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Abstract—Group imbalance has been a known problem in
empirical risk minimization (ERM), where the achieved high
average accuracy is accompanied by low accuracy in a minority
group. Despite algorithmic efforts to improve the minority group
accuracy, a theoretical generalization analysis of ERM on individ-
ual groups remains elusive. By formulating the group imbalance
problem with the Gaussian Mixture Model, this paper quantifies
the impact of individual groups on the sample complexity,
the convergence rate, and the average and group-level testing
performance. Although our theoretical framework is centered on
binary classification using a one-hidden-layer neural network,
to the best of our knowledge, we provide the first theoretical
analysis of the group-level generalization of ERM in addition
to the commonly studied average generalization performance.
Sample insights of our theoretical results include that when all
group-level co-variance is in the medium regime and all mean are
close to zero, the learning performance is most desirable in the
sense of a small sample complexity, a fast training rate, and a high
average and group-level testing accuracy. Moreover, we show that
increasing the fraction of the minority group in the training data
does not necessarily improve the generalization performance of
the minority group. Our theoretical results are validated on both
synthetic and empirical datasets, such as CelebA and CIFAR-10
in image classification.

Index Terms—Explainable machine learning, group imbalance,
generalization analysis, Gaussian mixture model

I. INTRODUCTION

Training neural networks with empirical risk minimization
(ERM) is a common practice to reduce the average loss of
a machine learning task evaluated on a dataset. However,
recent findings [1], [2], [3], [4], [5] have shown empirical
evidence about a critical challenge of ERM, known as group
imbalance, where a well-trained model that has high average
accuracy may have significant errors on the minority group that
infrequently appears in the data. Moreover, the group attributes
that determine the majority and minority groups are usually
hidden and unknown during the training. The training set can
be augmented by data augmentation methods [6] with varying
performance, such as cropping and rotation [7], noise injection
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[8], and generative adversarial network (GAN)-based methods
[9].

As ERM is a prominent method and enjoys great empirical
success, it is important to characterize the impact of ERM
on group imbalance theoretically. However, the technical dif-
ficulty of analyzing the nonconvex ERM problem of neural
networks results from the concatenation of nonlinear func-
tions across layers, and the existing generalization analyses
of ERM often require strong assumptions and focus on the
average performance of all data. For example, the neural
tangent kernel type of analysis [10], [11], [12], [13], [14],
[15], [16] linearizes the neural network around the random
initialization. The generalization results are independent of the
feature distribution and cannot be exploited to characterize the
impact of individual groups. Ref. [14] provides the sample
complexity analysis when the data comes from the mixtures
of well-separated distributions but still cannot characterize the
learning performance of individual groups. In another line of
works [17], [18], [19], [20], [21], [22], [23], [24], [25], people
make data assumptions that the labels are determined merely
by some input features and are irrelevant to other features or
model parameters. The generalization analysis characterizes
how the neurons learn important features. Our work follows
the line of works [26], [27], [28], [29], [30], where the
label of each data is generated by both the input distribution
and the ground-truth model so that group imbalance can be
characterized.

Contribution: To the best of our knowledge, this paper pro-
vides the first theoretical characterization of both the average
and group-level generalization of a one-hidden-layer neural
network trained by ERM on data generated from a mixture
of distributions. This paper considers the binary classification
problem with the cross entropy loss function, with training
data generated by a ground-truth neural network with known
architecture and unknown weights. The optimization problem
is challenging due to a high non-convexity from the multi-
neuron architecture and the non-linear sigmoid activation.

Assuming the features follow a Gaussian Mixture Model
(GMM), where samples of each group are generated from a
Gaussian distribution with an arbitrary mean vector and co-
variance matrix, this paper quantifies the impact of individual
groups on the sample complexity, the training convergence
rate, and the average and group-level test error. The training
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Fig. 1: Group imbalance experiment. (a) Binary classification
on CelebA dataset using Gaussian augmentation to control
the minority group co-variance. (b) Test accuracy against the
augmented noise level.

algorithm is the gradient descent following a tensor initializa-
tion and converges linearly. Our key results include

(1) Medium-range group-level co-variance enhances the
learning performance. When a group-level co-variance de-
viates from the medium regime, the learning performance
degrades in terms of higher sample complexity, slower con-
vergence in training, and worse average and group-level
generalization performance. As shown in Figure 1(a), we
introduce Gaussian augmentation to control the co-variance
level of the minority group in the CelebA dataset [31]. The
learned model achieves the highest test accuracy when the
co-variance is at the medium level, see Figure 1(b). Another
implication is that the diverse performance of different data
augmentation methods might partially result from the dif-
ferent group-level co-variance introduced by these methods.
Furthermore, although our setup does not directly model the
batch normalization approach [32] that modifies the mean and
variance in each layer to achieve fast and stable convergence,
our result provides a theoretical insight that co-variance indeed
affects the learning performance.

(2) Group-level mean shifts from zero hurt the learning
performance. When a group-level mean deviates from zero, the
sample complexity increases, the algorithm converges slower,
and both the average and group-level test error increases. Thus,
the learning performance is improved if each distribution is
zero-mean. This paper provides a similar theoretical insight
to practical tricks such as whitening [33], subgroup shift
[34], [35], population shift [36], [37] and the pre-processing
of making data zero-mean [38], that data mean affects the
learning performance.

(3) Increasing the fraction of the minority group in the

training data does not always improve its generalization
performance. The generalization performance is also affected
by the mean and co-variance of individual groups. In fact,
increasing the fraction of the minority group in the training
data can have a completely opposite impact in different
datasets.

II. BACKGROUND AND RELATED WORK

Improving the minority-group performance with known
group attributes. With known group attributes, distribution-
ally robust optimization (DRO) [4] minimizes the worst-group
training loss instead of solving ERM. DRO is more computa-
tionally expensive than ERM and does not always outperform
ERM in the minority-group test error. Spurious correlations
[3] can be viewed as one reason of group imbalance, where
strong associations between labels and irrelevant features exist
in training samples. Different from the approaches that address
spurious correlations, such as down-sampling the majority
[39], [40], up-weight the minority group [41], and removing
spurious features [42], [43], this paper does not require the
special model of spurious correlations and any group attribute
information.

Imbalance learning and long-tailed learning focus on
learning from imbalanced data with a long-tailed distribution,
which means that a few classes of the data make up the
majority of the dataset, while the majority of classes have
little data samples [44], [45], [46], [47], [48], [49], [50], [51],
[52]. Some works [45], [52] claimed that naively increasing
the number of the minority does not always improve the
generalization. Therefore, some recent works develop novel
oversampling and data augmentation methods [49], [48], [51]
that can promote the minority fraction by generating diverse
and context-rich minority data. However, there are very limited
theoretical explanations of how these techniques affect the
generalization.

Generalization performance with the standard Gaussian
input for one-hidden-layer neural networks. [53], [54], [55],
[56] consider infinite training samples. [26] characterize the
sample complexity of fully connected neural networks with
smooth activation functions. [57], [58], [30] extend to the non-
smooth ReLU activation for fully-connected and convolutional
neural networks, respectively. [28] analyzes the cross entropy
loss function for binary classification problems. [27] analyzes
the generalizability of graph neural networks for both regres-
sion and binary classification problems. One-hidden-layer case
of neural network pruning and self-training are also studied in
[59] and [29], respectively.

Theoretical characterization of learning performance
from other input distributions for one-hidden-layer neu-
ral networks. [60] analyzes the training loss with a single
Gaussian with an arbitrary co-variance. [61] quantifies the
SGD evolution trained on the Gaussian mixture model. When
the hidden layer only contains one neuron, [62] analyzes
rotationally invariant distributions. With an infinite number
of neurons and an infinite input dimension, [63] analyzes
the generalization error based on the mean-field analysis for
distributions like Gaussian Mixture with the same mean. [64]
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considers inputs with low-dimensional structures. No sample
complexity is provided in all these works.

Notations:Z is a matrix with Zi,j as the (i, j)-th entry. z is
a vector with zi as the i-th entry. [K] denotes the set including
integers from 1 to K. Id and ei represent the identity matrix
in Rd×d and the i-th standard basis vector, respectively. δi(Z)
denotes the i-th largest singular value of Z. The matrix norm
∥Z∥ = δ1(Z). f(x) = O(g(x)) (or Ω(g(x)), Θ(g(x))) means
that f(x) increases at most, at least, or in the order of g(x),
respectively.

III. PROBLEM FORMULATION AND ALGORITHM

We consider the classification problem with an unbalanced
dataset using fully connected neural networks over n indepen-
dent training examples {(xi, yi)}Ni=1 from a data distribution.
The learning algorithm is to minimize the empirical risk
function via gradient descent (GD). In what follows, we will
present the data model and neural network model considered
in this paper.

Data Model. Let x ∈ Rd and y ∈ R denote the input
feature and label, respectively. We consider an unbalanced
dataset that consists of L (L ≥ 2) groups of data, where
the feature x in the group l (l ∈ [L]) is drawn from a
multi-variate Gaussian distribution with mean µl ∈ Rd, and
covariance Σl ∈ Rd×d. Specifically, x follows the Gaussian
mixture model (GMM) [65], [66], [67], [68], denoted as x ∼∑L
l=1 λlN (µl,Σl)

1. λl ∈ (0, 1) is the probability of sampling
from distribution-l and represents the expected fraction of
group-l data.

∑L
l=1 λl = 1. Group l is defined as a minority

group if λl is less than 1/L. We use Ψ = {λl,µl,Σl,∀l}
to denote all parameters of the mixture model2. We consider
binary classification with label y generated by a ground-truth
neural network with unknown weights W ∗ = [w∗

1 , ...,w
∗
K ] ∈

Rd×K and sigmoid activation3. function ϕ(x) = 1
1+exp(−x) ,

where4

P(y = 1|x) = H(W ∗,x) :=
1

K

K∑
j=1

ϕ(w∗
j
⊤x). (1)

Learning model. Learning is performed over a neural
network that has the same architecture as in (1), which is
a one-hidden-layer fully connected neural network5 with its
weights denoted by W ∈ Rd×K . Given n training samples
{xi, yi}ni=1 where xi follows the GMM model, and yi is from

1We consider this data model inspired by existing works on group imbal-
ance and practical datasets. Details can be found in Appendix F.

2In practice, Ψ can be estimated by the EM algorithm [69] and the moment-
based method [66]. The EM algorithm returns model parameters within
Euclidean distance O(( d

n
)
1
2 ) when the number of mixture components L is

known. When L is unknown, one usually over-specifies an estimate L̄ > L,
then the estimation error by the EM algorithm scales as O(( d

n
)
1
4 ). Please

refer to [70], [71], [72] for details.
3The results can be generalized to any activation function ϕ with bounded

ϕ, ϕ′ and ϕ′′, where ϕ′ is even. Examples include tanh and erf .
4Our data model is reduced to logistic regression in the special case that

K = 1. We mainly study the more challenging case when K > 1, because
the learning problem becomes highly non-convex when there are multiple
neurons in the network.

5All the weights in the second layer are assumed to be fixed to facilitate the
analysis. This is a standard assumption in theoretical generalization analysis
[57], [28], [27].

(1), we aim to find the model weights via solving the empirical
risk minimization (ERM), where fn(W ) is the empirical risk,

min
W∈Rd×K

fn(W ) :=
1

n

n∑
i=1

ℓ(W ;xi, yi), (2)

where ℓ(W ;xi, yi) is the cross-entropy loss function, i.e.,

ℓ(W ;xi, yi) =− yi · log(H(W ,xi))

− (1− yi) · log(1−H(W ,xi)).
(3)

Note that for any permutation matrix P , WP corresponds
permuting neurons of a network with weights W . Therefore,
H(W ,x) = H(WP ,x), and fn(WP ) = fn(W ). The
estimation is considered successful if one finds any column
permutation of W ∗.

The average generalization performance of a learned model
W is evaluated by the average risk

f̄(W ) = Ex∼
∑L

l=1 λlN (µl,Σl)
ℓ(W ;xi, yi), (4)

and the generalization performance on group l is evaluated by
the group-l risk

f̄l(W ) = Ex∼N (µl,Σl)ℓ(W ;xi, yi). (5)

Training Algorithm. Our algorithm starts from an initial-
ization W0 ∈ Rd×K computed based on the tensor initializa-
tion method (Subroutine 1 in in Appendix) and then updates
the iterates Wt using gradient descent with the step size6

η0. The computational complexity of tensor initialization is
O(Knd). The per-iteration complexity of the gradient step is
O(Knd). We defer the details of Algorithm 1 in Appendix.

Algorithm 1 Our ERM learning algorithm

1: Input: Training data {(xi, yi)}ni=1, the step size η0 =

O
((∑L

l=1 λl(∥µ̃l∥∞+∥Σ
1
2

l ∥)2
)−1

)
, the total number of

iterations T
2: Initialization: W0 ← Tensor initialization method via

Subroutine 1
3: Gradient Descent: for t = 0, 1, · · · , T − 1

Wt+1 = Wt − η0 ·
1

n

n∑
i=1

(∇l(W ,xi, yi) + νi)

= Wt − η0

(
∇fn(W ) +

1

n

n∑
i=1

νi

) (6)

4: Output: WT

IV. MAIN THEORETICAL RESULTS

We will formally present our main theory below, and the in-
sights are summarized in Section IV-A. For the convenience of
presentation, some quantities are defined here, and all of them
can be viewed as constant. Define σmax = maxl∈[L]{∥Σl∥

1
2 },

σmin = minl∈[L]{∥Σ−1
l ∥−

1
2 }. Let τ = σmax/σmin. We

assume τ = Θ(1), indicating that σmax and σmin are in

6Algorithm 1 employs a constant step size. One can potentially speed up
the convergence, i.e., reduce v, by using a variable step size. We leave the
corresponding theoretical analysis for future work.
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the same order7. Let δi(W
∗) denote the i-th largest sin-

gular value of W ∗. Let κ = δ1(W
∗)

δK(W ∗) , and define η =∏K
i=1(δi(W

∗)/δK(W ∗)).

Theorem 1. There exist ϵ0 ∈ (0, 1
4 ) and positive value func-

tions B(Ψ) (sample complexity parameter), q(Ψ) (convergence
rate parameter), and Ew(Ψ), E(Ψ), El(Ψ) (generalization
parameters) such that as long as the sample size n satisfies

n ≥ nsc := poly(ϵ−1
0 , κ, η, τ,K, δ1(W

∗))B(Ψ)d log2 d, (7)

we have that with probability at least 1 − d−10, the iterates
{Wt}Tt=1 returned by Algorithm 1 with step size η0 =

O
((∑L

l=1 λl(∥µl∥ + ∥Σl∥
1
2 )2

)−1
)

converge linearly with

a statistical error to a critical point Ŵn with the rate of
convergence v, i.e.,

||Wt − Ŵn||F ≤v(Ψ)t||W0 − Ŵn||F

+
η0ξ

1− v(Ψ)

√
dK log n/n,

(8)

v(Ψ) = 1−K−2q(Ψ), (9)

where ξ ≥ 0 is the upper bound of the entry-wise additive
noise in the gradient computation.

Moreover, there exists a permutation matrix P ∗ such that

||Ŵn −W ∗P ∗||F ≤Ew(Ψ) · poly(κ, η, τ, δ1(W ∗))

·Θ
(
K

5
2 (1 + ξ) ·

√
d log n/n

)
.

(10)

The average population risk f̄ and the group-l risk f̄l satisfy

f̄ ≤E(Ψ) · poly(κ, η, τ, δ1(W ∗))

·Θ
(
K

5
2 (1 + ξ) ·

√
d log n/n

) (11)

f̄l ≤El(Ψ) · poly(κ, η, τ, δ1(W ∗))

·Θ
(
K

5
2 (1 + ξ) ·

√
d log n/n

) (12)

The closed-form expressions of B, q, Ew, E , and El are in
Section D of the supplementary material and skipped here. The
quantitative impact of the GMM model parameters Ψ on the
learning performance varies in different regimes and can be
derived from Theorem 1. The following corollary summarizes
the impact of Ψ on the learning performance in some sample
regimes.

Corollary 1. When we vary one parameter of group l for
any l ∈ [L] of the GMM model Ψ and fix all the others, the
learning performance degrades in the sense that the sample
complexity nsc, the convergence rate v, ∥Ŵn−W ∗P ∥F , aver-
age risk f̄ and group-l risk f̄l all increase (details summarized
in Table I), as long as any of the following conditions happens,

(i) ∥Σl∥ approaches 0; (ii) ∥Σl∥ increases from some
constant; (iii) ∥µl∥ increases from 0,

(iv) λl decreases, provided that ∥Σl∥ = σ2
min, i.e., group l

has the smallest group-level co-variance, where ∥Σj∥ are all
constants, and ∥µi∥ = ∥µj∥ for all i, j ∈ [L].

7Note that it is a very mild assumption that σmin is not very close to zero,
or equivalently, τ = Θ(1). We verify this in Appendix G.

(v) λl increases, provided that ∥Σl∥ = σ2
max, i.e., group l

has the largest group-level co-variance, where ∥Σj∥ are all
constants, and ∥µi∥ = ∥µj∥ for all i, j ∈ [L].

