Wu, B. Wang, D. Precup, and B. Boulet, “Multiple kernel learning-
based transfer regression for electric load forecasting,” IEEE Transac-
tions on Smart Grid, vol. 11, no. 2, pp. 1183–1192, 2019.

[22] Y. Lu, Z. Tian, R. Zhou, and W. Liu, “A general transfer learning-
based framework for thermal load prediction in regional energy system,”
Energy, vol. 217, p. 119322, 2021.

[23] J. Zhao, Y. Yang, X. Lin, J. Yang, and L. He, “Looking wider for better
adaptive representation in few-shot learning,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 35, no. 12, 2021, pp. 10 981–
10 989.

[24] Y. Geng, J. Chen, X. Zhuang, Z. Chen, J. Z. Pan, J. Li, Z. Yuan, and
H. Chen, “Benchmarking knowledge-driven zero-shot learning,” Journal
of Web Semantics, vol. 75, p. 100757, 2023.

[25] Z. Zhang, P. Zhao, P. Wang, and W.-J. Lee, “Transfer learning featured
short-term combining forecasting model for residential loads with small
sample sets,” IEEE Transactions on Industry Applications, vol. 58, no. 4,
pp. 4279–4288, 2022.

[26] D. Wu and W. Lin, “Efficient residential electric load forecasting via
transfer learning and graph neural networks,” IEEE Transactions on
Smart Grid, vol. 14, no. 3, pp. 2423–2431, 2022.

[27] C. Peng, Y. Tao, Z. Chen, Y. Zhang, and X. Sun, “Multi-source transfer
learning guided ensemble lstm for building multi-load forecasting,”
Expert Systems with Applications, vol. 202, p. 117194, 2022.

[28] J. Lin, J. Ma, and J. Zhu, “A privacy-preserving federated learning
method for probabilistic community-level behind-the-meter solar gener-
ation disaggregation,” IEEE Transactions on Smart Grid, vol. 13, no. 1,
pp. 268–279, 2021.

[29] M. Ganjouri, M. Moattari, A. Forouzantabar, and M. Azadi, “Spatial-
temporal learning structure for short-term load forecasting,” IET Gener-
ation, Transmission & Distribution, vol. 17, no. 2, pp. 427–437, 2023.

[30] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[31] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al., “Llama:
Open and efficient foundation language models (2023),” arXiv preprint
arXiv:2302.13971, 2023.

[32] T. Zhou, P. Niu, L. Sun, R. Jin et al., “One fits all: Power general
time series analysis by pretrained lm,” Advances in neural information
processing systems, vol. 36, 2024.

[33] N. Gruver, M. Finzi, S. Qiu, and A. G. Wilson, “Large language models
are zero-shot time series forecasters,” Advances in Neural Information
Processing Systems, vol. 36, 2024.

[34] M. Jin, S. Wang, L. Ma, Z. Chu, J. Y. Zhang, X. Shi, P.-Y. Chen,
Y. Liang, Y.-F. Li, S. Pan et al., “Time-llm: Time series forecasting by re-
programming large language models,” arXiv preprint arXiv:2310.01728,
2023.

[35] C. Chang, W.-C. Peng, and T.-F. Chen, “Llm4ts: Two-stage fine-
tuning for time-series forecasting with pre-trained llms,” arXiv preprint
arXiv:2308.08469, 2023.

[36] T. Wang, A. Roberts, D. Hesslow, T. Le Scao, H. W. Chung, I. Belt-
agy, J. Launay, and C. Raffel, “What language model architecture
and pretraining objective works best for zero-shot generalization?” in
International Conference on Machine Learning. PMLR, 2022, pp.
22 964–22 984.

[37] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large lan-
guage models are zero-shot reasoners,” Advances in neural information
processing systems, vol. 35, pp. 22 199–22 213, 2022.

[38] S. Malladi, T. Gao, E. Nichani, A. Damian, J. D. Lee, D. Chen, and
S. Arora, “Fine-tuning language models with just forward passes,”
Advances in Neural Information Processing Systems, vol. 36, 2024.

