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Unifying Load Disaggregation and Prediction for
Buildings with Behind-the-Meter Solar

Yating Zhou, Student Member, IEEE, and Meng Wang, Senior Member, IEEE

Abstract—Real-time building-level load forecasting is impor-
tant for demand response and power system planning. Behind-
the-meter (BTM) solar generation in buildings is not directly
measured, resulting in a lack of native load measurements, even
in recorded historical data. This invisibility of native load data
makes load forecasting challenging for BTM buildings. Our idea
is to learn the unknown and time-varying spatial correlations
of nearby buildings to enhance the overall load forecasting
accuracy. To the best of our knowledge, this paper, for the
first time, integrates load disaggregation and load forecasting
without requiring historical native load measurements on BTM
consumers. The proposed method, ULoFo, has a computationally
efficient load disaggregation component and a state-of-the-art
forecasting component. ULoFo also has two interaction strate-
gies, graph sparsification, and input refurbishment, to leverage
the intermediate forecasting result to enhance disaggregation
accuracy, which in turn further promotes native load forecasting
accuracy. ULoFo is demonstrated to outperform existing methods
in practical datasets.

Index Terms—Load forecasting, load disaggregation, behind-
the-meter solar, spatial-temporal correlations.

NOMENCLATURE

A. Sets

CN Set of buildings with no PV.
CF Set of buildings with PV installation and measure-

ments.
CP Set of buildings with PV installation but no PV

measurement.

B. Parameters

XN , XF , XP Recorded native load data of CN , CF , and
CP in historical T time steps.

SF , SP Recorded PV generations of CF and CP

in historical T time steps.
NP Recorded net load of CP in historical T

time steps.
X̃P , S̃P Estimated load and PV data of CP in

historical T time steps.
X̃pattern P Estimated load pattern of CP in historical

T time steps.
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S̃pattern P Estimated PV pattern of CP in historical
T time steps.

β̃l, β̃s Estimated load and PV amplitudes of CP

in historical T time steps.
AG, PG Average load and solar adjacency matrices.
ÃG, P̃G Estimated average load and solar adja-

cency matrices.
ZN , ZF , ZP Native load data of CN , CF and CP from

time s− 2K + 1 to s.
V F , V P PV generations of CF and CP from time

s− 2K + 1 to s.
EP Net load of CP from time s− 2K + 1 to

s.
Z̃P , Ṽ P Estimated load and PV data of CP from

time s− 2K + 1 to s.
At

ij Spatial correlation of building i and j at
time t.

ŷt+1 Predicted load data in all N buildings at
time t+ 1.

XN
t Native loads of buildings of CN from time

t−K + 1 to time t.
XN

i∗ , X
N
∗i i-th row of XN and i-th column of XN .

r, r∗ Pruning rate and best pruning rate in graph
sparsification.

f(·,Θi) i-th forecasting model.
I The total number of refurbishment itera-

tions.
AG

r∗ , P
G
r∗ The optimal pruned load and solar adja-

cency matrices.
X,S Load and solar feature matrices.

I. INTRODUCTION

BBUILDING-level load forecasting is significant for
decision-making, demand management, energy dispatch,

and electric transactions in smart grids [1]. Recently, extensive
research has been carried out to address the load forecasting
problem, but some challenges remain unsolved, such as the
invisibility of native load values [2], [3], [4]. This challenge
stems from the increasing installation of solar photovoltaics
(PV) in buildings [5], [6]. A subset of these PV installations
is behind the meter (BTM), primarily due to privacy concerns
and the high cost of installing separate smart meters for
PV [7]. Consequently, only the net load values (obtained
by subtracting PV generations from native load values) are
recorded for these buildings, and the corresponding native load
values are unobserved [8]. The invisibility of native load values
poses challenges for building-level native load forecasting.
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Traditional load forecasting methods employ statistical
methods such as linear regression [9], exponential smooth-
ing [10], autoregressive moving average (ARMA) [11], and
stochastic time series [12]. The forecasting errors of statistical
methods, however, increase under abnormal conditions like
extreme weather [13] or when the length of the prediction
time horizon is long [14]. Machine learning methods can learn
complex functions from data and have been applied to load
forecasting in recent years [15], [16], [17], [18], [19], [20],
[14], [21], [22]. For example, the support vector regression
(SVR) method can extract nonlinear and discriminative fea-
tures [15], but its performance suffers significantly in the
presence of data outliers and improper parameter selections
[23]. Deep learning models, such as long short-term mem-
ory (LSTM) [16], gated recurrent units (GRU) [17], rough
autoencoder (RAE) [21], and interval probability distribution
learning (IPDL) [22], can capture complicated features and
temporal correlations in time series load data and have been
applied to the load forecasting problem. Due to the additional
spatial correlation in electric consumption patterns [24], [25],
spatial-temporal machine learning techniques are proposed to
improve the performance of load forecasting [19], [20], [14].
However, all these load forecasting methods require historical
native load data as the input data, and none of them can address
the challenge of the invisibility of native load values caused
by BTM PV generations.

In recent years, very few existing studies have considered
native load forecasting with BTM PV. Reference [3] proposes
a spatial-temporal graph dictionary learning method for BTM
load and PV forecasting, but it requires historical native
load and solar data of all consumers. These data may be
difficult to obtain from consumers with BTM PV installed.
Some studies forecast the net load [26], [27], [28], [29],
[30]. Among them, the indirect techniques [26], [27], [28]
disaggregate the net load into native load and PV output first,
and then forecast native load and PV output separately to
finally obtain the aggregated net load forecasting result. The
native load forecasting can be viewed as an intermediate step
in these approaches. Inspired by these methods, employing
load disaggregation techniques can solve the challenge of
invisibility of native load values in native load forecasting.

BTM load and PV disaggregation is a process in which
net load values can be separated into native load values
and PV generations. Existing load disaggregation techniques
include model-based approaches [26], [27], [31], [32], [33]
and data-driven approaches [2], [4], [28], [34], [35], [36], [37],
[38]. Model-based disaggregation approaches usually require
accurate physical PV panel models and meteorological data.
For example, a physical PV model is established to estimate
PV capacity and native load values in [26]. A clean sky model
and a PV physical model are combined to disaggregate PV
generations and native loads in [32]. One primary disadvantage
of model-based solutions is the unavailability of model param-
eter information[4]. Instead, data-driven approaches have the
advantage of using measurement data only and do not rely on
physical PV models. In data-driven methods, the correlations
and features in measurement data are analyzed and extracted
to disaggregate native loads and PV output. For example, ref-

erence [2] explores the correlation between monthly nocturnal
and diurnal native demands to separate residential customers’
loads and PV generations. In [36], a supervised learning
model, deep temporal dictionary learning (DTDL), is trained
to learn a nonlinear dictionary of energy signals and achieve
energy disaggregation. Although these disaggregation methods
can estimate historical native loads for BTM consumers and
solve the absence of historical data problem, no study analyzes
how to prevent disaggregation error propagation when the
estimated native load data are used in load prediction. The
disjoint processing of disaggregation and forecasting can limit
prediction accuracy because disaggregation errors, existing in
the estimated input data to the forecasting model, may be
propagated into the forecasting process and negatively impact
the forecasting performance.

This paper proposes a Unified Load Forecasting method
(ULoFo) for buildings with BTM PV generation. To the best
of our knowledge, ULoFo is the first method to solve native
load disaggregation and prediction jointly and iteratively with
no requirement of historical native load data on BTM con-
sumers. The existing literature addresses load disaggregation
and load forecasting problems separately and often requires
historical native load data on BTM consumers. The main
idea of ULoFo is to explore spatial correlations of nearby
buildings to address the load forecasting challenge caused
by BTM solar. ULoFo contains three major parts: (i) the
graph smoothing disaggregation model (GSD), (ii) the spatial-
temporal attention wavenet prediction model (STAWnet) [39],
and (iii) the interaction strategies between GSD and STAWnet.
Specifically, the proposed disaggregation model GSD explores
the unknown average spatial correlation among native load
values and PV generations of nearby buildings to disaggregate
the BTM PV and native load values. The state-of-art prediction
model STAWnet [39], which has a distinctive advantage over
existing load forecasting models in terms of capturing the
time-varying spatial-temporal dependence, is applied for native
load forecasting by using the measured and disaggregated
load as input. Two interaction strategies, including graph
sparsification and input refurbishment, are proposed to use the
prediction result to prevent disaggregation error propagation
and enhance the disaggregation performance, which in turn
also boots the prediction performance.