To the best of our knowledge, Theorem 1 provides the
first characterization of the sample complexity, learning rate,
and generalization performance under the Gaussian mixture
model. It also firstly characterizes the per-group generalization
performance in addition to the average generalization.

A. Theoretical Insights

We summarize the crucial implications of Theorem 1 and
Corollary 1 as follows.

(P1). Training convergence and generalization guaran-
tee. The iterates Wt converge to a critical point Ŵn linearly,
and the distance between Ŵn and W ∗P ∗ is O(

√
d log n/n)

for a certain permutation matrix P ∗. When the computed
gradients contain noise, there is an additional error term of
O(ξ

√
d log n/n), where ξ is the noise level (ξ = 0 for noise-

less case). Moreover, the average risk of all groups and the
risk of each individual group are both O((1+ ξ)

√
d log n/n).

(P2). Sample complexity. For a given GMM, the sample
complexity is Θ(d log2 d), where d is the feature dimension.
This result is in the same order as the sample complexity
for the standard Gaussian input in [28] and [26]. Our bound
is almost order-wise optimal with respect to d because the
degree of freedom is dK. The additional multiplier of log2 d
results from the concentration bound in the proof technique.
We focus on the dependence on the feature dimension d and
treat the network width K as constant. The sample complexity
in [28] and [26] is also d · poly(K, log d).

(P3). Learning performance is improved at a medium
regime of group-level co-variance. On the one hand, when
∥Σl∥ is Ω(1), the learning performance degrades as ∥Σl∥
increases in the sense that the sample complexity nsc, the
convergence rate v, the estimation error of W ∗, the average
risk f̄ , and the group-l risk f̄l all increase. This is due to the
saturation of the loss and gradient when the samples have a
large magnitude. On the other hand, when ∥Σl∥ is o(1), the
learning performance also degrades when ∥Σl∥ approaches
zero. The intuition is that in this regime, the input data are
concentrated on a few vectors, and the optimization problem
does not have a benign landscape.

(P4). Increasing the fraction of the minority group
data does not always improve the generalization, while
the performance also depends on the mean and co-variance
of individual groups. Take ∥Σj∥ = Θ(1) for all group j, and
∥µj∥ is the same for all j as an example (columns 5 and
6 of Table I). When ∥Σl∥ is the smallest among all groups,
increasing λl improves the learning performance. When ∥Σl∥
is the largest among all groups, increasing λl actually degrades
the performance. The intuition is that from (P3), the learning
performance is enhanced at a medium regime of group-level
co-variance. Thus, increasing the fraction of a group with a
medium level of co-variance improves the performance, while

7poly(∥µl∥) is ∥µl∥4 for ∥µl∥ ≤ 1; ∥µl∥12 for ∥µl∥ > 1.
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TABLE I: Impact of GMM parameters on the learning performance in sample regimes

Σl changes
µl changes

λl changes, constant ∥Σj∥’s, equal ∥µj∥’s

∥Σl∥ = o(1) ∥Σl∥ = Ω(1) if ∥Σl∥ = σ2
min if ∥Σl∥ = σ2

max

B(Ψ), sample complexity nsc O(|Σl∥−3) O∥Σl∥3) O(poly(∥µl∥))8 O( 1
(1+λl)

2 ) O(1)− Θ(1)

(1+λl)
2

convergence rate v(Ψ) ∝ −q(Ψ) 1−Θ(∥Σl∥3) 1−Θ( 1
1+∥Σl∥

) 1−Θ( 1
∥µl∥2+1

) Θ( 1
1+λl

) 1−Θ( 1
1+λl

)

Ew(Ψ), ∥Ŵn −W ∗P ∥F O(1)−Θ(∥Σl∥3) O(
√

∥Σl∥) O(1 + ∥µl∥) O( 1

1+
√

λl
) O(1 +

√
λl)

E(Ψ), average risk f̄ O(1)−Θ(∥Σl∥3) O(∥Σl∥) O(1 + ∥µl∥2) O( 1
1+λl

) O(1)− Θ(1)
1+λl

El(Ψ), group-l risk f̄l O(1)−Θ(∥Σl∥3) O(∥Σl∥) O(1 + ∥µl∥2) O( 1

1+
√

λl
) O(1 +

√
λl)

increasing the fraction of a group with large co-variance de-
grades the learning performance. Similarly, when augmenting
the training data, an argumentation method that introduces
medium variance could improve the learning performance,
while an argumentation method that introduces a significant
level of variance could hurt the learning performance.

(P5). Group-level mean shifts from zero degrade the
learning performance. The learning performance degrades as
∥µl∥ increases. An intuitive explanation of the degradation is
that some training samples have a significant large magnitude
such that the sigmoid function saturates.

B. Proof Idea and Technical Novelty

1) Proof Idea: Different from the analysis of logistic re-
gression for generalized linear models, our paper deals with
more technical challenges of nonconvex optimization due to
the multi-neuron architecture, the GMM model, and a more
complicated activation and loss. The establishment of Theorem
1 consists of three key lemmas.

Lemma 1. (informal version) As long as the number of
training samples is larger than Ω(dK5 log2 d), the empirical
risk function is strongly convex in the neighborhood of W ∗

(or a permutation of W ∗). The size of the convex region is
characterized by the Gaussian mixture distribution.

The main proof idea of Lemma 1 is to show that the
nonconvex empirical risk fn(W ) in a small neighborhood
around W ∗ (or any permutation W ∗P ) is almost convex
with a sufficiently large n. The difficulty is to find a positive
lower bound of the smallest singular value of ∇2f̄(W ), which
should also be a function of the GMM. Then, we can obtain
∇2fn(W ) from ∇2f̄(W ) by concentration inequalities.

Lemma 2. (informal version) If initialized in the convex
region, the gradient descent algorithm converges linearly to a
critical point Ŵn, which is close to W ∗ (or any permutation
of W ∗), and the distance is diminishing as the number of
training samples increases.

Given the locally strong convexity, Lemma 2 provides the
linear convergence to a critical point. The convergence rate is
determined by the GMM.

Lemma 3. (informal version) Tensor Initialization Method
initializes W0 ∈ Rd×K around W ∗ (or a permutation of
W ∗).

The idea of tensor initialization is to first find quantities
(see Qj in Definition 1) in the supplementary material) which
are proven to be functions of tensors of w∗

i . Then the method
approximates these quantities numerically using training sam-
ples and then applies the tensor decomposition method on the
estimated quantities to obtain W0, which is an estimation of
W ∗.

Combining the above three lemmas together, one can derive
the required sample complexity and the upper bound of f̄
and f̄l in (7), (11), and (12), respectively. The idea is first
to compute the sample complexity bound such that the tensor
initialization method initializes WO in the local convex region
by Lemma 3. Then the final sample complexity is obtained by
comparing two sample complexities from Lemma 1 and 3.

By further looking into the order of the terms B(Ψ), v(Ψ),
E(Ψ), Ew(Ψ), and El(Ψ) in several cases of Ψ, Theorem
1 leads to Corollary 1. To be more specific, we only vary
parameters Σl, or µl, or λl following the cases in Table I,
while fixing all other parameters of Ψ. We apply the Taylor
expansion to approximate the terms and derive error bounds
with the Lipschitz smoothness of the loss function.

2) Technical Novelty: Our algorithmic and analytical
framework is built upon some recent works on the general-
ization analysis of one-hidden-layer neural networks, see, e.g.,
[26], [57], [28], [27], [59], which assume that xi follows the
standard Gaussian distribution and cannot be directly extended
to GMM. This paper makes new technical contributions from
the following aspects.

First, we characterize the local convex region near W ∗

for the GMM model. To be more specific, we explicitly
characterize the positive lower bound of the smallest singular
value of ∇2f̄(W ) with respect to Ψ, while existing results
either only hold for standard Gaussian data [26], [28], [59],
[29], or can only show ∇2f̄(W ) is positive definite regardless
the impact of Ψ [10].

Second, new tools, including matrix concentration
bounds are developed to explicitly quantify the impact of
Ψ on the sample complexity.

Third, we investigate and provide the order of the bound
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for sample complexity, convergence rate, generalization
error, average risk, and group-l risk in terms of Ψ for the
first time in the line of research of model estimation [26],
[28], [27], [59], [29], which is also a novel result for the case
of Gaussian inputs.

Fourth, we design and analyze new tensors for the
mixture model to initialize properly, while the previous
tensor methods in [26], [57], [28], [27] utilize the rotation
invariant property that only holds for zero mean Gaussian.

V. NUMERICAL EXPERIMENTS

A. Experiments on Synthetic datasets

We first verify the theoretical bounds in Theorem 1 on
synthetic data. Each entry of W ∗ ∈ Rd×K is generated from
N (0, 1). The training data {xi, yi}ni=1 is generated using the
GMM model and (1). If not otherwise specified, L = 2,
d = 5, and K = 39. To reduce the computational time, we
randomly initialize near W ∗ instead of computing the tensor
initialization10.

Sample complexity. We first study the impact of d on the
sample complexity. Let µ1 = 1 in Rd and let µ2 = 0. Let
Σ1 = Σ2 = I . λ1 = λ2 = 0.5. We randomly initialize
M times and let Ŵ

(m)
n denote the output of Algorithm 1

in the mth trail. Let W̄n denote the mean values of all
Ŵ

(m)
n , and let VW =

√∑M
m=1 ||ŵm

n − W̄n||2/M denote the
variance. An experiment is successful if VW ≤ 10−3 and
fails otherwise. M is set to 20. For each pair of d and n,
20 independent sets of W ∗ and the corresponding training
samples are generated. Figure 2 shows the success rate of
these independent experiments. A black block means that
all the experiments fail. A white block means that they all
succeed. The sample complexity is indeed almost linear in d,
as predicted by (7).

Fig. 2: The sample complexity when the feature dimension
changes

We next study the impact on the sample complexity of
the GMM model. In Figure 3 (a), Σ1 = Σ2 = I , and let
µ1 = µ · 1, µ2 = −1. ∥µ1∥ varies from 0 to 5. Figure 3(a)

9Like [26], [57], [28], we consider a small-sized network in synthetic
experiments to reduce the computational time, especially for computing the
sample complexity in Figure 3. Our results hold for large networks too.

10The existing methods based on tensor initialization all use random
initialization in synthetic experiments to reduce the computational time. See
[28], [57], [27], [29] as examples. We compare tensor initialization and local
random initialization numerically in Section B of the supplementary material
and show that they have the same performance.

(a) (b)

Fig. 3: The sample complexity (a) when one mean changes,
(b) when one co-variance changes.

shows that when the mean increases, the sample complexity
increases. In Figure 3 (b), we fix µ1 = 1, µ2 = −1, and
let Σ1 = σ2I and Σ2 = I . σ varies from 10−1 to 101. The
sample complexity increases both when ∥Σ1∥ increases and
when ∥Σ1∥ approaches zero. All results match predictions in
Corollary 1.

Convergence analysis. We next study the convergence
rate of Algorithm 1. Figure 4(a) shows the impact of ∥µl∥.
λ1 = λ2 = 0.5, µ1 = −µ2 = C · 1 for a positive C, and
Σ1 = Σ2 = Λ⊤DΛ. Here Λ is generated by computing the
left-singular vectors of a d×d random matrix from the Gaus-
sian distribution. D = diag(1, 1.1, 1.2, 1.3, 1.4). n = 1× 104.
Algorithm 1 always converges linearly when ∥µ1∥ changes.
Moreover, as ∥µ1∥ increases, Algorithm 1 converges slower.
Figure 4 (b) shows the impact of the variance of the Gaussian
mixture model. λ1 = λ2 = 0.5, µ1 = 1, µ2 = −1,
Σ1 = Σ2 = Σ = σ2 · Λ⊤DΛ. n = 5 × 104. We change
∥Σ∥ by changing σ. Among the values we test, Algorithm 1
converges fastest when ∥Σ∥ = 1. The convergence rate slows
down when ∥Σ∥ increases or decreases from 1. All results are
consistent with the predictions in Corollary 1. We then study
the impact of K on the convergence rate. λ1 = λ2 = 0.5,
µ1 = 1, µ2 = −1, Σ1 = Σ2 = I . Figure 5 (a) shows that,
as predicted by (9), the convergence rate is linear in −1/K2.

(a)

(b)

Fig. 4: (a) The convergence rate with different µ1. (b) The
convergence rate with different Σ. (c) Convergence rate when
the number of neurons K changes.
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Average and group-level generalization performance.
The distance between Ŵn returned by Algorithm 1 and W ∗

is measured by ||Ŵn −W ∗||F . n ranges from 2 × 103 to
6 × 104. Σ1 = Σ2 = 9I , µ1 = 1, µ2 = −1. Each point in
Figure 5 (b) is averaged over 20 experiments of different W ∗

and training set. The error is indeed linear in
√

log(n)/n, as
predicted by (8).

(a) (b)

Fig. 5: (a) Convergence rate when the number of neurons K
changes. (b) The relative error of the learned model when n
changes.

We evaluate the impact of one mean/co-variance of the
minority group on the generalization. n = 2 × 104. Let
λ1 = 0.8, λ2 = 0.2, µ1 = 2 · 1, Σ1 = I . First, we let
µ2 = (µ2 − 2) · 1 and Σ2 = I . Figure 6 (b) shows that both
the average risk and the group-2 risk increase as µ2 increases,
consistent with (P5). Then we set µ2 = −2 · 1, Σ2 = σ2

2 · I .
Figure 6 (a) indicates that both the average and the group-2
risk will first decrease and then increase as ∥Σ∥2 increases,
consistent with (P3).

(a) (b)

Fig. 6: (a) The cross-entropy test loss when the co-variance
of the minority group changes. (b) The cross-entropy test loss
when the mean of the minority group changes.

Next, we study the impact of increasing the fraction of the
minority group. µ1 = µ2 = 0. Let group 2 be the minority
group. In Figure 7 (a), Σ1 = 10 · I and Σ2 = I , the
minority group has a smaller level of co-variance. Then when
λ2 increases from 0 to 0.5, both the average and group-2 risk
decease. In Figure 7 (b), Σ1 = I and Σ2 = 10 · I , and the
minority group has a higher-level of co-variance. Then when
λ2 increases from 0 to 0.3, both the average and group-2 risk
increase. As predicted by insight (P4), increasing λ2 does not
necessarily improve the generalization of group 2.

B. Image classification on dataset CelebA

We choose the attribute “blonde hair” as the binary classifi-
cation label. ResNet 9 [73] is selected to be the learning model

(a)

(b)

Fig. 7: The test loss (cross entropy loss) of synthetic data
with different λ2 values. (a) Group 2 has a smaller level of
co-variance. (b) Group 2 has a larger level of co-variance.

here because it was applied in many simple computer vision
tasks [74], [75]. To study the impact of co-variance, we pick
4000 female (majority) and 1000 male (minority) images and
implement Gaussian data augmentation to create additional
300 images for the male group. Specifically, we select 300
out of 1000 male images and add i.i.d. noise drawn from
N (0, δ2) to every entry. The test set includes 500 male and
500 female images. Figure 1 shows that when δ2 increases,
i.e., when the co-variance of the minority group increases, both
the minority-group and average test accuracy increase first and
then decrease, coinciding with our insight (P3).

Then we fix the total number of training data to be 5000
and vary the fractions of the two groups. From Figure 8(a)11

and (b), we observe opposite trends if we increase the fraction
of the minority group in the training data with the male being
the minority and the female being the minority. The norm of
covariance of the male and female group in the feature space is
5.1833 and 4.9716, respectively. This is consistent with Insight
(P4). Due to space limit, our results on the CIFAR10 dataset
are deferred to Section A in the supplementary material.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper provides a novel theoretical framework for
characterizing neural network generalization with group imbal-
ance. The group imbalance is formulated using the Gaussian
mixture model. This paper explicitly quantifies the impact of
each group on the sample complexity, convergence rate, and
the average and the group-level generalization. The learning
performance is enhanced when the group-level covariance is
at a medium regime, and the group-level mean is close to zero.
Moreover, increasing the fraction of minority group does not
guarantee improved group-level generalization.

11In Figure 8(a), when the minority fraction is less than 0.01, the minority
group distribution is almost removed from the Gaussian mixture model. Then
the O(1) constants in the last column of Table I have some minor changes,
and the order-wise analyses do not reflect the minor fluctuations in this regime.
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(a)

(b)

Fig. 8: The test accuracy on CelebA dataset has opposite trends
when the minority group fraction increases. (a) Male group is
the minority (b) Female group is the minority

One future direction is to extend the analysis to multiple-
hidden-layer neural networks and multi-class classification.
Because of the concatenation of nonlinear activation functions,
the analysis of the landscape of the empirical risk and the de-
sign of a proper initialization is more challenging and requires
the development of new tools. Another future direction is to
analyze other robust training methods, such as DRO. We see
no ethical or immediate negative societal consequence of our
work.