[39] T. Sun, Y. Shao, H. Qian, X. Huang, and X. Qiu, “Black-box tuning for
language-model-as-a-service,” in International Conference on Machine
Learning. PMLR, 2022, pp. 20 841–20 855.

[40] C. Oh, H. Hwang, H.-y. Lee, Y. Lim, G. Jung, J. Jung, H. Choi, and
K. Song, “Blackvip: Black-box visual prompting for robust transfer
learning,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023, pp. 24 224–24 235.

[41] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[42] N. Mohan, K. Soman, and S. S. Kumar, “A data-driven strategy for
short-term electric load forecasting using dynamic mode decomposition
model,” Applied energy, vol. 232, pp. 229–244, 2018.

[43] W. Peng, J. Yi, F. Wu, S. Wu, B. Zhu, L. Lyu, B. Jiao, T. Xu, G. Sun,
and X. Xie, “Are you copying my model? protecting the copyright of
large language models for eaas via backdoor watermark,” arXiv preprint
arXiv:2305.10036, 2023.

[44] Y. Fathullah, C. Wu, E. Lakomkin, J. Jia, Y. Shangguan, K. Li, J. Guo,
W. Xiong, J. Mahadeokar, O. Kalinli et al., “Prompting large language
models with speech recognition abilities,” in ICASSP 2024-2024 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2024, pp. 13 351–13 355.

[45] B. Zheng, J. Gu, S. Li, and C. Dong, “Lm4lv: A frozen large language
model for low-level vision tasks,” arXiv preprint arXiv:2405.15734,
2024.

[46] M. Huh, B. Cheung, T. Wang, and P. Isola, “The platonic representation
hypothesis,” arXiv preprint arXiv:2405.07987, 2024.

[47] Y. Nie, N. H. Nguyen, P. Sinthong, and J. Kalagnanam, “A time series
is worth 64 words: Long-term forecasting with transformers,” arXiv
preprint arXiv:2211.14730, 2022.

[48] U. B. Filik and M. Kurban, “A new approach for the short-term load
forecasting with autoregressive and artificial neural network models,”
International Journal of Computational Intelligence Research, vol. 3,
no. 1, pp. 66–71, 2007.

[49] J. Park, Y. Park, and K. Lee, “Composite modeling for adaptive short-
term load forecasting,” IEEE Transactions on Power Systems, vol. 6,
no. 2, pp. 450–457, 1991.

[50] R. Gunjal, S. S. Nayyer, S. Wagh, A. Stankovic, and N. Singh, “Granger
causality for prediction in dynamic mode decomposition: Application to

13

power systems,” Electric Power Systems Research, vol. 225, p. 109865,
2023.

[51] W. Li and M. Wang, “Identifying overlapping successive events using
a shallow convolutional neural network,” IEEE Transactions on Power
Systems, vol. 34, no. 6, pp. 4762–4772, 2019.

[52] C. Shi, H. Yang, D. Cai, Z. Zhang, Y. Wang, Y. Yang, and W. Lam, “A
thorough examination of decoding methods in the era of llms,” arXiv
preprint arXiv:2402.06925, 2024.

[53] M. Nguyen, A. Baker, C. Neo, A. Roush, A. Kirsch, and R. Shwartz-
Ziv, “Turning up the heat: Min-p sampling for creative and coherent llm
outputs,” arXiv preprint arXiv:2407.01082, 2024.

[54] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Learning Representations (ICLR), 2015.

[55] J. Spall, “Multivariate stochastic approximation using a simultaneous
perturbation gradient approximation,” IEEE Transactions on Automatic
Control, vol. 37, no. 3, pp. 332–341, 1992.

[56] S. Malladi, T. Gao, E. Nichani, A. Damian, J. D. Lee, D. Chen, and
S. Arora, “Fine-tuning language models with just forward passes,” Ad-
vances in Neural Information Processing Systems, vol. 36, pp. 53 038–
53 075, 2023.