The rest of the content is structured as follows: Section II
states the problem formulation of native load forecasting with
BTM PV generation. Section III represents the overall frame-
work and details of ULoFo. Section IV conducts numerical
experiments, and section V concludes this paper.

II. PROBLEM FORMULATION AND CHALLENGE

A typical native load forecasting problem is that, given real-
time native load data, a prediction function, which is learned
by historical native loads, can predict future native loads. In
the typical native load forecasting scenario, both historical and
real-time data are observed. However, the partial historical and
real-time native loads are absent due to BTM solar in our
setup. Mathematically, our problem formulation is as follows.
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Building types: We consider a setup of N nearby buildings
that can be divided into three disjoint sets: (i) the set of
buildings with no PV, denoted by CN ; (ii) the set of buildings
with PV installation and the corresponding smart meters for
measuring PV generation, represented by CF , and (iii) the set
of buildings with PV installation but no separate smart meters,
represented by CP . The number of buildings that have solar
generation is M = |CF |+ |CP |.
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Fig. 1. Native load forecasting with BTM PV

Recorded historical data: Let XN ∈ RT×|CN |, XF ∈
RT×|CF |, and XP ∈ RT×|CP | denote the native load values
in T time steps in buildings of CN , CF and CP , respectively.
Similarly, SN , SF ∈ RT×|CF | and SP ∈ RT×|CP | represent
the PV generations of these buildings. In our setup, XN , XF ,
and SF are known. SN is all zero. XP and SP are unknown.
Only the net load values NP = XP − SP are observed for
CP buildings.

Real-time measurements: Let ZN in R2K×|CN | denote
the real-time native load measurements in CN buildings.
Let ZF and V F in R2K×|CF | denote the native load and
solar measurements in CF buildings, and EP in R2K×|CP |

denote the net load measurements in CP buildings from time
s− 2K + 1 to s.

The objective of the native load forecasting problem is
to develop a method using historical data XN , XF , SF and
NP such that, when given the input of real-time measurements
ZN , ZF , V F and EP , the method estimates the native load
consumption in all buildings at time t+ 1, denoted by ŷs+1.

As illustrated in Fig. 1, the overall approach is to learn a
unified prediction and disaggregation model offline using the
observed historical data XN , XF , SF , and NP . In real-time
operations, the observed data from time s−2K+1 to time s,
i.e., ZN , ZF , V F , and EP , are fed into the trained prediction
model, which then forecasts the native load of all buildings
at time s + 1. The main technical challenge is that in both
the recorded data and real-time measurements, native loads in
buildings CP are not directly observed, which complicates the

prediction of native loads in these buildings.
To address the challenge of missing native load measure-

ments in CP buildings, our technical approach is to explore the
spatial correlations in the native load consumption and PV gen-
erations in these nearby buildings to enhance the forecasting
performance. Typically, native loads in buildings with similar
building purposes, social habits, and weather patterns, may
exhibit strong spatial correlation1. For example, most native
load curves of office buildings may start to rise at about 8
am and start to decline after 6 pm during workdays. The
power consumption of air conditioners (AC) largely correlates
with the weather conditions. The spatial correlation of PV
generations results from similar solar radiation and cloud
coverage conditions in the same region [40].

To model these spatial correlations, we use the native load
graph, represented by the load adjacency matrix A ∈ RN×N ,
to characterize the correlations among native load consumption
in all N buildings. The element Aij in A denotes the strength
of spatial correlation between building i and building j.
Similarly, we also use the solar graph, represented by the solar
adjacency matrix P ∈ RM×M , to characterize the correlation
of solar generations of these M buildings. Note that A and
P are data-dependent and thus not fully known, because both
native loads and solar generations are not directly measured
in buildings in CP . Furthermore, A can be time-varying
when the selected time interval changes, because the load
correlation patterns can change over time. Our major technical
contribution is to learn these unknown and time-varying spatial
correlations to enhance the native load forecasting accuracy of
CP buildings.

III. THE PROPOSED ULOFO METHOD

ULoFo uses recorded history data to train a prediction
model offline. In online operations, ULoFo sends the real-
time measurements as the input to the prediction model
to forecast the native load at the next time step. Section
III-A summarizes the major component of the offline training
methods, and Sections III-B to III-D introduce each component
respectively. Section III-E discusses the real-time forecasting
implementation of ULoFo. Section III-F analyzes the time
complexity of ULoFo.

A. Overview of Offline Training Method

The framework of the training process is shown in Fig.2.
In offline training, ULoFo first proposes a graph smoothing
disaggregation model (GSD) to disaggregate the load compo-
nent and solar component in CP buildings from the recorded
net load data. It then employs the prediction model STAWnet
[39], which takes the observed and disaggregated load as input
and predicts the future load of all buildings. The advantage of
our proposed ULoFo method is to jointly and iteratively solve
disaggregation and forecasting as a unified process. This is
mainly achieved by the proposed two interaction strategies,

1The spatial correlation of native loads among commercial buildings is
verified by Pearson Correlation defined in (1) using a dataset in a Typical
Meteorological Year (TMY3) in California and Texas [19]. The spatial
correlation of residential loads has been verified in [14].
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Fig. 2. Overall framework for the offline training of ULoFo

graph sparsification, and input refurbishment, which leverage
the forecasting result to enhance the disaggregation perfor-
mance and prediction performance. The major components are
summarized as follows.

1) Disaggregation: The disaggregation model GSD uses a
graph smoothing technique by minimizing the Dirichlet energy
function over the graphs to estimate native load X̃P and PV
generation S̃P of buildings in CP , where the load and solar
graphs are represented by the current estimated average load
adjacency matrix ÃG and solar adjacency matrix P̃G. GSD
then updates ÃG and P̃G by (1) using the newly estimated
X̃P and S̃P .

2) Load Prediction: The native load observations in CN

and CF buildings and the current native load estimation in CP

buildings in a time window of K are fed into the prediction
model STAWnet. STAWnet is trained to extract the time-
varying local spatial correlation and temporal correlation over
the input data and establish the mapping function to predict
the native load for every building in the next time step.

3) Graph Sparsification: The two adjacency matrices ÃG

and P̃G used in GSD are pruned to remove redundant in-
formation so as to enhance the disaggregation performance.
Given a pruning rate r, the resulting pruned ÃG

r and P̃G
r are

fed to GSD, the output of which is then fed to STAWnet for
forecasting. The best pruning rate r∗ is selected based on the
forecasting accuracy.

4) Input refurbishment: Note that the native load consump-
tion in CP buildings from time K + 1 to T can be both

estimated by the GSD disaggregation model and forecasted
by the STAWnet forecasting model. Because the STAWnet
model learns the nonlinear spatial correlations among build-
ings, while GSD mainly focuses on the linear correlations, the
forecasting result may enhance the disaggregation result. Input
refurbishment enhances the estimation accuracy of the native
load in CP buildings by replacing the current estimation by
the weighted sum (with coefficient γi) of the current estima-
tion and the corresponding forecasting result by the current
forecasting model f(·,Θi), and then sending the updated
estimation to load prediction component to train the i + 1-
th forecasting STAWnet model f(·,Θi+1), where i = 1, . . . , I
and I is the total number of refurbishment times. f(·,ΘI+1)
is the final prediction model.