APPENDIX

A. Definitions

Definition 1. (ρ-function). Let z ∼ N (u, Id) ∈ Rd. Define
αq(i,u, σ) = Ezi∼N (ui,1)[ϕ

′(σ · zi)zqi ] and βq(i,u, σ) =
Ezi∼N (ui,1)[ϕ

′2(σ · zi)zqi ], ∀ q ∈ {0, 1, 2}, where zi and ui is
the i-th entry of z and u, respectively. Define ρ(u, σ) as

ρ(u, σ) = min
i,j∈[d],j ̸=i

{(u2
j + 1)(β0(i,u, σ)− α0(i,u, σ)

2),

β2(i,u, σ)−
α2(i,u, σ)

2

u2
i + 1

}
(13)

Definition 2. (D-function). Given the Gaussian Mixture Model
and any positive integer m, define Dm(Ψ) as

Dm(Ψ) =

L∑
l=1

λl(
∥µl∥

∥Σ−1
l ∥−

1
2

+ 1)m, (14)

ρ-function is defined to compute the lower bound of the
Hessian of the population risk with Gaussian input. D-function
is a normalized parameter for the means and variances. It is
lower bounded by 1. D-function is an increasing function of
∥µl∥ and a decreasing function of σl.

B. Proof of Lemma 1

We first restate the formal version of Lemma 1 in the
following.

Lemma 1. (Strongly local convexity) Consider the classifica-
tion model with FCN (1) and the sigmoid activation function.
There exists a constant C such that as long as the sample size

n ≥C1ϵ
−2
0 ·

( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2
)2

·
( L∑
l=1

λl
∥Σ−1

l ∥−1

ητKκ2
ρ(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

,

δK(W ∗)∥Σ−1
l ∥

− 1
2 )
)−2

dK5 log2 d

(15)

for some constant C1 > 0, ϵ0 ∈ (0, 1
4 ), and any fixed permu-

tation matrix P ∈ RK×K we have for all W ∈ B(W ∗P , r),

Ω
(1− 2ϵ0

K2

L∑
l=1

λl
∥Σ−1

l ∥−1

ητKκ2
ρ(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

,

δK(W ∗)∥Σ−1
l ∥

− 1
2 )
)
· IdK

⪯ ∇2fn(W ) ⪯ C2

L∑
l=1

λl(||µ̃l||∞ + ∥Σ
1
2

l ∥)
2 · IdK

(16)

with probability at least 1− d−10 for some constant C2 > 0.

1) Useful lemmas: Lemmas 4, 5, 6, 7, and 8 are required
for the proof.

Lemma 4.

Ex∼ 1
2N (µ,Id)+

1
2N (−µ,Id)

[
(

k∑
i=1

r⊤i x · ϕ′(σ · xi))2
]

≥ ρ(µ, σ)||R||2F ,

(17)

where ρ(µ, σ) is defined in Definition 1 and
R = (r1, · · · , rk) ∈ Rd×k is an arbitrary matrix.

Lemma 5. With the FCN model (1) and the Gaussian Mixture
Model, for any permutation matrix P , for some constant
C12 > 0, we have we have

Ex∼
∑L

l=1 λlN (µl,Σl)

[
sup

W ̸=W ′∈B(W ∗P ,r)

||∇2ℓ(W ,x)

−∇2ℓ(W ′,x)||/||W −W ′||F
]

≲d
3
2K

5
2

√√√√ L∑
l=1

λl(∥µl∥∞ + ∥Σl∥)2
L∑
l=1

λl(∥µl∥∞ + ∥Σl∥)4

(18)

Lemma 6. (Hessian smoothness of population loss) In the
FCN model (1), for any permutation matrix P , we have

||∇2f̄(W )−∇2f̄(W ∗P )|| ≲ K
3
2 · ||W −W ∗P ||F

·
( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
4

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
8
) 1

4 (19)
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Lemma 7. (Local strong convexity of population loss) In the
FCN model (1), for any permutation matrix P , if ||W −
W ∗P ||F ≤ r for an ϵ0 ∈ (0, 1

4 ), then,

4(1− ϵ0)

K2

L∑
l=1

λl
∥Σ−1

l ∥−1

ητKκ2
ρ(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

, δK(W ∗)

· ∥Σ−1
l ∥

− 1
2 ) · IdK ⪯ ∇2f̄(W ) ⪯

L∑
l=1

λl(∥µl∥+Σ
1
2

l )
2 · IdK

(20)

Lemma 8. In the FCN model (1), for any permutation matrix
P , as long as n ≥ C ′ · dK log dK for some constant C ′ > 0,
we have

sup
W∈B(W ∗P ,r)

||∇2fn(W )−∇2f̄(W )||

≤
L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2

√
dK log n

n
)

(21)

with probability at least 1− d−10.

We next show the proof of Lemma 1.
2) Proof: From Lemma 7 and 8, with probability at least

1− d−10,

∇2fn(W ) ⪰ ∇2f̄(W )− ||∇2f̄(W )−∇2fn(W )|| · I

⪰ Ω
( (1− ϵ0)

K2

L∑
l=1

λl
∥Σ−1

l ∥−1

ητKκ2
ρ(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

,

δK(W ∗)∥Σ−1
l ∥

− 1
2 )
)
· I

−O
(
C6 ·

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2

√
dK log n

n

)
· I

(22)
As long as the sample complexity is set to satisfy
L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2 ·

√
dK log n

n
≤ ϵ0

K2

L∑
l=1

λl
∥Σ−1

l ∥−1

ητKκ2

· ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

, δK(W ∗)∥Σ−1
l ∥

− 1
2 ) · I

(23)
i.e.,

n ≳ϵ−2
0 ·

( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2
)2

·
( L∑
l=1

λl
∥Σ−1

l ∥−1

ητKκ2
ρ(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

,

δK(W ∗)∥Σ−1
l ∥

− 1
2 ) · I

)−2

dK5 log2 d

(24)

for some constant C1 > 0, then we have the lower bound of
the Hessian with probability at least 1− d−10.

∇2fn(W ) ⪰ Ω
(1− 2ϵ0

K2

L∑
l=1

λl
∥Σ−1

l ∥−1

ητKκ2

· ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

, δK(W ∗)∥Σ−1
l ∥

− 1
2 )
)
· I

(25)

By (20) and (21), we can also derive the upper bound as
follows,

||∇2fn(W )|| ≤ ||∇2f̄(W )||+ ||∇2fn(W )−∇2f̄(W )||

≲
L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2

+
∑
1=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2

√
dK log n

n

≲
L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2

(26)
Combining (25) and (26), we have

Ω
(1− 2ϵ0

K2

L∑
l=1

λl
∥Σ−1

l ∥−1

ητKκ2
ρ(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

,

δK(W ∗)∥Σ−1
l ∥

− 1
2 )
)
· I ⪯ ∇2fn(W )

⪯
L∑
l=1

λl(||µ̃l||∞ + ∥Σ
1
2

l ∥)
2 · I

(27)

with probability at least 1− d−10.

C. Proof of Lemma 2

We restate the formal version of Lemma 2 in the following.

Lemma 2. (Linear convergence of gradient descent) Assume
the conditions in Lemma 1 hold. Given any fixed permutation
matrix P ∈ RK×K , if the local convexity of B(W ∗P , r)
holds, there exists a critical point in B(W ∗P , r) for some
constant C3 > 0, and ϵ0 ∈ (0, 1

2 ), such that

||Ŵn −W ∗P ||F

≲
K

5
2

√∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)2(1 + ξ) ·
√

d log n/n∑L
l=1 λl

∥Σ−1
l ∥−1

ητKκ2 ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 )

(28)
If the initial point W0 ∈ B(W ∗P , r), the gradient descent
linearly converges to Ŵn, i.e.,

||Wt − Ŵn||F ≤ ||W0 − Ŵn||F ·
(
1−

Ω
(∑L

l=1
λl∥Σ−1

l ∥−1

ητKκ2 ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 )

K2
∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)2
))t

(29)
with probability at least 1− d−10.

1) A useful lemma:

Lemma 9. If r is defined in (139) for ϵ0 ∈ (0, 1
4 ), then with

probability at least 1− d−10, we have12

sup
W∈B(W ∗P ,r)

||∇f̃n(W )−∇f̃(W )||

≲

√√√√K

L∑
l=1

λl(∥µl∥+ ∥Σl∥)2
√

d log n

n
(1 + ξ)

(30)

12∇f̃n(W ) is defined as 1
n

∑n
i=1(∇l(W ,xi, yi) + νi) in algorithm 1
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, where P is a permutation matrix.

We next show the proof of Lemma 2.
2) Proof: Following the proof of Theorem 2 in [28], first,

we have Taylor’s expansion of fn(Ŵn)

fn(Ŵn) =fn(W
∗P ) +

〈
∇f̃n(W ∗P ), vec(Ŵn −W ∗P )

〉
+
1

2
vec(Ŵn −W ∗P )∇2fn(W

′)vec(Ŵn −W ∗P )

(31)
Here W ′ is on the straight line connecting W ∗P and Ŵn.
By the fact that fn(Ŵn) ≤ fn(W

∗P ), we have

1

2
vec(Ŵn −W ∗P )∇2fn(W

′)vec(Ŵn −W ∗P )

≤
∣∣∣∇fn(W ∗P )⊤vec(Ŵn −W ∗P )

∣∣∣ (32)

From Lemma 7 and Lemma 9, we have

4

K2

L∑
l=1

λl
∥Σ−1

l ∥−1

ητKκ2
ρ(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

,

δK(W ∗)∥Σ−1
l ∥

− 1
2 )||Ŵn −W ∗P ||2F

≤1

2
vec(Ŵn −W ∗P )∇2fn(W

′)vec(Ŵn −W ∗P )

(33)

and

∣∣∣∇f̃n(W ∗P )⊤vec(Ŵn −W ∗P )
∣∣∣

≤∥∇f̃n(W ∗P )∥ · ∥Ŵn −W ∗P ∥F
≤(∥∇f̃n(W ∗P )−∇f̃(W ∗P )∥+ ∥∇f̃(W ∗P )∥)
· ∥Ŵn −W ∗P ∥F

≤O
(√√√√K

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)2
√

d log n

n
(1 + ξ)

)
||Ŵn −W ∗P ||F

(34)

The second to last step of (34) comes from the triangle inequal-
ity, and the last step follows from the fact ∇f̄(W ∗P ) = 0.
Combining (32), (33) and (34), we have

||Ŵn −W ∗P ||F

≲
K

5
2

√∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)2(1 + ξ) ·
√
d log n/n∑L

l=1 λl
∥Σ−1

l ∥−1

ητKκ2 ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 )

(35)
Therefore, we have concluded that there indeed exists a critical
point Ŵ in B(W ∗P , r). Then we show the linear convergence
of Algorithm 1 as below. By the update rule, we have

Wt+1 − Ŵn

=Wt − η0(∇fn(Wt) +
1

n

n∑
i=1

νi)− (Ŵn − η0∇fn(Ŵn))

=
(
I − η0

∫ 1

0

∇2fn(W (γ))
)
(Wt − Ŵn)−

η0
n

n∑
i=1

νi

(36)
where W (γ) = γŴn + (1 − γ)Wt for γ ∈ (0, 1). Since
W (γ) ∈ B(W ∗P , r), by Lemma 1, we have

Hmin · I ⪯ ∇2fn(W (γ)) ≤ Hmax · I (37)

where Hmin = Ω
(

1
K2

∑L
l=1 λl

∥Σ−1
l ∥−1

ητKκ2 ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
,

δK(W ∗)∥Σ−1
l ∥−

1
2 )
)

, Hmax =
∑L
l=1 λl(∥µl∥ + ∥Σl∥)2.

Therefore,

||Wt+1 − Ŵn||F

=||I − η0

∫ 1

0

∇2fn(W (γ))|| · ||Wt − Ŵn||F + ∥η0
n

n∑
i=1

νi∥F

≤(1− η0Hmin)||Wt − Ŵn||F + ∥η0
n

n∑
i=1

νi∥F

(38)
By setting η0 = 1

Hmax
= O

(
1∑L

l=1 λl(∥µl∥+∥Σl∥)2

)
, we obtain

||Ŵt+1−Ŵn||F ≤ (1− Hmin

Hmax
)||Wt−Ŵn||F +

η0
n

n∑
i=1

∥νi∥F

(39)
Therefore, Algorithm 1 converges linearly to the local mini-
mizer with an extra statistical error.
By Hoeffding’s inequality in [76] and Property 2, we have

P
( 1

n

n∑
i=1

∥νi∥F ≥
√

dK log n

n
ξ
)
≲ exp(−ξ2dK log n

dKξ2
)

≲d−10

(40)
Therefore, with probability 1− d−10 we can derive

||Ŵt − Ŵn||F

≤(1− Hmin

Hmax
)t||W0 − Ŵn||F +

Hmaxη0
Hmin

√
dK log n

n
ξ

(41)

D. Proof of Lemma 3
We first restate the formal version of Lemma 3 in the

following.

Lemma 3. (Tensor initialization) For classification model,
with D6(Ψ) defined in Definition 2, we have that if the sample
size

n ≥ κ8K4τ12D6(Ψ) · d log2 d, (42)

then the output W0 ∈ Rd×K satisfies

||W0−W ∗P ∗|| ≲ κ6K3 ·τ6
√
D6(Ψ)

√
d log n

n
||W ∗|| (43)

with probability at least 1−n−Ω(δ41) for a specific permutation
matrix P ∗ ∈ RK×K .
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1) Useful lemmas: Lemmas 10, 11, 12, 13, and 14 are
needed to prove Lemma 3.

Lemma 10. Let Q2 and Q3 follow Definition 3. Let S be
a set of i.i.d. samples generated from the mixed Gaussian
distribution

∑L
l=1 λlN (µl,Σl). Let Q̂2, Q̂3 be the empirical

version of Q2, Q3 using data set S, respectively. Then with a
probability at least 1− 2n−Ω(δ1(W

∗)4d), we have

||Q2−Q̂2|| ≲
√

d log n

n
·δ1(W ∗)2 ·τ6

√
D2(Ψ)D4(Ψ) (44)

if the mixed Gaussian distribution is not symmetric. We also
have

||Q3(Id, Id,α)− Q̂3(Id, Id,α)||

≲

√
d log n

n
· δ1(W ∗)2 · τ6

√
D2(Ψ)D4(Ψ)

(45)

for any arbitrary vector α ∈ Rd, if the mixed Gaussian
distribution is symmetric.

Lemma 11. Let U ∈ Ed×K be the orthogonal column span
of W ∗. Let α be a fixed unit vector and Û ∈ Rd×K denote
an orthogonal matrix satisfying ||UU⊤−ÛÛ⊤|| ≤ 1

4 . Define
R3 = Q3(Û , Û , Û), where Q3 is defined in Definition 3. Let
R̂3 be the empirical version of R3 using data set S, where
each sample of S is i.i.d. sampled from the mixed Gaussian
distribution

∑L
l=1 λlN (µl,Σl). Then with a probability at

least 1− n−Ω(δ4(W ∗)), we have

||R̂3 −R3|| ≲ δ1(W
∗)2 ·

(
τ6
√
D6(Ψ)

)
·
√

log n

n
(46)

Lemma 12. Let Q̂1 be the empirical version of Q1 using
dataset S. Then with a probability at least 1 − 2n−Ω(d), we
have

||Q̂1 −Q1|| ≲
(
τ2
√
D2(Ψ)

)
·
√

d log n

n
(47)

Lemma 13. ([26], Lemma E.6) Let Q2, Q3 be defined in
Definition 3 and Q̂2, Q̂3 be their empirical version, respec-
tively. Let U ∈ Rd×K be the column span of W ∗. Assume
||Q2 − Q̂2|| ≤ δK(Q2)

10 for non-symmetric distribution cases
and ||Q3(Id, Id,α) − Q̂3(Id, Id,α)|| ≤ δK(Q3(Id,Id,α))

10 for
symmetric distribution cases and any arbitrary vector α ∈ Rd.
Then after T = O(log( 1ϵ )) iterations, the output of the Tensor
Initialization Method 1, Û will satisfy

||ÛÛ⊤ −UU⊤|| ≲ ||Q̂2 −Q2||
δK(Q2)

+ ϵ, (48)

which implies

||(I − ÛÛ⊤)w∗
i || ≲ (

||Q2 − Q̂2||
δK(Q2)

+ ϵ)||w∗
i || (49)

if the mixed Gaussian distribution is not symmetric. Similarly,
we have

||ÛÛ⊤ −UU⊤|| ≲ ||Q̂3(Id, Id,α)−Q3(Id, Id,α)||
δK(Q3(Id, Id,α))

+ ϵ,

(50)

which implies

||(I − ÛÛ⊤)w∗
i ||

≲(
||Q3(Id, Id,α)− Q̂3(Id, Id,α)||

δK(Q3(Id, Id,α))
+ ϵ)||w∗

i ||
(51)

if the mixed Gaussian distribution is symmetric.