[57] M. C. Choy, D. Srinivasan, and R. L. Cheu, “Simultaneous perturbation
stochastic approximation based neural networks for online learning,”
in Proceedings. The 7th International IEEE Conference on Intelligent
Transportation Systems (IEEE Cat. No. 04TH8749). IEEE, 2004, pp.
1038–1044.

[58] Y.-Y. Hong, H.-L. Chang, and C.-S. Chiu, “Hour-ahead wind power and
speed forecasting using simultaneous perturbation stochastic approxi-
mation (spsa) algorithm and neural network with fuzzy inputs,” Energy,
vol. 35, no. 9, pp. 3870–3876, 2010.

[59] N. Dong, X.-S. Han, Z.-K. Gao, Z.-Q. Chen, and A.-G. Wu, “Spsa-
based data-driven control strategy for load frequency control of power
systems,” IET Generation, Transmission & Distribution, vol. 12, no. 2,
pp. 414–422, 2018.

Yating Zhou (Graduate Student Member, IEEE)
received the B.E. degree in Electrical Engineering
and its Automation from Beijing Jiaotong University,
China, in 2017, and the M.S. degree in Electrical
Engineering from Tsinghua University, China, in
2020. She is currently working toward the Ph.D.
degree in electrical engineering at Rensselaer Poly-
technic Institute, Troy, NY, USA. Her research inter-
ests include load monitoring, spatial-temporal data
analytics, and machine learning.

[60] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al.,
“Llama: Open and efficient foundation language models,” arXiv preprint
arXiv:2302.13971, 2023.

[61] Y. Hu, X. Cheng, S. Wang, J. Chen, T. Zhao, and E. Dai, “Times
series forecasting for urban building energy consumption based on graph
convolutional network,” Applied Energy, vol. 307, p. 118231, 2022.

[62] H. Wu, J. Xu, J. Wang, and M. Long, “Autoformer: Decomposition
transformers with auto-correlation for long-term series forecasting,”
Advances in neural information processing systems, vol. 34, pp. 22 419–
22 430, 2021.

[63] I. Cohen, Y. Huang, J. Chen, J. Benesty, J. Benesty, J. Chen, Y. Huang,
and I. Cohen, “Pearson correlation coefficient,” Noise reduction in
speech processing, pp. 1–4, 2009.

[64] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al.,
“Llama: Open and efficient foundation language models,” arXiv preprint
arXiv:2302.13971, 2023.

[65] M. Javaheripi, S. Bubeck, M. Abdin, J. Aneja, S. Bubeck, C. C. T.
Mendes, W. Chen, A. Del Giorno, R. Eldan, S. Gopi et al., “Phi-2: The
surprising power of small language models,” Microsoft Research Blog,
vol. 1, p. 3, 2023.

[66] M. Weber, D. Y. Fu, Q. Anthony, Y. Oren, S. Adams, A. Alexandrov,
X. Lyu, H. Nguyen, X. Yao, V. Adams et al., “Redpajama: an open
dataset for training large language models.”

[67] J. Lei, L. Wang, Q. Pei, W. Sun, X. Lin, and X. Liu, “Privgrid: Privacy-
preserving individual load forecasting service for smart grid,” IEEE
Transactions on Information Forensics and Security, 2024.

Meng Wang (Senior Member, IEEE) received B.S.
and M.S. degrees from Tsinghua University, China,
in 2005 and 2007, respectively. She received the
Ph.D. degree from Cornell University, Ithaca, NY,
USA, in 2012. She is an Associate Professor in
the department of Electrical, Computer, and Sys-
tems Engineering at Rensselaer Polytechnic Insti-
tute, Troy, NY, USA, where she joined in Dec.
2012. Before that, she was a postdoc scholar at
Duke University, Durham, NC, USA. Her research
interests include high-dimensional data analytics,

machine learning and artificial intelligence, power systems monitoring, and
synchrophasor technologies. She serves as an Associate Editor for IEEE
Transactions on Smart Grid and IEEE Transactions on Signal Processing.