The offline training returns the following: the optimal
pruned solar adjacency matrix PG

r∗ , the estimated solar am-
plitude β̃s, the weight coefficient γi, the learned prediction
model f(·,Θi) for each i of total I refurbishment iterations,
and the final prediction model f(·,ΘI+1).

B. Graph Smoothing Based Disaggregation Model (GSD)

GSD aims to disaggregate the unknown native loads and
PV generations separately from the observed net load of
buildings in CP . Other inputs include the native load and PV
measurements from buildings in CN and CF . The main idea of
GSD, illustrated in Fig. 3, is to explore the spatial correlations
among native loads and PV generations, respectively, and
estimate the native loads and PV generations in CP building
by aggregating the corresponding features of other buildings.
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Fig. 3. Illustration of GSD. 1 building in CP , 3 buildings in CF , and 2
buildings in CN . AG, PG are computed from (1), and βl, βs from (4).

The proposed GSD has three major steps: (i) estimating
the patterns of load consumption and solar generation in
CP buildings using the estimated average graph adjacency
matrices, (ii) amplitude estimation of the estimated patterns,
and (iii) average graph adjacency matrix update using the
estimated load consumption and solar generation. We next
describe them in detail.

1) Pattern Recovery: The main idea of pattern recovery is
based on the assumption of feature homophily [41], meaning
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that the spatially correlated nodes, which correspond to build-
ings here, should have similar features. Here, the characteristic
of feature homophily is quantified by the Dirichlet energy
function [41], which is a smoothness criterion for the features
over a graph. The patterns of the unobserved load and PV data
are recovered by minimizing the Dirichlet energy function.

The load correlation graph is represented by the average
load adjacency matrix of all T instants in the recorded data,
denoted by AG ∈ RN×N . Its element AG

ij denotes the strength
of average spatial correlation between buildings i and j.

AG
ij =

cov(X∗i, X∗j)√
cov(X∗i, X∗i)cov(X∗j , X∗j)

i, j = 1, . . . N, (1)

where X∗i and X∗j is the ith column and jth column of X .
cov(·, ·) means covariance calculation operator. AG cannot
be fully computed initially because XP is unknown. The
unknown entries in AG are initialized as random values.
The solar adjacency matrix PG ∈ RM×M is defined in a
similar way to represent the average spatial correlation of solar
generation in buildings with solar panels.

We aim to recover the load patterns in CP buildings by
minimizing the Dirichlet energy function l(X,AG) as

l(X,AG) =
1

2
trace(X∆(X)T), (2)

where ∆ = I −D− 1
2AGD− 1

2 is graph Laplacian matrix, and
the degree matrix D is a diagonal matrix with Dii =

∑
j A

G
ij .

The minimization problem

min
XP

l(X,AG) (3)

is solved by the iterative scheme in [41] with XP initialized
to be all zero. Let X̃pattern P denote the returned solution.
X̃pattern P is used as the estimated native load patterns in CP

buildings because minimizing the Dirichlet energy function
returns the load patterns but does not provide an accurate
estimation of the load amplitude.

Let S̃pattern P denote the estimated solar patterns in CP

buildings. The computation of S̃pattern P has a similar process
as above and is skipped.

2) Amplitude Estimation: After estimating the load patterns
X̃pattern P and PV patterns S̃pattern P of buildings in CP , we
estimate the amplitudes of load and solar, represented by βl

and βs in R|CP |, respectively. Specifically, for each building
i in CP , we solve the following problem,

min
βl
i,β

s
i

λ∥(βl
iX̃

pattern P
∗i −NP

∗i)Ω∥2F

+ ∥βl
iX̃

pattern P
∗i − βs

i S̃
pattern P
∗i −NP

∗i∥2F ,
(4)

where the operator (·)Ω sets the values not in set Ω to zero
while maintaining the values in set Ω. Ω includes the time
instants from 9 pm to 5 am here. The first term of the objective
in (4) means that the estimated native load is close to the net
load at night. The idea is that, during these time periods, the
solar generalization is zero, and the net load only contains the
native load. The second term means that the estimated native
load minus the estimated solar should be close to the net load
at any time. λ is a weight in (0, 1).

Let β̃l and β̃s be the estimated amplitude. We obtain the
estimated native load values and PV generation from (5):{

S̃P = β̃sS̃pattern P

X̃P = NP + S̃P .
(5)

The reason for calculating X̃P using NP + S̃P , instead of
using β̃lX̃pattern P , is that the PV generation patterns in nearby
buildings are generally similar, while the load patterns are
more diverse across buildings. Thus, the solar estimation is
more accurate, and we estimate the load by adding the net
load with solar generalization.

3) Adjacency Matrix Update: After obtaining X̃P and S̃P ,
we calculate the estimated average load adjacency matrix ÃG

in (1) and, similarly, the estimated average solar adjacency
matrix P̃G using X̃ = [XN , XF , X̃P ] and S̃ = [SF , S̃P ],
respectively.

C. STAWnet Forecasting Model

The load forecasting model aims to learn a function f(·; Θ),
parameterized by trainable weights Θ, that maps the past K
steps historical native loads to native load values at the next
time step. In this paper, it utilizes the recorded and estimated
native load data as input data to construct training samples.
After the function f(·; Θ) is trained, it can be leveraged
to forecast future native loads given real-time native load
measurements.

Mathematically, let XN
t∗ denote the tth row of XN .

Let matrices XN
t = [XN

(t−K+1)∗; . . . ;X
N
t∗ ] and XF

t =

[XF
(t−K+1)∗; . . . ;X

F
t∗] denote the observed native load con-

sumptions from time t−K+1 to t in CN and CF buildings in
recorded data, respectively. Let X̃P

t = [X̃P
(t−K+1)∗; . . . ; X̃

P
t∗]

denote the estimated native load in CP buildings from time
t−K +1 to t. Let ŷt+1 in R1×N denote the predicted native
load values at time t + 1 of all buildings by the STAWnet
model. Then the prediction is

[XN
t , XF

t , X̃P
t ]

f(·;Θ)−→ ŷt+1. (6)

The learning problem aims to find Θ that minimizes the
average mean absolute errors (MAE) between the predicted
and actual values of all T − K predictions (T time steps
excluding the first K time steps in the recorded data),

minΘ ℓΘ

where ℓΘ = 1
N(T−K)

T−1∑
t=K

( ∑
i∈CN

|XN
(t+1),i − ŷt+1

i |+ (7)∑
i∈CF

|XF
(t+1),i − ŷt+1

i |+
∑

i∈CP

|X̃P
(t+1),i − ŷt+1

i |
)
.

Note that because native load XP is not directly observed,
the estimated value X̃P by GSD is used in (7) to compute
the forecasting error and learn the function f(:,Θ). The MAE
loss function, instead of the widely used ℓ2 loss function, is
adopted in this paper because the MAE loss function is less
sensitive to noisy input and outliers.

This paper leverages the STAWnet [39] model to learn the
function f(·; Θ), and the main architecture of STAWnet is
shown in Fig. 4. The input data are first transformed by a
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convolutional layer (Conv) and then fed into four spatial-
temporal blocks (ST-block). Every ST-block contains a resid-
ual connection and is skip-connected to the output layer.
The two most important parts of STAWnet are the gated
temporal convolution network (Gated TCN) and dynamic
attention network (DAN), which extract time-varying temporal
correlations and spatial correlations, respectively. Compared

t-K+1

t

Conv

Gated TCN

DAN

S
T

-b
lo

ck

+

+

Skip 

connection

Residual 

connection

Output layer

t+1

Predicted load data 

Fig. 4. Prediction model by STAWnet [39]

with most existing forecasting models that are applied in load
prediction, STAWnet has a distinct ability to capture the time-
varying spatial correlations among native load values through
the DAN network. Hence, we briefly introduce DAN here, and
more details can be found in [39].

The key idea of DAN is to dynamically assign different
weights to different graph nodes, which correspond to build-
ings, when aggregating the information of neighboring nodes.
Let At

ij denote the correlation of nodes i and j at time t, node
i aggregates the information of all nodes by

x′ti =
N∑
j=1

At
ij · xtj s.t.