Lemma 14. ([26], Lemma E.13) Let U ∈ Rd×K be the
orthogonal column span of W ∗. Let Û ∈ Rd×K be an
orthogonal matrix such that ||UU⊤− ÛÛ⊤|| ≲ γ1 ≲ 1

κ2
√
K

.
For each i ∈ [K], let v̂i denote the vector satisfying
||v̂i − Û⊤w̄i

∗|| ≤ γ2 ≲ 1
κ2

√
K

. Let Q1 be defined

in Lemma 12 and Q̂1 be its empirical version. If
||Q1 − Q̂1|| ≤ γ3||Q1|| ≲ 1

4 ||Q1||, then we have∣∣∣||w∗
i || − α̂i

∣∣∣ ≤ (κ4K
3
2 (γ1 + γ2) + κ2K

1
2 γ3)||w∗

i || (52)

We next show the proof of Lemma 3.
2) Proof: : By the triangle inequality, we have

||w∗
j − α̂jÛ v̂j ||

=
∣∣∣∣∣∣w∗

j − ||w∗
j ||Û v̂j + ||w∗

j ||Û v̂j − α̂jÛ v̂j

∣∣∣∣∣∣
≤
∣∣∣∣∣∣w∗

j − ||w∗
j ||Û v̂j

∣∣∣∣∣∣+ ∣∣∣∣∣∣||w∗
j ||Û v̂j − α̂jÛ v̂j

∣∣∣∣∣∣
≤||w∗

j ||
∣∣∣∣∣∣w̄j

∗ − Û v̂j

∣∣∣∣∣∣+ ∣∣∣∣∣∣||w∗
j || − α̂j

∣∣∣∣∣∣||Û v̂j ||

≤||w∗
j ||

∣∣∣∣∣∣w̄j
∗ − ÛÛ⊤w̄∗

j + ÛÛ⊤w̄j
∗ − Û v̂j

∣∣∣∣∣∣
+
∣∣∣∣∣∣||w∗

j || − α̂j

∣∣∣∣∣∣||Û v̂j ||

≤δ1(W ∗)
(∣∣∣∣∣∣w̄j

∗ − ÛÛ⊤w̄j
∗
∣∣∣∣∣∣+ ∣∣∣∣∣∣Û⊤w̄j

∗ − v̂j

∣∣∣∣∣∣)
+
∣∣∣∣∣∣||w∗

j || − α̂j

∣∣∣∣∣∣

(53)

From Lemma 10, Lemma 13, δK(Q2) ≲ δ2K(W ∗) and
δK(Q3(Id, Id,α)) ≲ δ2K(W ∗) for any arbitrary vector α ∈
Rd, we have∣∣∣∣∣∣w̄j

∗ − ÛÛ⊤w̄j
∗
∣∣∣∣∣∣

≲
||Q2 − Q̂2||
δK(Q2)

≲

√
d log n

n
· δ1(W

∗)2

δK(W ∗)2
· τ6

√
D2(Ψ)D4(Ψ)

=

√
d log n

n
· κ2 · τ6

√
D2(Ψ)D4(Ψ)

(54)
if the mixed Gaussian distribution is not symmetric, and∣∣∣∣∣∣w̄j

∗ − ÛÛ⊤w̄j
∗
∣∣∣∣∣∣ ≲ ||Q3(Id, Id,α)− Q̂3(Id, Id,α)||

δK(Q3(Id, Id,α))

=

√
d log n

n
· κ2 · τ6

√
D2(Ψ)D4(Ψ)

(55)
if the mixed Gaussian distribution is symmetric. Moreover, we
have∣∣∣∣∣∣Û⊤w̄j

∗ − v̂j

∣∣∣∣∣∣
≤ K

3
2

δ2K(W ∗)
||R3 − R̂3|| ≲ κ2 ·

(
τ6
√

D6(Ψ)
)
·
√

K3 log n

n
(56)
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in which the first step is by Theorem 3 in [77], and the second
step is by Lemma 11. By Lemma 14, we have∣∣∣∣∣∣||w∗

j || − α̂j

∣∣∣∣∣∣ ≤ (κ4K
3
2 (γ1 + γ2) + κ2K

1
2 γ3)||W ∗|| (57)

Therefore, taking the union bound of failure probabilities in
Lemmas 10, 11, and 12 and by D2(Ψ)D4(Ψ) ≤ D6(Ψ)
from Property 10, we have that if the sample size n ≥
κ8K4τ12D6(Ψ) · d log2 d, then the output W0 ∈ Rd×K
satisfies

||W0 −W ∗|| ≲ κ6K3 · τ6
√
D6(Ψ)

√
d log n

n
||W ∗|| (58)

with probability at least 1− n−Ω(δ41(W
∗))

E. Extension to Multi-Classification

We only show the analysis of binary classification in the
main body of the paper due to the simplicity of presentation
and highlight our major conclusions on the group imbalance.
We briefly introduce how to extend our analysis on binary
classification to multi-classification in this section. The main
idea is to define the label as a multi-dimensional vector and
apply the analysis for the binary classification case multiple
times. Specifically, let C be the number of classes, where C =
2c for a positive integer c. The label yi is a c-dimensional
vector, and its jth entry yi,j ∈ {0, 1} for j ∈ [c] and i ∈ [n].
Such a formulation for the multi-classification problem can
be found in [45], [78]. Then, following the binary setup, data
xi, yi satisfies

P(yi,j = 1|xi) = Hj(W
∗,xi), (59)

for some unknown ground-truth neural network with un-
known weights W ∗, where Hj(W

∗,xi) is the j-th entry of
H(W ∗,xi) ∈ Rc with the parameter W ∗

j ∈ Rd×K .
The training process is to minimize the empirical risk

function with a cross-entropy loss

1

n

n∑
i=1

c∑
j=1

−yi,j log(Hj(W ,xi))

− (1− yi,j) log(1−Hj(W ,xi))

:=

c∑
j=1

f (j)
n (W ).

(60)

Note that f (j)
n (W ) has exactly the form as (2) in our paper

for the binary case. Therefore, we can apply the existing
theoretical results for f (j)

n (W ) with all j ∈ [c], and summing
up all the bounds yields the theoretical results for the multi-
class case.

We implement experiments on the CelebA dataset for 4-
classification. The only change is that we use the combinations
of two attributes, “blonde hair” and “pale skin” to generate
four classes of data. All other settings are the same. The results
are the following.

One can observe from Figure 9 that when the noise level
δ2 increases, i.e., when the co-variance of the minority group
increases, both the minority-group and average test accuracy
increase first and then decrease, coinciding with our insight

Fig. 9: Test accuracy against the augmented noise level for
4-classification.

(P3). In Figure 10 (a) and (b), we can see opposite trends if
we increase the fraction of the minority group in the training
data, with the male being the minority or the female being the
minority. Figures 9 and 10 are consistent with our findings in
Figures 1 and 8, respectively.

(a)

(b)

Fig. 10: The test accuracy on CelebA dataset has opposite
trends when the minority group fraction increases for 4-
classification. (a) Male group is the minority (b) Female group
is the minority

F. Discussion about Gaussian Mixture Model (GMM)

The GMM distribution intuitively means that each data
comes from a certain group, which is represented by a
certain Gaussian component with mean µl and co-variance
Σl, l ∈ [L]. The fraction λl stands for the fraction of group
l ∈ [L]. This formulation is motivated by existing works [3],
[25], which are related to group imbalance in the case of
convolutional neural networks. One can see that each data
feature follows GMM by Eqn (4) of [3]. In our setup, we
define the data following the GMM for fully connected neural
networks, where labels are determined by the mixture of
Gaussian input and the ground-truth model.
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We also conduct an experiment on CelebA to show some
practical datasets satisfy the GMM model. We select data with
two attributes, male and female. We extract features before
the fully connected layer of the ResNet 9 model and fit the
features to a two-component GMM using the EM algorithm
[69]. The goodness of fit is measured by the average log-
likelihood score as in [79]. We compute the average log-
likelihood score of the CelebA dataset as 1.63 bits/dimension.
To see that 1.63 bits/dimension reflects a good fitting, we
generate synthetic data following the estimated GMM by
CelebA and then compute the log-likelihood score of fitting
the synthetic data to a two-component GMM. The resulting
score is 1.80 bits/dimension for the synthetic two-component
GMM data. Therefore, we can see that the quality of fitting
CelebA is almost as good as fitting synthetic data generated
by a GMM, which indicates that a two-component GMM is
a good fitting for the studied practical dataset generated by
CelebA.

Since many existing theoretical works [26], [28], [27], [59],
[29] consider the data as standard Gaussian, we also compute
the score if we use a single Gaussian to fit the data. The
resulting average log-likelihood score is 1.08 bits/dimension,
which is evidently smaller than the two-component GMM
considered in our manuscript. This shows our GMM can better
describe the real data.

Moreover, our GMM assumption goes beyond the state-of-
the-art assumption of the standard Gaussian for loss land-
scape analysis for one-hidden-layer neural networks with
convergence guarantees [26], [80], [57], [28], [29]. When
generalizing from the standard Gaussian to GMM, we make
new technical contributions to analyzing the more complicated
and challenging landscape of the risk function because of a
mixture of non-zero mean and non-unit standard deviation
Gaussians. We characterize the impact of the parameters of the
GMM model on the learning convergence and generalization
performance. In contrast, other existing theoretical works [10],
[11], [12], [81] that consider other input distributions that
are more general than the standard Gaussian model do not
explicitly quantify the impact of the distribution parameters
on the loss landscape and generalization performance.

G. Discussion about σmin and τ

In this section, we show that the assumption that σmin is not
very close to zero, or equivalently, τ = Θ(1), is mild. Even
when the real data have singular values very close to zero,
they can be approximated by low-rank data without hurting
the performance by only keeping a few significant singular
values and setting the small ones to zero. Thus, every practical
dataset can be approximated by a dataset with τ = Θ(1)
while maintaining the same performance. We verify this by
an experiment of binary classification on CelebA [31]. After
training with a ResNet-9, the output feature of each testing
image is 256-dimensional. One can find that the singular value
of the covariance matrix of features is close to 0 except for
the top singular values. The feature matrix reconstructed with
top singular values can achieve comparable testing accuracy as
using all singular values, as shown in Table II. One can observe

that the feature matrix reconstruction with top-5 singular
values, which is 2% of all the singular vectors, leads to a test
accuracy already close to that using all singular vectors, and
the performance gap is smaller than 4.5%. We can compute
that τ = 4.6155 = Θ(1) for the feature matrix reconstructed
by top 5 singular values.

TABLE II: Testing accuracy with a reconstructed feature
matrix using different amounts of singular values (s.v.)

Reconstruct with top 5 s.v. top 25 s.v. all 256 s.v.
Accuracy 84.00% 85.00% 88.50%
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Supplementary Material
We begin our Supplementary Material here.

Section H provides more experiment results as a supplement of Section V.
Section I introduces the algorithm, especially the tensor initialization in detail.
Section J includes some definitions and properties as a preliminary to our proof.
Section K shows the proof of Theorem 1 and Corollary 1, followed by Section L, M, and N as the proof of three key

Lemmas about local convexity, linear convergence and tensor initialization, respectively.

H. More Experiment Results

We present our experiment resultson empirical datasets CelebA [31] and CIFAR-10 13 in this section. To be more specific,
we evaluate the impact of the variance levels introduced by different data augmentation methods on the learning performance.
We also evaluate the impact of the minority group fraction in the training data on the learning performance. All the experiments
are reported in a format of “mean±2×standard deviation” with a random seed equal to 10. We implement our experiments on
an NVIDIA GeForce RTX 2070 super GPU and a work station with 8 cores of 3.40GHz Intel i7 CPU.

1) Tests on CelebA: In addition to the Gaussian augmentation method in Figure 1 (b), we also evaluate the performance of
data augmentation by cropping in Figure 11. The setup is exactly the same as that for Gaussian augmentation, expect that we
augment the data by cropping instead of adding Gaussian noise. Specifically, to generate an augmented image, we randomly
crop an image with a size w × w × 3 and then resize back to 224 × 224 × 3. One can observe that the minority-group and
average test accuracy first increase and then decrease as w increases, which is in accordance with Insight (P3).

Fig. 11: The test accuracy of CelebA dataset with the data augmentation method of cropping.

2) Tests on CIFAR-10: Group 1 contains images with attributes “bird”, “cat”, “deer”, “dog”, “frog” and “horse.” Group 2
contains “airplane” images. In this setting, Group 1 has a larger variance. Because each image in CIFAR-10 only has one
attribute, we consider the binary classification setting where all images in Group 1 are labeled as “animal” and all images are
labeled as “airplane.” This is a special scenario that the group label is also the classification label. Note that our results hold
for general setups where group labels and classification labels are irrelevant, like our previous results on CelebA. LeNet 5 [38]
is selected to be the learning model.

We first pick 8000 animal images (majority) and 2000 airplane images (minority). We select 1000 out of 2000 airplane images
to implement data augmentation, including both Gaussian augmentation and random cropping. For Gaussian augmentation,
we add i.i.d. Gaussian noise drawn from N (0, δ2) to each entry14. For random cropping, we randomly crop the image with a
certain size w × w × 3 and then resizing back to 32× 32× 3. Figure 12 shows that when δ or w increase, i.e., the variance
introduced by either augmentation method increases, both the minority-group and average test accuracy increase first and then
decrease, which is consistent with our Insight (P3).

Then we fix the total number of training data to be 5000 and vary the fractions of the two groups. One can see opposite
trends in Figure 13 if we increase the fraction of the minority group with the airplane being the minority and the animal being
the minority, which reflects our Insight (P4).

13Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The CIFAR-10 dataset. www.cs.toronto.edu/œkriz/cifar.html
14In this experiment, the noise is added to the raw image where the pixel value ranges from 0 to 255, while in the experiment of CelebA (Figure 1 (b)),

the noise is added to the image after normalization where the pixel value ranges from 0 to 1.

www.cs.toronto.edu/˜kriz/cifar.html


2

(a) (b)

Fig. 12: The test accuracy of CIFAR-10 dataset with different data augmentation methods (a) Gaussian noise (b) cropping.

(a) (b)

Fig. 13: The test accuracy of CIFAR-10 dataset has opposite trends when the minority group fraction increases (a) Airplane
group is the minority. (b) Animal group is the minority.

I. Algorithm

We first introduce new notations to be used in this part and summarize key notions in Table III.
We write f(x) ≲ (≳)g(x) if f(x) ≤ (≥)Θ(g(x). The gradient and the Hessian of a function f(W ) are denoted by ∇f(W )
and ∇2f(W ), respectively. A ⪰ 0 means A is a positive semi-definite (PSD) matrix. A

1
2 means that A = (A

1
2 )2. The

outer product of vectors zi ∈ Rni , i ∈ [l], is defined as T = z1 ⊗ · · · ⊗ zl ∈ Rn1×···×nl with Tj1···jl = (z1)j1 · · · (zl)jl .
Given a tensor T ∈ Rn1×n2×n3 and matrices A ∈ Rn1×d1 , B ∈ Rn2×d2 , C ∈ Rn3×d3 , the (i1, i2, i3)-th entry of the tensor
T (A,B,C) is given by

n1∑
i′1

n2∑
i′2

n3∑
i′3

Ti′1,i′2,i′3Ai′1,i1
Bi′2,i2

Ci′3,i3
. (61)

TABLE III: Summary of notations

λl, µl, Σl, l ∈ [L] The fraction, mean, and covariance of the l-th component in the Gaussian mixture distribution, respectively.
d, n, K The feature dimension, the number of training samples, and the number of neurons, respectively.
W ∗, Wt W ∗ is the ground truth weight. Wt is the updated weight in the t-th iteration.
fn, f̄ , ℓ fn is the empirical risk function. f̄ is the average risk or the population risk function. ℓ is the cross-entropy loss function.

Ψ, σmax, σmin, τ Ψ denotes our Gaussian mixture model (λl,µl,Σl,∀l). σmax = maxl∈[L]{∥Σl∥
1
2 }. σmin = minl∈[L]{∥Σ−1

l ∥−
1
2 }.

τ = σmax/σmin.
δi(W

∗), η, κ, i ∈ [K] δi(W
∗) is the i-th largest singular value of W ∗. η and κ are two functions of W ∗.

ρ(u, σ), Γ(Ψ), Dm(Ψ) These items are functions of the Gaussian mixture distribution Ψ used to develop our Theorem 1.
νi, ξ νi is the gradient noise. ξ is the upper bound of the noise level.
Qj , j = 1, 2, 3 Qj ’s are tensors used in the initialization.
B(Ψ) A parameter appeared in the sample complexity bound (7).
v(Ψ), q(Ψ) v(Ψ) is the convergence rate (8). q(Ψ) is a parameter in the definition of v(Ψ) (9).
Ew(Ψ), E , El Generalization parameters. Ew(Ψ) appears in the error bound of the model (10). E(Ψ) and El(Ψ) are to characterize the

average risk (11) and the group-l risk (12), respectively.
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The method starts from an initialization W0 ∈ Rd×K computed based on the tensor initialization method (Subroutine 1) and
then updates the iterates Wt using gradient descent with the step size η0. To model the inaccuracy in computing the gradient,
an i.i.d. zero-mean noise {νi}ni=1 ∈ Rd×K with bounded magnitude |(νi)jk| ≤ ξ (j ∈ [d], k ∈ [K]) for some ξ ≥ 0 are added
in (6) when computing the gradient of the loss in (3).