N∑
j=1

At
ij = 1, (8)

where xtj is the hidden state of node j for some layer, and
x′ti is the hidden state of node i in the next layer.

To better compute the dynamic correlation At
ij , a node

embedding is learned for every node in DAN. Let ei and ej
denote the node embedding of the node i and the node j,
respectively. At

ij can be computed by

otij =
⟨Wq(xti∥ei),Wk(xtj∥ej)⟩√

d1
(9)

At
ij =

exp(otij)∑N
k=1 exp(otik)

(10)

where ∥ and ⟨·, ·⟩ denote the concatenation and inner product
operations, respectively. d1 denotes the dimension of ei and
ej . Wq and Wk are the trainable query and key matrices,
respectively.

Note that STAWnet will be trained again every time the
input is refurbished. Let f(·,Θi) (i = 1, ..., I + 1) denote all

I + 1 trained models where I is the total number of input
refurbishment.

D. Interaction of Disaggregation and Forecasting

We propose two interaction strategies, graph sparsification,
and input refurbishment, to leverage the prediction result to
improve the disaggregation performance, which in turn further
enhances the prediction accuracy.

1) Graph Sparsification: Graph sparsification removes the
redundant edges in a graph and can enhance accuracy. Specif-
ically, we sparsify the estimated average load and solar adja-
cency matrices ÃG and P̃G by keeping the top 1− r fraction
of the largest entries in each column and setting all other r
fraction entries to zero, where r is viewed as the pruning rate.
Intuitively, as r increases, the disaggregation performance will
first improve due to the removal of redundant information.
If r becomes too large, the disaggregation performance will
then decrease because important correlation information may
also be removed. Due to the lack of ground-truth native load
consumption in CP buildings, one cannot directly compute
the best value r∗ to optimize the disaggregation performance.
Therefore, we propose to leverage the prediction result to
guide the selection of r∗ in this paper. Because accurate
disaggregated load values can lead to small predicted errors,
we employ the prediction result to select the optimal r∗.
Specifically, we prune ÃG and P̃G with different r and use the
resulting matrices in GSD for load disaggregation. The disag-
gregated values are then sent to STAWnet for load forecasting.
We pick the r value that corresponds to the smallest validation
error of the forecasting results as the optimal r∗. Let ÃG

r∗ and
P̃G
r∗ denote the resulting optimally pruned adjacency matrices.
2) Input Refurbishment: Note that the native load consump-

tion in CP buildings from time K + 1 to T is first estimated
by the GSD disaggregation model and then forecasted by the
STAWnet forecasting model. The idea of input refurbishment
is to use the weighted sum of disaggregated estimation and
the forecasting estimation as the new input to the STAWnet
model and run the forecasting model again. The refurbishment
process can be repeated on the new input obtained from the
previous refurbishment. As shown in Fig. 5, we compute
the weighted sum of the native load estimation X̃P and its
corresponding prediction result ŷ, using γ as the weight. The
result is then treated as the updated X̃P . The processes of
conducting weighted sum of X̃P and ŷ, and then updating
X̃P , are repeated total I times.

෨𝑋𝑃 𝑓(⋅ ; 𝜃 ) ො𝑦

Prediction model trained

using [𝑋𝑁 , 𝑋𝐹 , ෨𝑋𝑃]Input Output
1 − 𝛾

𝛾

Update ෨𝑋𝑃

Fig. 5. Illustration of input refurbishment (γ is computed by the statistic
characteristics of loss information obtained from prediction model f(·; θ)).

Specifically, let Ωd be a subset of [K + 1, T ] that contains
all the time indices corresponding to the daytime from 10 am



7

to 5 pm. We update the estimated native load X̃P
ti through

input refurbishment by

X̃P
ti ← γX̃P

ti + (1− γ)ŷti , ∀t ∈ Ωd, i ∈ CP (11)

and no refurbishment for other time t and building i. On the
righthand side (RHS) of (11), the initial X̃P

ti is obtained from
(5) in disaggregation, and ŷti is its forecasting result from
(7). The observed net load at night time is mostly native
load because the solar generation is negligible. Thus, we do
not refurbish the input during the nighttime. After the new
estimation X̃P is obtained, the estimated solar is updated by

S̃P = X̃P −NP . (12)

Then the new X̃P is used to train the STAWnet model again.
γ in (0, 1) is the constant weight factor to be determined.

Intuitively, if the load disaggregation result X̃P
ti is accurate,

γ should be large. Otherwise, γ should be small. However,
because the ground truth native load is unknown for CP

buildings, one cannot directly determine whether X̃P
ti is accu-

rate or not. Here, we adopt and improve the method in [42]
that computes γ for label refurbishment of noisy labels in
supervised learning.

The idea is to estimate the probability of every X̃P
ti being ac-

curate based on its corresponding forecasting loss |X̃P
ti−ŷti | for

every t in Ωd and i in CP , and then use the average probability
of all these samples X̃P

ti being accurate as γ. Compared with
accurate samples, inaccurate samples yield larger loss values
and less consistent predictions during initial training [43],
which means the forecasting losses of inaccurate samples tend
to have larger mean values and variance values. Therefore, the
forecasting losses of all these samples X̃P

ti can be divided into
two groups with different distributions. Determining whether
X̃P

ti is accurate or not is equivalent to determining which group
its corresponding loss value |X̃P

ti − ŷti | belongs to.

D1=p(lvar clean)

D2=p(lvar )

D3=p(lvar noisy)

Fig. 6. Loss variance distribution of observed samples and estimated samples
(D2 = 0.25D1 + 0.75D3)

The phenomenon of two different distributions has been ob-
served in [43]; we also demonstrate that on the forecasting loss
variances in Fig. 6. D2 shows the loss variance distribution
of prediction values in CP buildings. D2 can be numerically
decomposed as the weighted sum of two distributions D1 and
D3. D1 is the loss variance distribution of prediction values in
CN and CF buildings. Because native load values are directly
measured in these buildings, the forecasting values of these

samples are considered accurate. The calculated distribution
based on the decomposition D3 is treated as the loss variance
distribution of inaccurate estimations.

To compute γ mathematically, we first fit the probability
distribution of loss variance, denoted by lvar, using a two-
component Beta mixture model (BMM) [42]. The group of
samples with accurate disaggregation results is referred to as
the “clean” group, denoted by the case of k = 1, and the
other group of inaccurate disaggregation results are referred
to as the “noisy” group, denoted by the case of k = 2. The
overall distribution of the loss variance can be represented as

p(lvar) =

2∑
k=1

p(k)p(lvar|k) s.t.

2∑
k=1

p(k) = 1, (13)

where p(k = 1) and p(k = 2) are the prior probability
that the disaggregation results are accurate and inaccurate,
respectively. p(lvar|k) is the conditional probability of lvar when
the disaggregation is accurate or inaccurate, which follows a
beta distribution

p(lvar|k) =
Γ(αk + βk)

Γ(αk)Γ(βk)
lαk−1
var (1− lvar)

βk−1, (14)

where αk, βk > 0 are the variables that need to be estimated
to determine the distribution p(lvar|k). Γ(·) is the Gamma
function. The prior and conditional probabilities in the RHS of
(13) can be estimated using Expectation Maximization (EM)
algorithms [44].

After estimating each term in the RHS of (13) and com-
puting (13), for any t in Ωd and any building i in CP , the
conditional probability that the corresponding disaggregation
result X̃P

ti is accurate given the observed forecasting loss
variance lvar ti can be computed by

p(k = 1|lvar = lvar ti) =
p(k = 1)p(lvar = lvar ti|k = 1)

p(lvar = lvar ti)
.

(15)

The parameter γ is computed by

γ = |Ωd|−1|CP |−1
∑

t∈Ωd,i∈CP

p(k = 1|lvar = lvar ti). (16)

Our method of computing γ improves over that in [42] in
two aspects. First, we employ the loss variance across all
training epochs rather than one loss value in estimating the
two-component model. That is because using the loss values
in only one epoch may lead to unstable statistical distributions.
Second, instead of estimating all four terms in the RHS
of (13) together, we first estimate p(lvar|k = 1) using the
forecasting loss variances in CF and CN buildings, because
native load values in these buildings are directly measured
and thus accurate. Then, we fix p(lvar|k = 1) and estimate the
other three terms in the RHS of (13) using the EM algorithm.
Our approach is more accurate and computationally efficient
than estimating all four terms together in [42]. The calculation
details of γ based on the improved BMM are shown in section
A in the supplementary material.
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E. Real-time Load Forecasting

During the real-time test stage of ULoFo, we will leverage
the following quantities leaned off-line: the pruned solar
adjacency matrix with optimal pruning rate P̃G

r∗ , the estimated
solar amplitude β̃s, γi in the ith input refurbishment, and
the ith prediction model f(·,Θi) for i = 1, ..., I , and the
final prediction model f(·,ΘI+1). At time s, we will use the
observed data from time s− 2K + 1 to time s to predict the
native load at time s+ 1 in all N buildings. Fig. 7 illustrates
the whole real-time test implementation of ULoFo.

Mathematically, let ZN in R2K×|CN | denote the native load
measurement in CN buildings, ZF and V F in R2K×|CF |

denote the native load and solar measurements in CF build-
ings, and EP in R2K×|CP | denote the net load measurements
in CP buildings from time s − 2K + 1 to s. Because the
native load patterns can be diverse across buildings, while
the solar patterns across buildings share more similarities, we
first estimate the solar generation Ṽ P and then combine it
with the net load observations EP to calculate the native load
estimation Z̃P .

Specifically, first, the solar pattern is recovered by minimiz-
ing the Dirichlet energy function

min
V pattern P

l(V ′, PG
r∗), (17)

where V ′ = [V F , V pattern P ] and let Ṽ pattern P denote the
estimated solar pattern. The solar and load estimations can
be calculated by {

Ṽ P = β̃sṼ pattern P

Z̃P = EP + Ṽ P ,
(18)

where the magnitude β̃s is learned from the off-line training.
Then for every iteration i from 1 to I , the prediction model

f(·,Θi) uses the data in [ZN , ZF , Z̃P ] in every time window
of length K to predict the native load in all buildings for the
next time. Let Qi in RK×|CP | denote the forecasting result
by f(·,Θi) for the native load in CP buildings from time
s−K+1 to s. We apply the input refurbishment to Z̃P from
time s−K + 1 to s, i.e.,

Z̃P
k∗ ← γiZ̃

P
k∗ + (1− γi)Q

i
k∗ ∀k ∈ [s−K + 1, s]. (19)

Finally, the prediction of native load at s + 1 is obtained
by sending the updated [ZN , ZF , Z̃P ] to the final prediction
model f(·,ΘI+1).

F. Time Complexity Analysis

The computational complexity of ULoFo is dominated by
the computation needed by GSD and STAWnet, while the
computation of graph sparsification and input refurbishment
is relatively small. Thus, we focus on analyzing the time
complexity of GSD and STAWnet.

Offline Training. In the step of pattern recovery in GSD,
the time complexity of solving (3) is O(N2T ) according to
the solving scheme in [41]. The time complexity of solving (4)
in the step of amplitude estimation in GSD is O(NT ). Thus,
the time complexity of GSD in the offline training stage is
O(N2T ).

Disaggregation
Solar Load

Input refurbishment

Prediction model 

∙ γ𝑖

∙ (1 − γ𝑖)

Estimated input

Prediction results

Final Prediction model

Output data

s+1

Predicted load at s+1 time step

Input data

Offline trained solar information
CF CP

2K ZN
ZF

&

VF

EP

s

s-2K+1
CN

෨𝛽𝑠

Observed data

[VF,       ]

s

s-2K+1
[ZN ,  ZF,       ]

s-K+1 𝑓(⋅, Θ𝑖)

𝑓(⋅, Θ𝐼+1)

Fig. 7. Real-time implementation of ULoFo

The main modules of STAWnet contain the input convo-
lutional layer, ST-block, residual connection, skip connec-
tion, and output layer. Except for ST-block, the remaining
modules only involve convolution computation with kernel
size 1 × 1 and non-linear activation by rectified linear unit
(ReLU). Give a training sample s ∈ Rdin×N×K through a
convolutional layer with kernel size 1×1, the time complexity
is O(NKdindout), where din and dout represent the feature
dimension of sample s before and after convolution, respec-
tively. Note that din and dout are fixed feature dimensions
and can be viewed as constants. Thus, the time complexity of
sample s in the modules, including the input layer, the output
layer, residual connection, and skip connection, is O(NK).
One ST-block includes Gated TCN and DAN. Since Gated
TCN applies convolutional operation with kernel size 1×1, the
time complexity of sample s through Gated TCN is O(NK).
In the module DAN, the dominant time complexity of (8) is
O(N2d1K), and the time complexity of (9) is O(N2). Since
d1 is a small constant, the time complexity of the DAN module
is O(N2K). Therefore, the time complexity of STAWnet is
O((T −K)N2K), where T −K represents the total training
samples, respectively. Thus, the time complexity of ULoFo in
the offline stage is O((T −K)N2K +N2T ).

Real-time forecasting. The time complexity of solving (17)
isO(M2K). The inference of STAWnet for one testing sample
can be computed by O(N2K). Thus, the time complexity of
ULoFo in the real-time test stage is O(N2K +M2K).

IV. NUMERICAL EXPERIMENTS

Our method is evaluated on one commercial building dataset
and one residential building dataset. Due to the space limit, we
only present the results on the commercial buildings here, and
the results on residential buildings are in the supplementary
material.

A. Dataset Description
The native load values of 40 commercial buildings are also

selected from a Typical Meteorological Year (TMY3) dataset
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in Texas [19]2, in which 20 buildings are small offices and 20
buildings are quick-service restaurants. We randomly select
10 buildings, 15 buildings, and 15 buildings from the 40
commercial buildings to construct the commercial building
set CN , CF , and CP , respectively. The PV generations of
30 sites in Texas for the experiment on commercial buildings
are randomly chosen from the public dataset in [45], [2].
According to the maximum capacity of solar and peak load
values of DOE commercial reference buildings in [46], we
scale the selected native load values and PV generations. The
scaled PV generations are added to the scaled native loads of
commercial buildings in CF and CP to obtain the net loads.
The number of commercial buildings in CN , CF , and CP are
10, 15, and 15, respectively. Note that the maximum capacity
of PV output of buildings in CP is less than 10kWp since the
BTM PV usually refers to small-scale PV systems (<10kWp)
[47].

Both the commercial load profile and PV generation profile
have 8760 time steps with one-hour resolution in one year.
The one-year load data are divided into training, validation,
and test datasets by the ratio of 0.7: 0.2: 0.1.

B. Methods and Evaluation Metric

Because no existing method solves the disaggregation and
native load prediction jointly without requiring historical data
for BTM consumers, this paper compares three disaggregation
baselines and four prediction baselines for the disaggrega-
tion and prediction performance separately. Then, the ULoFo
method is compared with the combinations of these methods.
Three disaggregation baselines include the Consumer Mixture
Model (CMM) [35], Discitionary Learning and Sparse Disag-
gregation (DL-SD) [38], and the Two-layer Approach (TLA)
[4]. CMM constructs two alternative optimization steps by
using dominant load and solar consumption patterns. DL-SD
is a technique that learns the optimal dictionary and sparse
coefficients for disaggregating loads and PV generations. TLA
utilizes the spatial correlations inherent in native demands and
PV generations to accomplish disaggregation. Four predic-
tion baselines include GraphWavenet [14], Spatio-Temporal
Graph Convolutional Networks (STGCN) [48], Multi-Scale
Adaptive Graph Neural Networks (MAGNN) [49], and Non-
stationary Transformers (NST) [50]. GraphWavenet includes
eight spatial-temporal layers. STGCN contains two spatial-
temporal blocks. MAGNN is a multi-scale adaptive graph
neural network. NTS is a deep and complex non-stationary
transformer model.