Our tensor initialization method in Subroutine 1 is extended from [82] and [26]. The idea is to compute quantities (Qj

in (62)) that are tensors of w∗
i and then apply the tensor decomposition method to estimate w∗

i . Because Qj can only be
estimated from training samples, tensor decomposition does not return w∗

i exactly but provides a close approximation, and this
approximation is used as the initialization for Algorithm 1. Because the existing method on tensor construction only applies
to the standard Gaussian distribution, we exploit the relationship between probability density functions and tensor expressions
developed in [82] to design tensors suitable for the Gaussian mixture model. Formally,

Definition 3. For j = 1, 2, 3, we define

Qj := Ex∼
∑L

l=1 λlN (µl,Σl)
[y · (−1)jp−1(x)∇(j)p(x)], (62)

where p(x), the probability density function of GMM is defined as

p(x) =

L∑
l=1

λl(2π)
− d

2 |Σl|−
1
2 exp

(
− 1

2
(x− µl)Σ

−1
l (x− µl)

)
(63)

If the Gaussian mixture model is symmetric, the symmetric distribution can be written as

x ∼


L
2∑
l=1

λl
(
N (µl,Σl) +N (−µl,Σl)

)
L is even

λ1N (0,Σ1) +

L−1
2∑
l=2

λl
(
N (µl,Σl) +N (−µl,Σl)

)
L is odd

(64)

Qj is a jth-order tensor of w∗
i , e.g., Q3 = 1

K

∑K
i=1 Ex∼

∑L
l=1 λlN (µl,Σl)

[ϕ′′′(w∗
i
⊤x)]w∗

i
⊗3. These quantifies cannot be

directly computed from (62) but can be estimated by sample means, denoted by Q̂j (j = 1, 2, 3), from samples {xi, yi}ni=1.
The following assumption guarantees that these tensors are nonzero and can thus be leveraged to estimate W ∗.

Assumption 1. The Gaussian Mixture Model in (64) satisfies the following conditions:

1) Q1 and Q3 are nonzero.
2) If the distribution is not symmetric, then Q2 is nonzero.

Assumption 1 is a very mild assumption15. Moreover, as indicated in [82], in the rare case that some quantities Qi (i = 1, 2, 3)
are zero, one can construct higher-order tensors in a similar way as in Definition 3 and then estimate W ∗ from higher-order
tensors.

Subroutine 1 describes the tensor initialization method, which estimates the direction and magnitude of w∗
j , j ∈ [K],

separately. The direction vectors are denoted as w̄∗
j = w∗

j /∥w∗
j ∥ and the magnitude ∥w∗

j ∥ is denoted as zj . Lines 2-6 estimate
the subspace Û spanned by {w∗

1 , · · · ,w∗
K} using Q̂2 or, in the case that Q2 = 0, a second-order tensor projected by Q̂3.

Lines 7-8 estimate w̄∗
j by employing the KCL algorithm [77]. Lines 9-10 estimate the magnitude zj . Finally, the returned

estimation of W ∗ is used as an initialization W0 for Algorithm 1. The computational complexity of Subroutine 1 is O(Knd)
based on similar calculations as those in [26].

1) Numerical Evaluation of Tensor Initialization: Figure 14 shows the accuracy of the returned model by Algorithm 1. Here
n = 2× 105, d = 50, K = 2, λ1 = λ2 = 0.5, µ1 = −0.3 · 1 and µ2 = 0. We compare the tensor initialization with a random
initialization in a local region {W ∈ Rd×K : ||W −W ∗||F ≤ ϵ}. Each entry of W ∗ is selected from [−0.1, 0.1] uniformly.
Tensor initialization in Subroutine 1 returns an initial point close to one permutation of W ∗, with a relative error of 0.65. If
the random initialization is also close to W ∗, e.g., ϵ = 0.1, then the gradient descent algorithm converges to a critical point
from both initializations, and the linear convergence rate is the same. We also test a random initialization with each entry
drawn from N (0, 25). The initialization is sufficiently far from W ∗, and the algorithm does not converge. On a MacBook
Pro with Intel(R) Core(TM) i5-7360U CPU at 2.30GHz and MATLAB 2017a, it takes 5.52 seconds to compute the tensor
initialization. Thus, to reduce the computational time, we consider a random initialization with ϵ = 0.1 in the experiments
instead of computing tensor initialization.

15By mild, we mean given L, if Assumption 1 is not met for some Ψ0, there exists an infinite number of Ψ′ in any neighborhood of Ψ0 such that
Assumption 1 holds for Ψ′,
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Subroutine 1 Tensor Initialization Method
1: Input: Partition n pairs of data {(xi, yi)}ni=1 into three disjoint subsets D1, D2, D3

2: if the Gaussian Mixture distribution is not symmetric then
3: Compute Q̂2 using D1. Estimate the subspace Û by orthogonalizing the eigenvectors with respect to the K largest

eigenvalues of Q̂2

4: else
5: Pick an arbitrary vector α ∈ Rd, and use D1 to compute Q̂3(Id, Id,α). Estimate Û by orthogonalizing the eigenvectors

with respect to the K largest eigenvalues of Q̂3(Id, Id,α).
6: end if
7: Compute R̂3 = Q̂3(Û , Û , Û) from data set D2

8: Employ the KCL algorithm to compute vectors {v̂i}i∈[K], which are the estimates of {Û⊤w̄∗
i }Ki=1. Then the direction

vectors {w̄∗
i }Ki=1 can be approximated by {Û v̂i}Ki=1.

9: Compute Q̂1 from data set D3.
10: Estimate the magnitude ẑ by solving the optimization problem

ẑ = arg min
α∈RK

1

2
∥Q̂1 −

K∑
j=1

αjw̄
∗
j ∥2 (65)

11: Return: Use ẑjÛ v̂j as the jth column of W0, j ∈ [K].

Fig. 14: Comparison between tensor initialization, a random initialization near W ∗, and an arbitrary random initialization

J. Preliminaries of the Main Proof

In this section, we introduce some definitions and properties that will be used to prove the main results.
First, we define the sub-Gaussian random variable and sub-Gaussian norm.

Definition 4. We say X is a sub-Gaussian random variable with sub-Gaussian norm K > 0, if (E|X|p)
1
p ≤ K

√
p for all

p ≥ 1. In addition, the sub-Gaussian norm of X, denoted ∥X∥ψ2 , is defined as ∥X∥ψ2 = supp≥1 p
− 1

2 (E|X|p)
1
p .

Then we define the following three quantities. ρ(µ, σ) is motivated by the ρ parameter for the standard Gaussian distribution
in [26], and we generalize it to a Gaussian with an arbitrary mean and variance. We define the new quantities Γ(Ψ) and
Dm(Ψ) for the Gaussian mixture model.

Definition 5. (Γ-function). With (13) and κ, η defined in Section III, we define

Γ(Ψ) =

L∑
l=1

λl
τKκ2η

∥Σ−1
l ∥−1

σ2
max

ρ(
W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

, δK(W ∗)∥Σ−1
l ∥

− 1
2 ) (66)

Γ function is the weighted sum of ρ-function under mixture Gaussian distribution. This function is positive and upper
bounded by a small value. Γ goes to zero if all ∥µl∥ or all σl goes to infinity.

Property 1. Given W ∗ = UV ∈ Rd×k, where U ∈ Rd×K is the orthogonal basis of W ∗. For any µ ∈ Rd, we can find an
orthogonal decomposition of µ based on the colomn space of W ∗, i.e. µ = µU +µU⊥ . If we consider the recovery problem
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of FCN with a dataset of Gaussian Mixture Model, in which xi ∼ N (µh,Σh) for some h ∈ [L], the problem is equivalent to
the problem of FCN with xi ∼ N (µUh,Σh). Hence, we can assume without loss of generality that µl belongs to the column
space of W ∗ for all l ∈ [L].

Proof:
From (1) and (3), the recovery problem can be formulated as

min
W ∗

g(W ∗⊤xi, yi)

For any xi ∼ N (µh,Σh), xi can be written as
xi = z + µh

where z ∼ N (0,Σh). Therefore,

W ∗⊤xi = W ∗⊤(z + µh) = W ∗⊤(z + µUh + µU⊥h) = W ∗⊤(z + µUh)

The final step is because W ∗⊤µU⊥ = 0. So the problem is equivalent to the recovery problem of FCN with xi ∼ N (µUh,Σh).

Recall that the gradient noise νi ∈ Rd×K is zero-mean, and each of its entry is upper bounded by ξ > 0.

Property 2. We have that ∥νi∥F is a sub-Gaussian random variable with its sub-Gaussian norm bounded bu ξ
√
dK.

Proof:

(E∥νi∥pF )
1
p ≤ (E|

√
dKξ|p)

1
p ≤ ξ

√
dK (67)

We state some general properties of the ρ function defined in Definition 1 in the following.

Property 3. ρ(u, σ) in Definition 1 satisfies the following properties,
1) (Positive) ρ(u, σ) > 0 for any u ∈ Rd and σ ̸= 0.
2) (Finite limit point for zero mean) ρ(u, σ) converges to a positive value function of σ as ui goes to 0, i.e.

limui→0 ρ(u, σ) := Cm(σ).
3) (Finite limit point for zero variance) When all ui ̸= 0 (i ∈ [d]), ρ(uσ , σ) converges to a strictly positive real function

of u as σ goes to 0, i.e. limσ→0 ρ(
u
σ , σ) := Cs(u). When ui = 0 for some i ∈ [d], limσ→0 ρ(

u
σ , σ) = 0.

4) (Lower bound function of the mean) When everything else except |ui| is fixed, ρ( W ∗⊤u
σδK(W ∗) , σδK(W ∗)) is lower bounded

by a strictly positive real function, Lm( (ΛW ∗)⊤Λu
σδK(W ∗) , σδK(W ∗)), which is monotonically decreasing as |ui| increases.

5) (Lower bound function of the variance) When everything else except σ is fixed, ρ( W ∗⊤u
σδK(W ∗) , σδK(W ∗)) is lower

bounded by a strictly positive real function, Ls( W ∗⊤u
σδK(W ∗) , σδK(W ∗)), which satisfies the following conditions: (a) there

exists ζs′ > 0, such that σ−1Ls( W ∗⊤u
σδK(W ∗) , σδK(W ∗)) is an increasing function of σ when σ ∈ (0, ζs′); (b) there exists

ζs > 0 such that Ls( W ∗⊤u
σδK(W ∗) , σδK(W ∗)) is a decreasing function of σ when σ ∈ (ζs,+∞).

Proof:
(1) From Cauchy Schwarz’s inequality, we have

Ezi∼N (ui,1)[ϕ
′(σ · zi)] ≤

√
Ezi∼N (ui,1)[ϕ

′2(σ · zi)] (68)

Ezi∼N (ui,1)[ϕ
′(σ · zi)zi · zi] ≤

√
Ezi∼N (ui,1)[ϕ

′2(σ · zi)z2i ] ·
√

Ezi∼N (ui,1)[z
2
i ]

=
√
Ezi∼N (ui,1)[ϕ

′2(σ · zi)z2i ] ·
√

u2
i + 1

(69)

The equalities of the (68) and (69) hold if and only if ϕ′ is a constant function. Since that ϕ is the sigmoid function, the
equalities of (68) and (69) cannot hold.
By the definition of ρ(u, σ) in Definition 1, we have

β0(i,u, σ)− α2
0(i,u, σ) > 0, (70)

β2(i,u, σ)−
α2
2(i,u, σ)

u2
i + 1

> 0. (71)

Therefore,
ρ(u, σ) > 0 (72)
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(2) We can derive that

lim
ui→0

(
u2
j

σ2
+ 1)

(
β0(i,u, σ)− α2

0(i,u, σ)
)

= lim
ui→0

(
u2
j

σ2
+ 1)

( ∫ ∞

−∞
ϕ′2(σ · zi)(2π)−

1
2 exp(−∥zi − ui∥2

2
)dzi

− (

∫ ∞

−∞
ϕ′(σ · zi)(2π)−

1
2 exp(−∥zi − ui∥2

2
)dzi)

2
)

=(
u2
j

σ2
+ 1)

( ∫ ∞

−∞
ϕ′2(σ · zi)(2π)−

1
2 exp(−∥zi∥

2

2
)dzi − (

∫ ∞

−∞
ϕ′(σ · zi)(2π)−

1
2 exp(−∥zi∥

2

2
)dzi)

2
)
,

(73)

where the first step is by Definition 1, and the second step comes from the limit laws. Similarly, we also have

lim
ui→0

(
β2(i,u, σ)−

1

u2
i + 1

α2
2(i,u, σ)

)
= lim
ui→0

∫ ∞

−∞
ϕ′2(σ · zi)z2i (2π)−

1
2 exp(−∥zi − ui∥2

2
)dzi

− (
1

u2
i + 1

∫ ∞

−∞
ϕ′(σ · zi)z2i (2π)−

1
2 exp(−∥zi − ui∥2

2
)dzi)

2

=

∫ ∞

−∞
ϕ′2(σ · zi)z2i (2π)−

1
2 exp(−∥zi∥

2

2
)dzi − (

∫ ∞

−∞
ϕ′(σ · zi)z2i (2π)−

1
2 exp(−∥zi∥

2

2
)dzi)

2

(74)

Since that (73) and (74) are positive due to Jensen’s inequality, we can derive that ρ(u, σ) converges to a positive value function
of σ as ui goes to 0, i.e.

lim
u→0

ρ(u, σ) := Cm(σ) (75)

(3) When all ui ̸= 0 (i ∈ [d]),

lim
σ→0

(
β2(i,

u

σ
, σ)− 1

u2
i

σ2 + 1
α2
2(i,

u

σ
, σ)

)
= lim
σ→0

∫ ∞

−∞
ϕ′2(σ · zi)z2i (2π)−

1
2 exp(−

∥zi − ui

σ ∥
2

2
)dzi

− 1
u2
i

σ2 + 1

( ∫ ∞

−∞
ϕ′(σ · zi)z2i (2π)−

1
2 exp(−

∥zi − ui

σ ∥
2

2
)dzi

)2
= lim
σ→0

∫ ∞

−∞
ϕ′2(ui · xi)

u2
i

σ2
x2
i (2π

σ2

u2
i

)−
1
2 exp(−∥xi − 1∥2

2σ
2

u2
i

)dxi

− 1
u2
i

σ2 + 1

( ∫ ∞

−∞
ϕ′(ui · xi)

u2
i

σ2
x2
i (2π

σ2

u2
i

)−
1
2 exp(−∥xi − 1∥2

2σ
2

u2
i

)dxi
)2

zi =
ui
σ
xi

= lim
σ→0

ϕ′2(ui)
u2
i

σ2
− 1

u2
i

σ2 + 1
(ϕ′(ui)

u2
i

σ2
)2

= lim
σ→0

ϕ′2(ui)
u2
i

σ2

(
1−

u2
i

σ2

1 +
u2
i

σ2

)
= lim
σ→0

ϕ′2(ui)
1

1 + σ2

u2
i

=ϕ′2(ui)

(76)

The first step of (76) comes from Definition 1. The second step and the last three steps are derived from some basic
mathematical computation and the limit laws. The third step of (76) is by the fact that the Gaussian distribution goes to a
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Dirac delta function when σ goes to 0. Then the integral will take the value when xi = 1. Similarly, we can obtain the following

lim
σ→0

(
β0(i,

u

σ
, σ)− α2

0(i,
u

σ
, σ)

)
= lim
σ→0

∫ ∞

−∞
ϕ′2(σ · zi)(2π)−

1
2 exp(−

∥zi − ui

σ ∥
2

2
)dzi

−
( ∫ ∞

−∞
ϕ′(σ · zi)(2π)−

1
2 exp(−

∥zi − ui

σ ∥
2

2
)dzi

)2
=ϕ′2(ui)− ϕ′2(ui) = 0

(77)

lim
σ→0

( ∂

∂σ

(
β0(i,

u

σ
, σ)− α2

0(i,
u

σ
, σ)

))
= lim
σ→0

( ∂

∂σ

(∫ ∞

−∞
ϕ′2(xi)(2πσ

2)−
1
2 exp(−∥xi − ui∥2

2σ2
)dxi

−
( ∫ ∞

−∞
ϕ′(xi)(2πσ

2)−
1
2 exp(−∥xi − ui∥2

2σ2
)dxi

)2))
xi = σ · zi

= lim
σ→0

(∫ ∞

−∞
ϕ′2(xi)(2πσ

2)−
1
2 exp(−∥xi − ui∥2

2σ2
)(−σ−1 + ∥xi − ui∥2σ−2)dxi

− 2
( ∫ ∞

−∞
ϕ′(xi)(2πσ

2)−
1
2 exp(−∥xi − ui∥2

2σ2
)dxi

)
·
∫ ∞

−∞
ϕ′(xi)(2πσ

2)−
1
2 exp(−∥xi − ui∥2

2σ2
)(−σ−1 + ∥xi − ui∥2σ−2)dxi

)
= lim
σ→0

(ϕ′2(ui)

−σ
− 2ϕ′(ui)

ϕ′(ui)

−σ

)
= lim
σ→0

ϕ′2(ui)

σ
= +∞

(78)

Therefore, by L’Hopital’s rule and (77), (78), we have

lim
σ→0

(
u2
j

σ2
+ 1)(β0(i,

u

σ
, σ)− α0(i,

u

σ
, σ))

= lim
σ→0

u2
i

2σ

∂

∂σ
(β0(i,

u

σ
, σ)− α0(i,

u

σ
, σ))

= +∞

(79)

Combining (79) and (76), we can derive that ρ(uσ , σ) converges to a positive value function of u as σ goes to 0, i.e.

lim
σ→0

ρ(
u

σ
, σ) := Cs(u). (80)

When ui = 0 for some i ∈ [d], limσ→0(
u2
i

σ2 + 1)(β0(j,
u
σ , σ)− α2(j, u

σ , σ)) = 0 by (77). Then from the Definition 1, we have

lim
σ→0

ρ(
u

σ
, σ) = 0 (81)

(4) We can define Lm( (ΛW ∗)⊤Λu
σδK(W ∗) , σδK(W ∗)) as

Lm(
(ΛW ∗)⊤Λu

σδK(W ∗)
, σδK(W ∗)) = min

vi∈[0,ui]

{
ρ(

(ΛW ∗)⊤Λv

σlδK(W ∗)
, σδK(W ∗)) : vj = uj for all j ̸= i

}
(82)

Then by this definition, we have

0 < Lm(
(ΛW ∗)⊤Λu

σδK(W ∗)
, σδK(W ∗)) ≤ ρ(

(ΛW ∗)⊤Λu

σlδK(W ∗)
, σδK(W ∗)) (83)

Meanwhile, for any 0 ≤ u′
i ≤ u∗

i , since that [0, u′
i] ⊂ [0, u∗

i ], we can obtain

Lm(
(ΛW ∗)⊤Λu

σδK(W ∗)
, σδK(W ∗))|ui=u′

i
≥ Lm(

(ΛW ∗)⊤Λu

σδK(W ∗)
, σδK(W ∗))|ui=u∗

i
(84)
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Hence, Lm( (ΛW ∗)⊤Λu
σδK(W ∗) , σδK(W ∗)) is a strictly positive real function which is monotonically decreasing.