To evaluate the joint disaggregation and forecasting perfor-
mance, we compare our proposed ULoFo method with two
combinations of the disaggregation method CMM and two
prediction models, GraphWavenet and STGCN, respectively.
They are abbreviated by CMM-GW and CMM-STGCN, re-
spectively. We only keep these two combinations because
they perform the best among all these combinations of three

2The native load datasets are accessible at the following link {
https://catalog.data.gov/dataset/commercial-and-residential-hourly-load-
profiles-for-all-tmy3-locations-in-the-united-state-bbc75}. We thank the
authors of [2] for kindly sharing the PV generation data with us.

disaggregation and four forecasting baselines. We use the
K-Means technique instead of the K-Shape method when
implementing CMM to construct the load patterns since the
K-Shape method performs poorly and slowly in our dataset.
We use the observed PV profiles to construct PV patterns,
instead of simulated PV patterns in [4] when implementing
TLA. That is because PV data is observed at some buildings
in our setup. The hyperparameter settings of all methods are
in the supplementary material.

Both disaggregation and prediction performance are eval-
uated by mean absolute percentage errors (MAPE), mean
absolute errors (MAE), and root mean square errors (RMSE).
For example, the load MAPE, load MAE, and load RMSE for
one building i is calculated by

Load MAPEi =

∑
s∈Ωtest

|Ẽsi − Esi|
|
∑

s∈Ωtest
Esi|

× 100%

Load MAEi =
∑

s∈Ωtest

|Ẽsi − Esi|

Load RMSEi =

√∑
s∈Ωtest

(Ẽsi − Esi)2

|Ωtest|
,

(20)

where Ωtest denotes the set of time indices of testing samples.
Esi and Ẽsi denote the ground-truth values and the disaggre-
gation (or forecasting) value of building i at time s.

The average Load MAPE for all buildings is

Load MAPE =

∑N
i=1 Load MAPEi

N

Load MAE =

∑N
i=1 Load MAEi

N

Load RMSE =

∑N
i=1 Load RMSEi

N

(21)

The evaluation metrics for solar can be calculated similarly.

C. Experiment on Commercial buildings

1) Performance Evaluation and Comparison: As shown
in Table I, the proposed ULoFo achieves the smallest disag-
gregation and prediction errors among the three methods for
commercial load forecasting. ULoFo has the highest offline
computational cost. The real-time process of ULoFo takes
14.3s, which is almost twice the time of the other methods.
That is because the input refurbishment in ULoFo is performed
three times here, which results in more inference time. The
inference time can be reduced by reducing the number of
implementations of input refurbishment. In fact, as shown
later in Table V, without the input refurbishment component,
ULoFo takes 8.31s for inference, which is slightly only higher
than the inference time of the baselines. In addition, ULoFo
still outperforms CMM-STGCN and CMM-GW without input
refurbishment. Because CMM-STGCN and CMM-GW use
the same disaggregation model, their disaggregation perfor-
mance is the same. Fig. 8 shows the predicted native load
values of one office building during the time period from
8525h to 8545h. The time period from 8528h to 8542h

3The units of MAE and MAPE are kilowatts (kW).
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TABLE I
COMPARISONS AMONG ULOFO AND BASELINES ON COMMERCIAL BUILDINGS 3

Methods
Disaggregation Prediction Computation time (s)

Load error Solar error Test error Offline Real time
MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

CMM-STGCN 0.207 5.58% 0.497 0.207 14.86% 0.497 0.295 6.26% 0.508 512.5 7.1
CMM-GW 0.207 5.58% 0.497 0.207 14.86% 0.497 0.26 6.02% 0.502 1516.1 6.2

ULoFo (ours) 0.131 3.7% 0.358 0.131 10.12% 0.358 0.195 4.28% 0.381 3961.3 14.3

8525 8530 8535 8540 8545
Time (h)

1

2

3

4

5

6
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at

iv
e 

lo
ad
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ue
s (

kW
)

Ground truth
ULoFo
CMM-GW
CMM-STGCN

Fig. 8. Prediction results of one office building

TABLE II
LOAD PREDICTION PERFORMANCE ON COMMERCIAL BUILDINGS WHERE

THE NATIVE LOAD IS MEASURED AND NOT MEASURED

Methods Load measured Load not measured

MAE MAPE RMSE MAE MAPE RMSE

CMM-STGCN 0.282 4.88% 0.492 0.316 8.57% 0.533
CMM-GW 0.225 4.31% 0.458 0.319 8.86% 0.567

ULoFo (ours) 0.179 3.22% 0.348 0.222 6.05% 0.429

corresponds to 8:00 am to 10:00 pm, during which the load
consumption of commercial buildings is high due to human
activities. One can observe that the prediction result by ULoFo
is the closest to the ground truth data. The predictions by
the two baselines around 8530h and 8537h deviate from the
ground truth due to the inaccurate disaggregation results. Table
II shows the load prediction errors in CN and CF where the
native load is directly measured, as well as CP buildings,
where the native load is not directly measured. Naturally,
all methods perform better when the native load is directly
observed. ULoFo performs the best among all three methods
in both cases, and the advantage of ULoFo is more significant
in buildings where the load is not directly observed.

2) Performance of Disaggregation or Forecasting Only:
Here, we compare ULoFo with existing methods for the
special cases of disaggregation or forecasting only. For dis-
aggregation only, we only implement the GSD component of
ULoFo for training, and the real-time part only disaggregates
the data. Table III compares GSD with TLA, CMM, and DL-
SD for the disaggregation results and training time. Among
the four disaggregation methods, CMM performs the best due
to the two alternative optimization steps. The performance of
GSD is comparable with the performance of DL-SD. TLA

performs the worst because of the large estimated PV peak
generation errors, the maximum of which is 62%. Overall, the
performance of GSD is comparable to other disaggregation
baselines. Moreover, GSD has the lowest computation cost.
Note that compared with the disaggregation performance of
ULoFo in Table I, the disaggregation error by using the GSD
component only is larger because graph sparsification and
input refurbishment are removed here.

TABLE III
DISAGGREGATION ONLY PERFORMANCE WITH DIRECTLY MEASURED

COMMERCIAL LOAD

Methods Load error Solar error Time
(s)

MAE MAPE RMSE MAE MAPE RMSE

TLA 0.475 12.11% 1.002 0.475 33.6% 1.002 279.6
CMM 0.207 5.58% 0.497 0.207 14.86% 0.497 10.03
DL-SD 0.24 6.75% 0.55 0.24 17.24% 0.55 699.42
GSD 0.261 7.29% 0.628 0.261 20.29% 0.628 0.38

TABLE IV
PREDICTION ONLY PERFORMANCE WITH DIRECTLY MEASURED

COMMERCIAL LOAD

Methods Load prediction error Parameter
MAE MAPE RMSE

GraphWavenet 0.194 4.14% 0.402 267649
STGCN 0.245 4.76% 0.435 159105
MAGNN 0.295 5.7% 0.579 1303285

NTS 0.48 8.79% 0.796 10856808
STAWnet 0.15 3.18% 0.306 271841

We then compare the prediction only performance of these
methods, STAWnet, GraphWavenet, STGCN, MAGNN, and
NTS, when the native load is already directly measured. As
shown in Table IV, the method, STAWnet, adopted in this
paper significantly outperforms the other four methods in
real-time commercial building load forecasting. In our setup,
the training data is not large enough for both large models,
MAGNN and NTS, resulting in poor performance of the two
methods. Compared with STGCN, GraphWavenet has more
spatial-temporal layers and thus can learn the spatial-temporal
correlations better. The forecasting method, STAWnet, adopted
in our paper, has an architecture similar to GraphWavenet.
The only difference is that STAWnet can additionally learn
the dynamic spatial correlation among the input data, leading
to improved performance over GraphWavenet. Note that the
forecasting accuracy of our method in Table IV is higher than
that in Table I. That is because the availability of accurate
historical data can enhance forecasting accuracy.

3) Performance of Graph sparsification: Here, we evaluate
the graph sparsification strategy. The evaluation metric MAPE
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is used to select the optimal pruning rate. We vary the pruning
rate r from 0 to 0.9 with a step size of 0.15. Fig. 9 shows
how the validation MAPE and test MAPE of load prediction
change. One can see that both curves have the same trend
of decreasing first for a large range of r until r = 0.75 and
then increasing for a very large pruning rate. This justifies our
strategy of using the validation MAPE as the criterion to select
the best r. Fig. 10 also shows the disaggregation MAPE, both
of which have the same trend as the forecasting MAPE.
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Fig. 9. Commercial prediction performance under different pruning rate
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Fig. 10. Commercial disaggregation performance under different pruning rate

4) Performance of input refurbishment: From Table V,
one can see the load disaggregation MAPE are improved
from 4.03% to 3.7%, and the solar disaggregation MAPE are
improved from 10.78% to 10.12% after three times refurbish-
ments. The prediction performance is improved from 4.43% to
4.28%. Clearly, the input refurbishment improves the accuracy
of both disaggregation and forecasting.

TABLE V
INPUT REFURBISHMENT ON COMMERCIAL EXPERIMENT

Times γ
Disaggregation Prediction Inference

Time (s)
Load MAPE Solar MAPE Load MAPE

0 - 4.03% 10.78% 4.43% 8.31
1 0.33 3.79% 10.19% - -
2 0.41 3.73% 10.13% - -
3 0.43 3.7% 10.12% 4.28% 14.3

Here, the total number of refurbished times I is set to 3.
A rule to determine I is as follows. Note that the weight
parameter γi reflects the probability of the currently estimated
input being accurate. When γi does not change obviously, so
does the accuracy of the estimated input, then the refurbished
process can stop. TABLE V shows how γi and the performance
of the estimated input change during the refurbishment pro-
cess. One can see that the γ increases during the refurbishment
process, and so does the accuracy of the estimated result.
Moreover, from i = 2 to 3, γi does not change significantly,
and the estimated result has a minor improvement. Thus, the
total refurbishment times I is set to be 3.

V. CONCLUSION

With the rapid expansion of PV installations, an increasing
number of building-level PV installations are BTM to reduce
consumer costs and support the trends towards a decentral-
ized grid. However, the invisible native load measurements
resulting from the BTM PV installations make building-level
native load forecasting challenging. This paper develops a
load forecasting method, referred to as ULoFo, that integrates
both load disaggregation and forecasting together for the first
time to enhance the forecasting accuracy when the BTM load
is not measured. The idea is to explore the unknown and
time-varying spatial correlations of multiple nearby buildings.
ULoFo contains a load disaggregation module, a load predic-
tion module, and two interaction strategies between them to
reduce error propagation and enhance accuracy. ULoFo does
not require any historical native load measurements on BTM
consumers and demonstrates its superior performance over
existing load disaggregation and forecasting methods on prac-
tical datasets. Future work includes improving the efficiency
of the training process by integrating the disaggregation and
prediction in a weakly supervised neural network.
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SUPPLEMENTARY MATERIAL

A. Improved BMM Algorithm

Algorithm 1 Improved BMM

1: Initialization: p(k), αk, βk, k = 1, 2; maximum itera-
tions B.

2: Estimate α1, β1 using the forecasting loss variances in CF

and CN buildings.
3: Fix α1, β1, and use EM algorithm to estimate p(k), α2, β2

using forecasting loss variances in CP buildings,
4: repeat
5: E-step: calculate the responsibility weight wk(lvar) by

wk(lvar) =
p(k)(p(lvar|k = 1))∑2

k=1 p(k)p(lvar|k)
. (22)

6: M-step: (i) update the prior probability p(k) by

p(k) = |Ωd|−1|CP |−1
∑

t∈Ωd,i∈CP

wk(lvar ti); (23)

(ii) update α2, β2 by

α2 =
m2

2(1−m2)

s2
, β2 =

α2(1−m2)

m2
(24)

where m2 and s2 are the weighted mean values and
variances of forecasting loss variances in CP buildings,
respectively. m2 and s2 can be calculated by

m2 =

∑
w2(lvar ti)lvar ti∑

w2(lvar ti)

s2 =

∑
w2(lvar ti)(lvar ti −m2)

2∑
w2(lvar ti)

(25)

7: until The number of iterations is up to B.
8: Calculate γ by equation (15) and (16).

Output: γ
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Fig. 11. λ selection in ULoFo

B. Hyperparameter Selection
The hyperparameters of the forecasting component in

ULoFo follow the parameter settings in the paper that origi-

nally proposed it [39]. Specifically, the input time window size
K is set to 12. The total number of neural network architecture
layers is 10, and the number of hidden nodes in every layer
is set as (32, 256, 256, 256, 256, 256, 256, 256, 256, 1). The
number of epochs is 100. The dimension of the trainable query
matrix Wq and key matrix Wk are R48×16, respectively. The
size of the learnable node embedding ei is 16. Besides the
hyperparameters of the forecasting component in ULoFo, only
one regularization coefficient λ in the disaggregation compo-
nent GSD will impact the performance of ULoFo and need
to be selected carefully. This paper leverages the forecasting
validation error to select the coefficient λ. As shown in Fig.11,
the optimal λ in the residential experiment is 0.4, and the
optimal λ in the commercial experiment is 0.6.
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Fig. 12. λ1 selection in CMM-STGCN
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Fig. 13. λ1 selection in CMM-GW

To provide a fair comparison between the proposed ULoFo
and the baseline CMM-STGCN, the hyperparameters of the
forecasting component in CMM-STGCN also follow the pa-
rameter settings in the papers that originally proposed it [48].
Specifically, the input window size is also set to 12, and the
number of training epochs is 100. The total number of neural
network layers in CMM-STGCN is 9, and the number of hid-
den nodes in each layer is (64, 16, 64, 64, 16, 64, 128, 128, 1),
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TABLE VI
COMPARISONS AMONG ULOFO AND BASELINES ON RESIDENTIAL BUILDINGS

Methods
Disaggregation Prediction Computation time

Load error Solar error Test error Offline Real time
MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

CMM-STGCN 0.145 6.51% 0.269 0.145 13.34% 0.269 0.203 8.7% 0.344 437.6 6.9
CMM-GW 0.145 6.51% 0.269 0.145 13.34% 0.269 0.166 7.11% 0.3 1366.1 5.8

ULoFo (ours) 0.109 4.86% 0.282 0.109 10.12% 0.358 0.152 6.51% 0.292 3921.3 9.8

respectively. In the disaggregation component CMM of CMM-
STGCN, there is a sensitive hyperparameter, the weighted
term λ1 between night time only and full-time periods, needs
to be selected by prediction validation error. As shown in
Fig. 12, the optimal λ1 in the residential experiment is 0.4,
and the optimal λ1 in the commercial experiment is 0.8.
Similarly, the hyperparameters of the forecasting component in
CMM-GW follow the parameter settings in [14]. Specifically,
the input time window length is set to 12, and the number
of training epochs is also set to 100. Since CMM-GW has
the same disaggregation component as CMM-STGCN, the
same parameter λ1 needs to be determined by the prediction
validation error of CMM-GW. As shown in Fig. 13, the
optimal λ1 of CMM-GW in the residential and commercial
experiments are 0.4 and 0.8, respectively.