(5) Therefore, we only need to show the condition (a).
When (W ∗⊤u)i ̸= 0 for all i ∈ [K],

lim
σ→0

ρ(
W ∗⊤u

σδK(W ∗)
, σδK(W ∗)) = Cs(u) > 0. (85)

Therefore, there exists ζs > 0, such that when 0 < σ < ζs,

ρ(
W ∗⊤u

σδK(W ∗)
, σδK(W ∗)) >

Cs(W ∗⊤u)

2
. (86)

Then we can define

Ls(
W ∗⊤u

σδK(W ∗)
, σδK(W ∗)) :=

Cs(W ∗⊤u)

2ζs
σ2 (87)

such that σ−1Ls( W ∗⊤u
σδK(W ∗) , σδK(W ∗)) is an increasing function of σ below ρ( W ∗⊤u

σδK(W ∗) , σδK(W ∗)).
When (W ∗⊤u)i = 0 for some i ∈ [K], then

lim
σ→0

ρ(
W ∗⊤u

σδK(W ∗)
, σδK(W ∗)) = 0. (88)

We can define

Ls(
W ∗⊤u

σδK(W ∗)
, σδK(W ∗)) = σ · min

vi∈[ui,ζs′ ]

{
ρ(

W ∗⊤v

σδK(W ∗)
, σδK(W ∗)) : vj ̸= uj for all j ̸= i

}
(89)

Then,

σ−1Ls(
W ∗⊤u

σδK(W ∗)
, σδK(W ∗)) = min

vi∈[ui,ζs′ ]

{
ρ(

W ∗⊤v

σδK(W ∗)
, σδK(W ∗)) : vj = uj for all j ̸= i

}
(90)

For any 0 ≤ u′
i ≤ u∗

i < ζs′ , since that [u∗
i , ζs′ ] ⊂ [u′

i, ζs′ ], we can obtain

σ−1Ls(
W ∗⊤u

σδK(W ∗)
, σδK(W ∗))|ui=u′

i
≤ σ−1Ls(

W ∗⊤u

σδK(W ∗)
, σδK(W ∗))|ui=u∗

i
(91)

Therefore, we can derive that σ−1Ls( W ∗⊤u
σδK(W ∗) , σδK(W ∗)) is monotonically increasing. Following the steps in (4), we can

have that σ−1Ls( W ∗⊤u
σδK(W ∗) , σδK(W ∗)) is a strictly positive real function which is upper bounded by ρ( W ∗⊤u

σδK(W ∗) , σδK(W ∗)).
In conclusion, condition (a) is proved.
For condition (b), since that ζs > 0, ρ( W ∗⊤u

σlδK(W ∗) , σδK(W ∗)) is continuous and positive, we can obtain

ρ(
W ∗⊤v

σδK(W ∗)
, σδK(W ∗))

∣∣∣
σ=ζs

> 0 (92)

Then condition (b) can be easily proved as in (4).
We then characterize the order of the ρ function in different cases as follows.

Property 4. To specify the order with regard to the distribution parameters, ρ(u, σ) in Definition 1 satisfies the following
properties,

1) (Small variance) limσ→0+ ρ(u, σ) = Θ(σ4).
2) (Large variance) For any ϵ > 0, limσ→∞ ρ(u, σ) ≥ Θ( 1

σ3+ϵ ).

3) (Large mean) For any ϵ > 0, limµ→∞ ρ(u, σ) ≥ Θ(e−
∥u∥2

2 ) 1
∥u∥3+ϵ .
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Proof:
(1)

β0(i,u, σ)− α0(i,u, σ)
2

=Ez∼N (µ,1)[ϕ
′2(σ · z)]− (Ez∼N (µ,1)[ϕ

′(σ · z)])2

=

∫ ∞

−∞
ϕ′2(σ · z) 1√

2π
e−

(z−µ)2

2 dz − (

∫ ∞

−∞
ϕ′(σ · z) 1√

2π
e−

(z−µ)2

2 dz)2

=

∫ ∞

−∞
(
1

4
− t2

16
+

t4

96
· · · )2 1√

2πσ
e−

(t−µσ)2

2σ2 dt

− (

∫ ∞

−∞
(
1

4
− t2

16
+

t4

96
+ · · · ) 1√

2πσ
e−

(t−µσ)2

2σ2 dt)2

=(
1

16
− 1

32
(µ2σ2 + σ2) +

7

768
(3σ4 + 6µ2σ4 + µ4σ4) + · · · )

− (
1

4
− µ2σ2 + σ2

16
+

3σ4 + 6µ2σ4 + µ4σ4

192
+ · · · )2

=
1

128
σ4 +

µ2σ4

64
+ o(σ4), as σ → 0+.

(93)

The first step of (93) is by Definition 1. The second step and the last steps come from some basic mathematical computation.
The third step is from Taylor expansion. Hence,

lim
σ→0+

(β0(i,u, σ)− α0(i,u, σ)
2) =

1

128
σ4 +

µ2σ4

64
+ o(σ4) (94)

Similarly, we can obtain

β2(i,u, σ)−
α2(i,u, σ)

2

µ2 + 1

=Ez∼N (0,1)[ϕ
′2(σ · z)z2]−

(Ez∼N (0,1)[ϕ
′(σ · z)z2])2

µ2 + 1

=

∫ ∞

−∞
ϕ′2(σ · z)z2 1√

2π
e−

(z−µ)2

2 dz − 1

µ2 + 1
(

∫ ∞

−∞
ϕ′(σ · z)z2 1√

2π
e−

(z−µ)2

2 dz)2

=

∫ ∞

−∞
(
t

4σ
− t3

16σ
+

t5

96σ
· · · )2 1√

2πσ
e−

(t−µσ)2

2σ2 dt

− 1

µ2 + 1
(

∫ ∞

−∞
(
t2

4σ2
− t4

16σ2
+

t6

96σ2
+ · · · ) 1√

2πσ
e−

(t−µσ)2

2σ2 dt)2

=(
1 + µ2

16
− 3σ2 + 6µ2σ2 + µ4σ2

32
+ · · · )

− 1

µ2 + 1
(
1 + µ2

4
− 15σ2 + 45µ2σ2 + 15µ4σ2 + µ6σ2

32
+ · · · )2

=
9

64
σ2 +

33

64
µ2σ2 +

13

64
µ4σ2 +

1

64
µ6σ2 + o(σ2), as σ → 0+

(95)

Hence,

lim
σ→0+

(β2(i,u, σ)−
α2(i,u, σ)

2

µ2 + 1
) =

9

64
σ2 + o(σ2) (96)

Therefore,
lim
σ→0+

ρ(u, σ) = min
j∈[d],uj ̸=µ

{(u2
j + 1)} 1

128
σ4 (97)

(2) Note that by some basic mathematical derivation,∫ ∞

−∞
ϕ′2(σ · z) 1√

2π
e−

(z−µ)2

2 dz =

∫ ∞

−∞

1

(eσ·z + e−σ·z + 2)2
1√
2π

e−
(z−µ)2

2 dz

≥ 2

∫ ∞

0

1

16e2σ·z
1√
2π

e−
(z+|µ|)2

2 dz

=
1

8
e2|µ|σ+2σ2

∫ ∞

0

1√
2π

e−
(z+2σ)2

2 dz

=
1

8
√
2π

e2|µ|σ+2σ2

∫ ∞

|µ|+2σ

e−
t2

2 dt

(98)
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We then provide the following Claim with its proof to give a lower bound for (98).
Claim:

∫∞
|µ|+2σ

e−
t2

2 dt > e−2|µ|σ−2σ2−k1 log σ for k1 > 1.
Proof: Let

f(σ) =

∫ ∞

|µ|+2σ

e−
t2

2 dt− e−2|µ|σ−2σ2−k1 log σ. (99)

Then,

f ′(σ) = e−2σ2

((2|µ|+ 4σ +
k1
σ
)σ−k1 − 2e−

1
2µ

2

). (100)

It can be easily verified that for a given |µ| ≥ 0, f ′(σ) < 0 when σ is large enough if k1 > 1. Combining that limσ→∞ f(σ) = 0,
we have f(σ) > 0 when σ is large enough by showing the contradiction in the following:
Suppose there is a strictly increasing function f(x) > 0 with limx→∞ f(x) = 0 when x is large enough. Then there exists
x0 > 0 such that for any ϵ > 0, f(x) < ϵ for x > x0. Pick ϵ = f(x0) > 0, then for x1 > x0, f(x1) > f(x0) = ϵ.
Contradiction!
Similarly, we also have ∫ ∞

−∞
ϕ′(σ · z) 1√

2π
e−

z2

2 dz =

∫ ∞

−∞

1

eσ·z + e−σ·z + 2

1√
2π

e−
(z−µ)2

2 dz

≤ 2

∫ ∞

0

1

eσ·z
1√
2π

e−
(z−µ)2

2 dz

= e|µ|σ+
1
2σ

2

∫ ∞

0

2√
2π

e−
(z+|µ|+σ)2

2 dz

=
2√
2π

e|µ|σ+
1
2σ

2

∫ ∞

|µ|+σ
e−

t2

2 dt,

(101)

and the Claim:
∫∞
|µ|+σ e

− t2

2 dt < e−|µ|σ− 1
2σ

2−k2 log σ for k2 ≤ 1 to give an upper bound for (101).
Therefore, combining (98, 101) and two claims, we have that for any ϵ > 0,

β0(i,u, σ)− α0(i,u, σ)
2 ≥ 1

8
√
2π

1

σk1
− 1

2π

1

σ2k2
≳

1

σ1+ϵ
(102)

(The above inequality holds for any 2k2 > k1 where k1 > 1 and k2 ≤ 1.)
Similarly, ∫ ∞

−∞
ϕ′2(σ · z)z2 1√

2π
e−

z2

2 dz =

∫ ∞

−∞

z2

(eσ·z + e−σ·z + 2)2
1√
2π

e−
(z−µ)2

2 dz

≥ 2

∫ ∞

0

z2

16e2σ·z
1√
2π

e−
(z+|µ|)2

2 dz

=
1

8
√
2π

e|µ|σ+2σ2

∫ ∞

2|µ|+2σ

(t− 2σ)2e−
t2

2 dt

(103)

Claim:
∫∞
|µ|+2σ

(t− 2σ)2e−
t2

2 dt ≥ e−2|µ|σ−2σ2−k1 log σ if k1 > 3.
Proof: Let

f(σ) =

∫ ∞

|µ|+2σ

(t− 2σ)2e−
t2

2 dt− e−2|µ|σ−2σ2−k1 log σ. (104)

f ′(σ) = 8σ

∫ ∞

|µ|+2σ

e−
t2

2 dt+ e−2|µ|σ−2σ2

(4σ1−k1 + k1σ
−1−k1 + 2|µ|σ−k1 − 4e−

1
2µ

2

). (105)

We need f ′(σ) < 0 when σ is large enough. Since that f ′(σ) → 0, f ′′(σ) → 0 when σ is large, we need f ′′(σ) > 0 and
f ′′′(σ) < 0 recursively. Hence,

f ′′′(σ) =e−2|µ|σ−2σ2

(64σ3−k1 + 96µσ2−k1 + 16(3k1 − 3 + µ2)σ1−k1 + 8µ(−µ2 − 3 + 6k1)σ
−k1

+ 4k1(3k1 + µ2)σ−1−k1 + 2k1(1 + k1)(µ+ 2)σ−2−k1

+ k1(1 + k1)(2 + k1)σ
−3−k1 − 16e−

1
2µ

2

) < 0

(106)

requires k1 > 3.
Similarly, we have∫ ∞

−∞
ϕ′(σ · z)z2 1√

2π
e−

z2

2 dz ≤ 2

∫ ∞

0

1

eσ·z
1√
2π

z2e−
z2

2 dz =
2√
2π

e
1
2σ

2

∫ ∞

σ

(t− σ)2e−
t2

2 dt (107)
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and the Claim:
∫∞
σ

(t− σ)2e−
t2

2 dt < e−
σ2

2 −k2 log σ . Hence,

β2(i,u, σ)−
α2(i,u, σ)

2

µ2 + 1
≥ 1

8
√
2π

1

σk1
− 2

π(µ2 + 1)

1

σ2k2
≳

1

σ3.1
(108)

(The above inequality holds for any 2k2 > k1 where k1 > 3 and k2 < 3.)
Therefore, by combining (102) and (108), for any ϵ > 0

lim
σ→∞

ρ(u, σ) ≥ Θ(
1

σ3+ϵ
). (109)

(3) Let σ be fixed. For any ϵ > 0, following the steps in (2), we can obtain∫ ∞

−∞
ϕ′2(σ · z) 1√

2π
e−

(z−µ)2

2 dz =

∫ ∞

−∞

1

(eσ·z + e−σ·z + 2)2
1√
2π

e−
(z−µ)2

2 dz

≥ 2

∫ ∞

0

1

16e2σ·z
1√
2π

e−
(z+|µ|)2

2 dz

=
1

8
√
2π

e2|µ|σ+2σ2

∫ ∞

|µ|+2σ

e−
t2

2 dt

≥ 1

8
√
2π

e−
µ2

2
1

µ1+ϵ

(110)

∫ ∞

−∞
ϕ′(σ · z) 1√

2π
e−

(z−µ)2

2 dz =

∫ ∞

−∞

1

eσ·z + e−σ·z + 2

1√
2π

e−
(z−µ)2

2 dz

≤ 2

∫ ∞

0

1

eσ·z
1√
2π

e−
(z−µ)2

2 dz

=
2√
2π

e−
µ2

2
1

µ1−ϵ

(111)

Similarly, ∫ ∞

−∞
ϕ′2(σ · z)z2 1√

2π
e−

(z−µ)2

2 dz ≥ 1

8
√
2π

e−
µ2

2
1

µ3+ϵ
(112)∫ ∞

−∞
ϕ′(σ · z)z2 1√

2π
e−

(z−µ)2

2 dz ≤ 2√
2π

e−
µ2

2
1

µ3−ϵ (113)

We can conclude that limµ→∞ ρ(u, σ) ≥ Θ(e−
∥u∥2

2 ) 1
∥u∥3+ϵ .

Property 5. If a function f(x) is an even function, then

Ex∼N (µ,Σ)[f(x)] = Ex∼ 1
2N (µ,Σ)+ 1

2N (−µ,Σ)[f(x)] (114)

Proof:
Denote

g(x) = f(x)(2π|Σ|2)− d
2 exp(−1

2
(x− µ)Σ−1(x− µ)) (115)

By some basic mathematical computation,

Ex∼N (µ,Σ)[f(x)] =

∫
x∈Rd

g(x)dx =

∫ ∞

−∞
· · ·

∫ ∞

−∞
g(x1, · · · , xd)dx1 · · · dxd

=

∫ ∞

−∞
· · ·

∫ ∞

−∞

∫ −∞

∞
g(x1, x2, · · · , xd)d(−x1)dx2 · · · dxd

=

∫ ∞

−∞
· · ·

∫ ∞

−∞
g(−x1, x2 · · · , xd)dx1dx2 · · · dxd

=

∫
x∈Rd

g(−x)dx

=

∫
x∈Rd

f(x)(2π|Σ|2)− d
2 exp(−1

2
(x+ µ)Σ−1(x+ µ))

= Ex∼N (−µ,Σ)[f(x)]

(116)

Therefore, we have
Ex∼N (µ,Σ)[f(x)] = Ex∼ 1

2N (µ,Σ)+ 1
2N (−µ,Σ)[f(x)] (117)
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Property 6. Under Gaussian Mixture Model x ∼
∑L
l=1 λlN (µl,Σl) where Σl = diag(σ2

l1, · · · , σ2
ld), we have the following

upper bound.

Ex∼
∑L

l=1 λlN (µl,Σl)
[(u⊤x)2t] ≤ (2t− 1)!!||u||2t

L∑
l=1

λl(||µl||+ ∥Σ
1
2

l ∥)
2t (118)

Proof:
Note that

Ex∼
∑L

l=1 λlN (µl,Σl)
[(u⊤x)2t] =

L∑
l=1

λlEx∼N (µl,Σl)[(u
⊤x)2t] =

L∑
l=1

λlEy∼N (u⊤µl,u⊤Σlu)[y
2t], (119)

where the last step is by that u⊤x ∼ N (u⊤µ,u⊤Σlu) for x ∼ N (µl,Σl). By some basic mathematical computation, we
know

Ey∼N (u⊤µl,u⊤Σlu)[y
2t]

=

∫ ∞

−∞
(y − u⊤µl + u⊤µl)

2t 1√
2πu⊤Σlu

e
− (y−u⊤µl)

2

2u⊤Σlu dy

=

∫ ∞

−∞

2t∑
p=0

(
2t

p

)
(u⊤µl)

2t−p(y − u⊤µl)
p 1√

2πu⊤Σlu
e
− (y−u⊤µl)

2

2u⊤Σlu dy

=

2t∑
p=0

(
2t

p

)
(u⊤µl)

2t−p ·
{

0 , p is odd
(p− 1)!!(u⊤Σlu)

p
2 , p is even

≤
2t∑
p=0

(
2t

p

)
|u⊤µl|2t−p(p− 1)!!|u⊤Σlu|

p
2

≤(2t− 1)!!(|u⊤µl|+ |u⊤Σlu|
1
2 )2t

≤(2t− 1)!!∥u∥2t(∥µl∥+ ∥Σ∥
1
2 )2t,

(120)

where the second step is by the Binomial theorem. Hence,

Ex∼
∑L

l=1 λlN (µl,Σl)
[(u⊤x)2t] ≤ (2t− 1)!!||u||2t

L∑
l=1

λl(||µl||+ ∥Σ
1
2

l ∥)
2t (121)

Property 7. With the Gaussian Mixture Model, we have

Ex∼
∑L

l=1 λlN (µl,Σl)
[||x||2t] ≤ dt(2t− 1)!!

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2t (122)

Proof:
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Ex∼
∑L

l=1 λlN (µl,Σl)
[||x||2t2 ]

=Ex∼
∑L

l=1 λlN (µl,Σl)
[(

d∑
i=1

x2
i )
t]

=Ex∼
∑L

l=1 λlN (µl,Σl)
[dt(

d∑
i=1

x2
i

d
)t]

≤Ex∼
∑L

l=1 λlN (µl,Σl)
[dt

d∑
i=1

x2t
i

d
]

=dt−1
d∑
i=1

L∑
j=1

∫ ∞

−∞
(xi − µji + µji)

2tλj
1√

2πσji
exp(− (xi − µji)

2

2σ2
ji

)dxi

=dt−1
d∑
i=1

L∑
j=1

2t∑
k=1

(
2t

k

)
λj |µji|2t−k ·

{
0 , k is odd

(k − 1)!!σkji, k is even

≤dt−1
d∑
i=1

L∑
j=1

2t∑
k=1

(
2t

k

)
λj |µji|2t−kσkj · (2t− 1)!!

=dt−1
d∑
i=1

L∑
j=1

λj(|µji|+ σji)
2t(2t− 1)!!

≤dt(2t− 1)!!

L∑
l=1

λl(∥µ∥+ ∥Σ
1
2

l ∥)
2t

(123)

In the 3rd step, we apply Jensen inequality because f(x) = xt is convex when x ≥ 0 and t ≥ 1. In the 4th step we apply the
Binomial theorem and the result of k-order central moment of Gaussian variable.

Property 8. Under the Gaussian Mixture Model x ∼
∑L
l=1 λlN (µl,Σl) where Σl = Λ⊤

l DlΛl, we have the following upper
bound.

Ex∼
∑L

l=1 λlN (µl,Σl)
[(u⊤x)2t] ≤ (2t− 1)!!||u||2t

L∑
l=1

λl(||µl||+ ∥Σ
1
2

l ∥)
2t (124)

Proof:
If x ∼ N (µl,Σl), then u⊤x ∼ N (u⊤µl,u

⊤Σlu) = N ((Λlu)
⊤Λlµl, (Λlu)

⊤Dl(Λlu)). By Property 6, we have

Ex∼N (µl,Σl)[(u
⊤x)2t] ≤ (2t− 1)!!∥u∥2t(∥µl∥+ ∥Σ

1
2

l ∥)
2t (125)

Then we can derive the final result.

Property 9. The population risk function f̄(W ) is defined as

f̄(W ) = Ex∼
∑L

l=1 λlN (µl,Σl)
[fn(W )]

=Ex∼
∑L

l=1 λlN (µl,Σl)

[ 1
n

n∑
i=1

ℓ(W ;xi, yi)
]

=Ex∼
∑L

l=1 λlN (µl,Σl)
[ℓ(W ;xi, yi)]

(126)

For any permutation matrix P , where {π(j)}Kj=1 is the indices permuted by P , we have

H(WP ,x) =
1

K

∑
π∗(j)

ϕ(wπ(j)
⊤x)

=
1

K

K∑
j=1

ϕ(wj
⊤x)

= H(W ,x)

(127)

Therefore,
f̄(W ) = f̄(WP ) (128)
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Based on (1) and (3), we can derive its gradient and Hessian as follows.
∂ℓ(W ;x, y)

∂wj
= − 1

K

y −H(W )

H(W )(1−H(W ))
ϕ′(w⊤

j x)x = ζ(W ) · x (129)

∂2ℓ(W ;x, y)

∂wj∂wl
= ξj,l · xx⊤ (130)

ξj,l(W ) =

{
1
K2ϕ

′(w⊤
j x)ϕ

′(w⊤
l x)

H(W )2+y−2y·H(W )
H2(W )(1−H(W ))2 , j ̸= l

1
K2ϕ

′(w⊤
j x)ϕ

′(w⊤
l x)

H(W )2+y−2y·H(W )
H2(W )(1−H(W ))2 −

1
Kϕ′′(w⊤

j x)
y−H(W )

H(W )(1−H(W )) , j = l
(131)

Property 10. With Dm(Ψ defined in definition 2, we have

(i) Dm(Ψ)D2m(Ψ) ≤ D3m(Ψ) (132)

(ii)
(
Dm(Ψ)

)2 ≤ D2m(Ψ) (133)

Proof:
To prove (132), we can first compare the terms

∑L
i=1 λiai

∑L
i=1 λia

2
i and

∑L
i=1 λia

3
i , where ai ≥ 1, i ∈ [L] and

∑L
i=1 λi = 1.

L∑
i=1

λia
3
i −

L∑
i=1

λiai

L∑
i=1

λia
2
i =

L∑
i=1

λiai ·
(
a2i −

L∑
j=1

λja
2
j

)
=

L∑
i=1

λiai ·
(
(1− λi)a

2
i −

∑
1≤j≤L,j ̸=i

λja
2
j

)
=

L∑
i=1

λiai ·
( ∑
1≤j≤L,j ̸=i

λja
2
i −

∑
1≤j≤L,j ̸=i

λja
2
j

)
=

L∑
i=1

λiai ·
( ∑
1≤j≤L,j ̸=i

λj(a
2
i − a2j )

)
=

∑
1≤i,j≤L,i̸=j

(
λiλjai(a

2
i − a2j ) + λiλjaj(a

2
j − a2i )

)
=

∑
1≤i,j≤L,i̸=j

λiλj(ai − aj)
2(ai + aj) ≥ 0

(134)

The second to last step is because we can find the pairwise terms λiai · λj(a2i − a2j ) and λjaj · λi(a2j − a2i ) in the summation
that can be putted together. From (134), we can obtain

L∑
i=1

λiai

L∑
i=1

λia
2
i ≤

L∑
i=1

λia
3
i (135)

Combining (135) and the definition of Dm(Ψ) in (2), we can derive (132).
Similarly, to prove (133), we can first compare the terms (

∑L
i=1 λiai)

2 and
∑L
i=1 λia

2
i , where ai ≥ 1, i ∈ [L] and

∑L
i=1 λi = 1.

L∑
i=1

λia
2
i − (

L∑
i=1

λiai)
2 =

L∑
i=1

λiai ·
(
ai −

L∑
j=1

λjaj
)

=

L∑
i=1

λiai ·
(
(1− λi)ai −

∑
1≤j≤L,j ̸=i

λjaj
)

=

L∑
i=1

λiai ·
( ∑
1≤j≤L,j ̸=i

λjai −
∑

1≤j≤L,j ̸=i

λjaj
)

=

L∑
i=1

λiai ·
( ∑
1≤j≤L,j ̸=i

λj(ai − aj)
)

=
∑

1≤i,j≤L,i̸=j

(
λiλjai(ai − aj) + λiλjaj(aj − ai)

)
=

∑
1≤i,j≤L,i̸=j

λiλj(ai − aj)
2 ≥ 0

(136)
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The derivation of (136) is close to (134). By (136) we have

(

L∑
i=1

λiai)
2 ≤

L∑
i=1

λia
2
i (137)

Combining (137) and the definition of Dm(Ψ) in (2), we can derive (133).

K. Proof of Theorem 1 and Corollary 1

Theorem 1 is built upon three lemmas.
Lemma 1 shows that with O(dK5 log2 d) samples, the empirical risk function is strongly convex in the neighborhood of

W ∗.
Lemma 2 shows that if initialized in the convex region, the gradient descent algorithm converges linearly to a critical point

Ŵn, which is close to W ∗.
Lemma 3 shows that the Tensor Initialization Method in Subroutine 1 initializes W0 ∈ Rd×K in the local convex region.

Theorem 1 follows naturally by combining these three lemmas.
This proving approach is built upon those in [28]. One of our major technical contribution is extending Lemmas 1 and 2 to

the Gaussian mixture model, while the results in [28] only apply to Standard Gaussian models. The second major contribution
is a new tensor initialization method for Gaussian mixture model such that the initial point is in the convex region (see Lemma
3). Both contributions require the development of new tools, and our analyses are much more involved than those for the
standard Gaussian due to the complexity introduced by the Gaussian mixture model.

To present these lemmas, the Euclidean ball B(W ∗P ∗, r) is used to denote the neighborhood of W ∗P ∗, where r is the
radius of the ball.

B(W ∗P ∗, r) = {W ∈ Rd×K : ||W −W ∗P ∗||F ≤ r} (138)

The radius of the convex region is

r := Θ
(C3ϵ0 ·

∑L
l=1 λl

∥Σ−1
l ∥−1

ητKκ2 ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 )

K
7
2

(∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)4
∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)8
) 1

4

)
(139)

with some constant C3 > 0.
Proof of Theorem 1
From Lemma 2 and Lemma 3, we know that if n is sufficiently large such that the initialization W0 by the tensor method is
in the region B(W ∗P , r), then the gradient descent method converges to a critical point Ŵn that is sufficiently close to W ∗.
To achieve that, one sufficient condition is

||W0 −W ∗P ∗||F ≤
√
K||W0 −W ∗P ∗|| ≤ κ6K

7
2 · τ6

√
D6(Ψ)

√
d log n

n
||W ∗P ||

≤ C3ϵ0Γ(Ψ)σ2
max

K
7
2

(∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)4
∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)8
) 1

4

(140)

where the first inequality follows from ||W ||F ≤
√
K||W || for W ∈ Rd×K , the second inequality comes from Lemma 3, and

the third inequality comes from the requirement to be in the region B(W ∗P , r). That is equivalent to the following condition

n ≥C0ϵ
−2
0 · τ12κ12K14

( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
4

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
8
) 1

2

· (δ1(W ∗))2D6(Ψ)Γ(Ψ)−2σ−4
max · d log

2 d

(141)

where C0 = max{C4, C
−2
3 }. By Definition 2, we can obtain( L∑

l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
4

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
8
) 1

2 ≤
√
D4(Ψ)D8(Ψ)σ6

max (142)

From Property 10, we have that √
D4(Ψ)D8(Ψ)D6(Ψ)

≤
√
D12(Ψ)

√
D12(Ψ) = D12(Ψ)

(143)
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Plugging (142), (143) into (141), we have

n ≥ C0ϵ
−2
0 · κ12K14(σmaxδ1(W

∗))2τ12Γ(Ψ)−2D12(Ψ) · d log2 d (144)

Considering the requirements on the sample complexity in (15), (42), and (144), (144) shows a sufficient number of samples.
Taking the union bound of all the failure probabilities in Lemma 1, and 3, (144) holds with probability 1− d−10.
By Property 3.4, ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) can be lower bounded by positive and monotonically

decreasing functions Lm( (ΛlW
∗)⊤µ̃l

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) when everything else except |µ̃l(i)| is fixed, or

Ls( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) when everything else except ∥Σ

1
2

l ∥ is fixed. Then, by replacing the lower

bound of ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) with these two functions in Γ(Ψ), we can have an upper bound of

(σmaxδ1(W
∗))2τ12Γ(Ψ)−2D12(Ψ), denoted as B(Ψ).

To be more specific, when everything else except |µ̃l(i)| is fixed, Lm( (ΛlW
∗)⊤µ̃l

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) is plugged in

B(Ψ). Then since that D12(Ψ) and Lm( (ΛlW
∗)⊤µ̃l

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) are both increasing function of |µ̃l(i)|, B(Ψ) is

an increasing function of |µ̃l(i)|.
When everything else except ∥Σ

1
2

l ∥ is fixed, if ∥Σ
1
2

l ∥ = σmax > ζs, then σ2
maxτ

12D12(Ψ) is an increasing function of ∥Σ
1
2

l ∥.
Since that Ls( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) is a decreasing function, Ls( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 )−2 is

an increasing function of ∥Σ
1
2

l ∥. Hence, B(Ψ) is an increasing function of ∥Σ
1
2

l ∥. Moreover, when all ∥Σ
1
2

l ∥ < ζs′ and go
to 0, two decreasing functions of ∥Σ

1
2

l ∥, σ2
maxLs(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 )−2 and D12(Ψ) will be the dominant

term of B(Ψ). Therefore, B(Ψ) increases to infinity as all ∥Σ
1
2

l ∥’s go to 0. In sum, we can define a universe B(Ψ) as:

B(Ψ)

=



(σmaxδ1(W
∗))2τ12

(∑L
l=1

λl∥Σ−1
l ∥−1

ησ2
max

Lm( (ΛlW
∗)⊤µ̃l

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 )
)−2

·D12(Ψ), if S is fixed

(σmaxδ1(W
∗))2τ12

(∑L
l=1

λl∥Σ−1
l ∥−1

ησ2
max

Ls( (ΛlW
∗)⊤µ̃l

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 )
)−2

·D12(Ψ), if M is fixed

(σmaxδ1(W
∗))2τ12

(∑L
l=1

λl∥Σ−1
l ∥−1

ησ2
max

ρ( (ΛlW
∗)⊤µ̃l

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 )
)−2

·D12(Ψ), otherwise

(145)

where Lm,Ls and D12 are defined in (84), (89) and Definition 2, respectively.
Hence, we have

n ≥ poly(ϵ−1
0 , κ, η, τK)B(Ψ) · d log2 d (146)

Similarly, by replacing ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) with Lm( (ΛlW

∗)⊤µ̃l

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 )

when everything else except |µ̃l(i)| is fixed, or Ls( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) (or

∥Σ−1
l ∥Ls(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) for ∥Σ−1

l ∥−1 ≥ 1) when everything else except ∥Σ
1
2

l ∥ is fixed, (29)

can also be transferred to another feasible upper bound. We denote the modified version of the convergence rate as
v = 1 − K−2q(Ψ). Since that q(Ψ) is a ratio between the smallest and the largest singular value of ∇2f̄(W ∗), we
have q(Ψ) ∈ (0, 1). Hence, we can obtain 1 − K−2q(Ψ) ∈ (0, 1) by K ≥ 1. When everything else except |µ̃l(i)|
is fixed, since that Lm( (ΛlW

∗)⊤µ̃l

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) is monotonically decreasing and

∑L
l=1 λ(∥µl∥ + ∥Σ

1
2

l ∥)2

is increasing as |µ̃l(i)| increases, v is an increasing function of |µ̃l(i)| to 1. Similarly, when everything else except

∥Σ
1
2

l ∥ is fixed where ∥Σ
1
2

l ∥ ≥ max{1, ζs}, 1∑L
l=1 λl(∥µl∥+∥Σ

1
2
l ∥)2

decreases to 0 as ∥Σl∥ increases. We replace

ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) by ∥Σ−1

l ∥Ls(
W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) and then

∥Σ−1
l ∥

−1 · ∥Σ−1
l ∥Ls(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

, δK(W ∗)∥Σ−1
l ∥

− 1
2 )