In the prediction only comparison, the parameter settings
of the five methods, GraphWavenet, STGCN, MAGNN, NTS,
and STAWnet, follow the parameter settings in [14], [48],
[49], [50], and [39], respectively. In the disaggregation only
comparison, the baseline TLA includes one regularization term
λ2 in the optimization objective, which is demonstrated to be
robust in the range (100, 500) in [4]. Thus, we set λ2 to 100
in this paper. The insensitive regularization coefficient in DL-
SD is set to 0.1 in this paper. In the baseline CMM and the
proposed GSD, as discussed before, the hyperparameter λ1 in
CMM is set to 0.4 and 0.8 in the residential and commercial
experiments, respectively. The hyperparameter λ in GSD is set
to 0.4 and 0.6 in the residential and commercial experiments,
respectively.

C. Result Analysis on residential buildings

1) Dataset description: The native load values of 30 resi-
dential buildings are randomly selected from a Typical Mete-
orological Year (TMY3) dataset in Texas [19]. We randomly
select 10 buildings, 6 buildings, and 14 buildings from the 30
residential buildings to construct the residential building set
CN , CF , and CP , respectively. The PV generations of 20 sites
in Texas are randomly selected from a public dataset in [45]
for the experiment on residential buildings. The residential PV
generations are added to the native load values in residential
buildings of CF and CP to obtain the net load values. The
number of residential buildings in CN , CF , and CP are 10,
6, and 14, respectively. Both the residential load profile and
PV generation profile have 8760 time steps with one-hour
resolution in one year. The one-year load data are divided
into training, validation, and test datasets by the ratio of 0.7 :
0.2 : 0.1.
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Fig. 14. Prediction results of one residential building

TABLE VII
LOAD PREDICTION PERFORMANCE AT RESIDENTIAL BUILDINGS WHERE

THE NATIVE LOAD IS MEASURED AND NOT MEASURED

Methods Load measured Load not measured

MAE MAPE RMSE MAE MAPE RMSE

CMM-STGCN 0.171 7.24% 0.297 0.24 10.36% 0.39
CMM-GW 0.12 5.04% 0.234 0.219 9.47% 0.362

ULoFo (ours) 0.109 4.58% 0.216 0.201 8.72% 0.359

2) Performance Evaluation and Comparison: As shown
in Table VI, the proposed ULoFo performs the best in both
residential load disaggregation and prediction tasks. ULoFo
has the highest offline computational cost. The real-time
computational cost of ULoFo is slightly higher than the cost of
CMM-STGCN and CMM-GW. One can also see the predicted
residential load values by ULoFo are the closest to the ground
truth values in Fig. 14. As shown in Table VII, ULoFo can
also achieve the best performance in both cases, where the
native load is directly observed and is not observed.

3) Performance of Disaggregation or Forecasting Only:
For disaggregation only, we compare the GSD component
of ULoFo with three other existing disaggregation methods.
As shown in Table VIII, the disaggregation performance of
CMM is slightly better than that of GSD. The proposed GSD
performs better than TLA and DL-SD. The reason for the poor
performance of TLA may be a significant error, which achieves
around 12.9%, in the estimation of PV peak generation.
Overall, the performance of GSD can be comparable with the
existing disaggregation baselines. Furthermore, GSD has the
lowest computational cost in residential load disaggregation.
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We then compare the prediction component STAWnet of
ULoFo with four other four prediction approaches: Graph-
Wavenet, STGCN, MAGNN, and NTS. As shown in Table
IX, the performance of STAWnet is the best among the
five prediction approaches regarding real-time residential load
forecasting. Similar to the analysis in the commercial building
experiment, NTS and MAGNN perform poorly because the
two large models may not be fully trained. Compared with
the relatively small STGCN model, GraphWavenet has more
spatial-temporal modules, and thus shows better performance
than STGCN. Compared to GraphWavenet, the only difference
between STAWnet and GraphWavenet is that it can learn the
dynamic spatial correlation among the input data. Therefore,
STAWnet can achieve better performance than GraphWavenet.

TABLE VIII
DISAGGREGATION ONLY PERFORMANCE WITH DIRECTLY MEASURED

RESIDENTIAL LOAD

Methods Load error Solar error Time
(s)

MAE MAPE RMSE MAE MAPE RMSE

TLA 0.182 7.94% 0.436 0.182 16.06% 0.436 164.44
CMM 0.145 6.51% 0.269 0.145 13.34% 0.269 9.1
DL-SD 0.215 9.46% 0.488 0.215 19.01% 0.488 493.82

GSD (ours) 0.153 6.78% 0.382 0.153 15.77% 0.382 0.34

TABLE IX
PREDICTION ONLY PERFORMANCE WITH DIRECTLY MEASURED

RESIDENTIAL LOAD

Methods Load prediction error Parameter
MAE MAPE RMSE

GraphWavenet 0.116 4.94% 0.233 267449
STGCN 0.166 7.04% 0.291 153985
MAGNN 0.24 10.46% 0.43 1302885

NTS 0.279 11.98% 0.455 10810718
STAWnet (ours) 0.107 4.55% 0.215 271681

TABLE X
RESIDENTIAL DISAGGREGATION AND PREDICTION PERFORMANCE

THROUGH REFURBISHMENT

Times γ
Disaggregation Prediction Inference

Time (s)
Load MAPE Solar MAPE Load MAPE

0 - 5.11% 11.74% 6.62% 7.1
1 0.65 4.91% 11.34% - -
2 0.85 4.89% 11.29% - -
3 0.89 4.86% 11.23% 6.51% 9.8

4) Performance of Graph sparsification: Similarly, the
pruning rate r is varied from 0 to 0.9 with a step size of 0.15.
Fig. 15 shows how the validation MAPE and test MAPE of
load prediction change. One can see that both curves have
the same trend of decreasing first for a large range of r
until r = 0.45 and then increasing for a very large pruning
rate. This justifies our strategy of using the validation MAPE
as the criterion to select the best r. Fig. 16 also shows the
disaggregation MAPE, both of which have the same trend as
forecasting MAPE.
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Fig. 16. Residential disaggregation performance under different pruning rate

5) Performance of input refurbishment: From Table X,
one can see both the disaggregation accuracy and prediction
accuracy improve after three times refurbishments, which
then demonstrates the effectiveness of the input refurbishment
strategy. As mentioned before, γi reflects the probability of
the currently estimated input being accurate. One can see
that γi increases during the refurbishment process, and so
does the accuracy of the estimated result. Furthermore, from
i = 2 to 3, γi does not change significantly, and the estimated
result has a minor improvement. Following the rule discussed
in the commercial building experiment for determining the
total number of refurbished times I , I is set to be 3 in this
experiment.

6) Robustness of the interaction strategy: In this paper, the
two strategies, graph sparsification, and input refurbishment,
use the forecasting result to help improve disaggregation
performance, which in turn boosts prediction performance.
That means the disaggregation module is affected by the
forecasting module by the two strategies. Here, we verify
the robustness of the two interaction strategies relative to
forecasting performance. We adjusted the parameters of the
prediction model STAWnet in the offline training stage to
obtain multiple prediction models STAWnet with different
levels of accuracy. The performance of the two interaction
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strategies is discussed under varying forecasting accuracy
levels.
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Fig. 17. Selected pruning rate and disaggregation performance
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Fig. 18. Input refurbishment under different forecasting performance

In the strategy of graph sparsification, Fig. 17 shows the
selected optimal pruning rate by the prediction model when
the model and the corresponding prediction accuracy vary. One
can see that even when the prediction accuracy decreases, the
selected pruning rate remains 0.45, which is verified as the
optimal pruning rate in Fig. 16. Thus, the graph sparsification
is robust for forecasting accuracy.

In the input refurbishment, the weight γ, computed by
(16), can help prevent error propagation from poor forecasting
performance. As shown in Fig. 18, γ remains a large value
when forecasting performance is inaccurate. That means a
large weight is assigned to the original estimation X̃P on
the RHS of (11), and thus, the forecasting errors from ŷ
will not be propagated to the new estimation. As forecasting
performance improves, γ decreases, and a larger weight will
be assigned to ŷ on the RHS of (11), which thus helps improve
the performance of new estimated X̃P . Therefore, the input
refurbishment is robust to the forecasting performance with
the help of varying γ.