=Ls(
W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

, δK(W ∗)∥Σ−1
l ∥

− 1
2 )

(147)
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is an decreasing function less than ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ). Therefore, v is an increasing function

of ∥Σ
1
2

l ∥ to 1 when ∥Σ
1
2

l ∥ ≥ max{1, ζs}. When everything else except all ∥Σ
1
2

l ∥ ≤ ζs′ ’s go to 0, all

Ls( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ’s will decrease and all ∥Σ−1

l ∥−1∑L
l=1 λl(∥µl∥∞+∥Σ

1
2
l ∥)2

’s will decrease to 0. Therefore, v

increases to 1.
q(Ψ) can then be defined as

q(Ψ)

=



Ω
(∑L

l=1 λl
∥Σ−1

l
∥−1

ητKκ2 Lm(
(ΛlW

∗)⊤µ̃l

δK (W∗)∥Σ−1
l

∥−
1
2

,δK(W ∗)∥Σ−1
l ∥− 1

2 )

∑L
l=1 λl(∥µl∥+∥Σ

1
2
l ∥)2

)
),

if S is fixed

Ω
(∑L

l=1 λl
∥Σ−1

l
∥−1

ητKκ2 Ls(
W∗⊤µl

δK (W∗)∥Σ−1
l

∥−
1
2

,δK(W ∗)∥Σ−1
l ∥− 1

2 )

∑L
l=1 λl(∥µl∥+∥Σ

1
2
l ∥)2

)
,

if M is fixed and all ∥Σ
1
2

l ∥ ≤ ζs′

Ω
(λl

1

ητKκ2 Ls(
W∗⊤µi

δK (W∗)∥Σ−1
i

∥−
1
2

,δK(W ∗)∥Σ−1
i ∥− 1

2 )+
∑

l ̸=i r(λl,µl,Σl,W
∗)

∑L
l=1 λl(∥µl∥+∥Σ

1
2
l ∥)2

)
,

if M is fixed and one ∥Σ
1
2
i ∥ ≥ max{1, ζs}

Ω
(∑L

l=1 λl
∥Σ−1

l
∥−1

ητKκ2 ρ(
W∗⊤µl

δK (W∗)∥Σ−1
l

∥−
1
2

,δK(W ∗)∥Σ−1
l ∥− 1

2 )

∑L
l=1 λl(∥µl∥+∥Σ

1
2
l ∥)2

)
,

otherwise

.
(148)

where r(λl,µl,Σl,W
∗) = λl

∥Σ−1
l ∥−1

ητKκ2 ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ). Note that here the ρ(·) function is defined in

Definition 1. Lm(·) and Ls(·) are defined in (84) and (89), respectively.
The bound of ∥Ŵn −W ∗P ∥F is directly from (28). We can derive that

Ew(Ψ) = O(

√∑L
j=1 λl(∥µj∥+ ∥Σ

1
2
j ∥)2∑L

j=1 λl∥Σ
−1
j ∥−1ρ(

W ∗⊤µj

δK(W ∗)∥Σ−1
j ∥− 1

2
, δK(W ∗)∥Σ−1

j ∥−
1
2 )

) (149)

E(Ψ) = O(

∑L
j=1 λl(∥µj∥+ ∥Σ

1
2
j ∥)2∑L

j=1 λl∥Σ
−1
j ∥−1ρ(

W ∗⊤µj

δK(W ∗)∥Σ−1
j ∥− 1

2
, δK(W ∗)∥Σ−1

j ∥−
1
2 )

) (150)

El(Ψ) = O(

√∑L
j=1 λl(∥µj∥+ ∥Σ

1
2
j ∥)2(∥µl∥+ ∥Σl∥

1
2 )∑L

j=1 λl∥Σ
−1
j ∥−1ρ(

W ∗⊤µj

δK(W ∗)∥Σ−1
j ∥− 1

2
, δK(W ∗)∥Σ−1

j ∥−
1
2 )

) (151)

The discussion of the monotonicity of Ew(Ψ), E(Ψ) and El(Ψ) can follow the analysis of q(Ψ).
We finish our proof of Theorem 1 here. The parameters B(Ψ), q(Ψ), Ew(Ψ), E(Ψ), and El(Ψ) can be found in (145), (148),
(149), (150), and (151), respectively.

Proof of Corollary 1:
The monotonicity analysis has been included in the proof of Theorem 1. In this part, we specify our proof for the results in
Table I. For simplicity, we denote ρl = ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ).

When everything else except ∥Σl∥
1
2 is fixed, if ∥Σl∥ = o(1), by some basic mathematical computation, then we have

nsc =C0ϵ
−2
0 · η2τ12κ16K14

( L∑
l=1

λl(∥µ̃l∥+ ∥Σ
1
2

l ∥)
4

L∑
l=1

λl(∥µ̃l∥+ ∥Σ
1
2

l ∥)
8
) 1

2

(δ1(W
∗))2D6(Ψ)

· ( 1∑L
l=1 λl∥Σ

−1
l ∥−1ρl

)2 · d log2 d

≲poly(ϵ−1
0 , η, τ, κ,K, δ1(W

∗)) · d log2 d ·O(λL
1

∥Σ
1
2

L∥6
)

(152)
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v(Ψ) = 1−
∑L
l=1 λl

∥Σ−1
l ∥−1

ηκ2 ρl

K2(
∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)2)

≤ 1− λl
K2ηκ2τK

Θ(∥Σl∥3)

(153)

∥Ŵn −W ∗P ∗∥ ≤ O(
K

5
2

√∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)2(1 + ξ)∑L
l=1 λl

∥Σ−1
l ∥−1

ητKκ2 ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 )

√
d log n

n
)

≲ poly(η, κ, τ, δK(W ∗))

√
d log n

n
K2(1 + ξ) ·O(1− ∥Σl∥3)

(154)

f̄l(Wt) = f̄l(Wt)− f̄l(W
∗)

≤ E
[ K∑
k=1

∂(f̄l(Wt)

∂w̃k
)⊤(wt(k) −w∗

k)
]

≤ ∥Wt −W ∗P ∗∥(∥µl∥+ ∥Σl∥
1
2 )

≲ O
(∑L

j=1

√
λl(∥µj∥+ ∥Σj∥

1
2 )∑L

j=1 λj∥Σ
−1
j ∥−1ρj

(∥µj∥+ ∥Σj∥
1
2 ) ·

√
d log n

n
ηκ2K2(1 + ξ)

)
≲ poly(η, κ, τ, δK(W ∗))

√
d log n

n
K2(1 + ξ) ·O(

1

1 + ∥Σl∥3
)

≲ poly(η, κ, τ, δK(W ∗))

√
d log n

n
K2(1 + ξ) ·O(1)−Θ(∥Σl∥3),

(155)

The first inequality of (155) is by the Mean Value Theorem. The second inequality of (155) is from Property 8, and the third
inequality is derived from (28, 29). The last inequality is obtained by the condition that ∥Σl∥ = o(1). We can similarly have

f̄(Wt) ≤ E
[ K∑
k=1

∂(f̄(Wt)

∂w̃k
)⊤(wt(k) −w∗

k)
]

≲ poly(η, κ, τ, δK(W ∗))

√
d log n

n
K2(1 + ξ) ·O(

1

1 + ∥Σl∥3
)

≲ poly(η, κ, τ, δK(W ∗))

√
d log n

n
K2(1 + ξ) ·O(1)−Θ(∥Σl∥3)

(156)

If ∥Σl∥
1
2 = Ω(1), we have

nsc ≲ poly(ϵ−1
0 , η, τ, κ,K, δ1(W

∗)) · d log2 d ·O(∥Σl∥3) (157)

v(Ψ) ≤ 1− 1

K2τKηκ2
Θ(

1

1 + ∥Σl∥
) (158)

∥Ŵn −W ∗P ∗∥F ≲ poly(η, τ, κ, δK(W ∗))

√
d log n

n
K

5
2 (1 + ξ) ·

√
∥Σl∥ (159)

f̄l(Wt) ≲ poly(η, τ, κ, δK(W ∗))

√
d log n

n
K2(1 + ξ) · ∥Σl∥ (160)

f̄(Wt) ≲ poly(η, τ, κ, δK(W ∗))

√
d log n

n
K2(1 + ξ) · ∥Σl∥ (161)

When everything is fixed except ∥µl∥, by combining (15) and (141), we have

nsc ≲ poly(ϵ−1
0 , η, τ, κ,K, δ1(W

∗)) · d log2 d ·

{
O(∥µl∥4), if ∥µl∥ ≤ 1

O(∥µl∥12), if ∥µl∥ ≥ 1
(162)

v(Ψ) ≤ 1− 1

K2τKηκ2
Θ(

1

1 + ∥µl∥2
) (163)

∥Ŵn −W ∗P ∗∥F ≲ poly(η, τ, κ, δK(W ∗))

√
d log n

n
K

5
2 (1 + ξ) · (1 + ∥µl∥) (164)
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f̄l(Wt) ≲ poly(η, τ, κ, δK(W ∗))

√
d log n

n
K2(1 + ξ) · (1 + ∥µl∥2) (165)

f̄(Wt) ≲ poly(η, τ, κ, δK(W ∗))

√
d log n

n
K2(1 + ξ) · (1 + ∥µl∥2) (166)

When everything else is fixed except λ1, λ2, · · · , λL, where ∥Σj∥ = Ω(1), j ∈ [L] and ∥µj∥ = ∥µi∥, i, j ∈ [L], if
∥Σl∥ ≤ ∥Σj∥, j ∈ [L], we have

nsc ≲poly(ϵ−1
0 , η, κ,K, δ1(W

∗)) · d log2 d ·
(a1λ

2
l + a2λ

3
2

l + a3λl + a4λ
1
2

l + a5)

(
∑L
j=1 λjρj)

2

≤poly(ϵ−1
0 , η, κ,K, δ1(W

∗)) · d log2 d · a5

(
∑L
j=1 λjρj)

2

≲poly(ϵ−1
0 , η, κ,K, δ1(W

∗)) · d log2 d ·O((1 + λl)
−2)

(167)

where a1 = (∥µl∥ + ∥Σl∥
1
2 )12/∥Σl∥3, a2 = (∥µl∥ + ∥Σ

1
2

l ∥)8(
∑
j ̸=l λj(∥µj∥ + ∥Σj∥

1
2 )8)

1
2 /∥Σl∥3, a3 = (∥µl∥/∥Σl∥

1
2 +

1)6(
∑
j ̸=l λj(∥µj∥ + ∥Σj∥

1
2 )4

∑
j ̸=l λj(∥µj∥ + ∥Σj∥

1
2 )8)

1
2 + (∥µl∥ + ∥Σl∥

1
2 )6

∑
j ̸=l λj(∥µj∥/∥Σj∥

1
2 + 1)6, a4 =∑

j ̸=l λj(∥µj∥/∥Σj∥
1
2 +1)6(∥µl∥+∥Σl∥

1
2 )2(

∑
j ̸=l λj(∥µj∥+∥Σj∥

1
2 )8)

1
2 , a5 = (

∑
j ̸=l λj(∥µj∥+∥Σj∥

1
2 )4

∑
j ̸=l λj(∥µj∥+

∥Σj∥
1
2 )8)

1
2 ·

∑
j ̸=l λj(∥µj∥/∥Σj∥

1
2 + 1)6. The second step of (167) is by ai = O(a5), i = 1, 2, 3, 4.

v ≤ 1

K2ητKκ2
Θ(

1

1 + λl
) (168)

∥Ŵn −W ∗P ∥F ≤ poly(η, κ, , τ, δ1(W ∗)) ·
√

d log n

n
K

5
2 (1 + ξ) ·O(

1

1 +
√
λl

) (169)

f̄l(Wt) ≤ poly(η, κ, , τ, δ1(W ∗)) ·
√

d log n

n
K2(1 + ξ) ·O(

1

1 +
√
λl

) (170)

f̄(Wt) ≤ poly(η, κ, , τ, δ1(W ∗)) ·
√

d log n

n
K2(1 + ξ) ·O(

1

1 + λl
) (171)

If ∥Σl∥ ≥ ∥Σj∥, j ∈ [L], we can similarly derive that

nsc ≲poly(ϵ−1
0 , η, κ,K, δ1(W

∗)) · d log2 d ·
(a1λ

2
l + a2λ

3
2

l + a3λl + a4λ
1
2

l + a5)

(
∑L
j=1 λjρj)

2

≲poly(ϵ−1
0 , η, κ,K, δ1(W

∗)) · d log2 d · (O(1)−Θ((1 + λl)
−2))

(172)

v ≤ 1− 1

K2ητKκ2
Θ(

1

1 + λl
) (173)

∥Ŵn −W ∗P ∥F ≤ poly(η, κ, , τ, δ1(W ∗)) ·
√

d log n

n
K

5
2 (1 + ξ) ·O(1 +

√
λl) (174)

f̄l(Wt) ≤ poly(η, κ, , τ, δ1(W ∗)) ·
√

d log n

n
K2(1 + ξ) ·O(1 +

√
λl) (175)

f̄(Wt) ≤ poly(η, κ, , τ, δ1(W ∗)) ·
√

d log n

n
K2(1 + ξ) · (O(1)− Θ(1)

1 + λl
) (176)

L. Proof of Lemma 1 and its supportive lemmas

We first describe the proof of Lemma 1 in Section B2. The proofs of the supportive lemmas are provided in Section L1
to L5 in sequence. The proof idea mainly follows from [28]. Lemma 6 shows the Hessian ∇2f̄(W ) of the population risk
function is smooth. Lemma 7 illustrates that ∇2f̄(W ) is strongly convex in the neighborhood around µ∗. Lemma 8 shows
the Hessian of the empirical risk function ∇2fn(W

∗) is close to its population risk ∇2f̄(W ∗) in the local convex region.
Summing up these three lemmas, we can derive the proof of Lemma 1. Lemma 4 is used in the proof of Lemma 7. Lemma
5 is used in the proof of Lemma 8.

The analysis of the Hessian matrix of the population loss in [28] and [26] can not be extended to the Gaussian mixture
model. To solve this problem, we develop new tools using some good properties of symmetric distribution and even function.
Our approach can also be applied to other activations like tanh or erf. Moreover, if we directly apply the existing matrix
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concentration inequalities in these works in bounding the error between the empirical loss and the population loss, the resulting
sample complexity bound is loose and cannot reflect the influence of each component of the Gaussian mixture distribution.
We develop a new version of Bernstein’s inequality (see (237)) so that the final bound is O(d log2 d).

[83] showed that the landscape of the empirical risk is close to that of the population risk when the number of samples
is sufficiently large for the special case that K = 1. Focusing on Gaussian mixture models, our result explicitly shows how
the parameters of the input distribution, including the proportion, mean and, variance of each component will affect the error
bound between the empirical loss and the population loss in Lemma 8.

1) Proof of Lemma 4: Following the proof idea in Lemma D.4 of [26], we have

Ex∼ 1
2N (µ,Id)+

1
2N (−µ,Id)

[
(

k∑
i=1

r⊤i x · ϕ′(σ · xi))2
]
= A0 +B0 (177)

A0 = Ex∼ 1
2N (µ,Id)+

1
2N (−µ,Id)

( k∑
i=1

r⊤i x · ϕ′2(σ · xi) · xx⊤ri

)
(178)

B0 = Ex∼ 1
2N (µ,Id)+

1
2N (−µ,Id)

(∑
i ̸=l

r⊤i ϕ
′(σ · xi)ϕ′(σ · xl) · xx⊤rl

)
(179)

In A0, we know that Ex∼ 1
2N (µ,Id)+

1
2N (−µ,Id)

xj = 0. Therefore, by some basic mathematical computation,

A0 =

k∑
i=1

Ex∼ 1
2N (µ,Id)+

1
2N (−µ,Id)

[
r⊤i

(
ϕ′2(σ · xi)

(
x2
ieie

⊤
i +

∑
j ̸=i

xixj(eie
⊤
j

+ eje
⊤
i ) +

∑
j ̸=i

∑
l ̸=i

xjxleje
⊤
l

))
ri

]

=

k∑
i=1

Ex∼ 1
2N (µ,Id)+

1
2N (−µ,Id)

[
r⊤i

(
ϕ′2(σ · xi)

(
x2
ieie

⊤
i +

∑
j ̸=i

x2
jeje

⊤
j

))
ri

]

=

k∑
i=1

[
Ex∼ 1

2N (µ,Id)+
1
2N (−µ,Id)

[ϕ′2(σ · xi)x2
i ]r

⊤
i eie

⊤
i ri

+
∑
j ̸=i

Ex∼ 1
2N (µ,Id)+

1
2N (−µ,Id)

[x2
j ]Ex∼ 1

2N (µ,I)+ 1
2N (−µ,I)[ϕ

′2(σ · xi)]r⊤i eje⊤j ri
]

=

k∑
i=1

r2iiβ2(i,µ, σ) +

k∑
i=1

∑
j ̸=i

r2ijβ0(i,µ, σ)(1 + µ2
j )

(180)

In B0, α1(i,µ, σ) = Ex∼ 1
2N (µ,Id)+

1
2N (−µ,Id)

(xiϕ
′(xi)) = 0. By the equation in Page 30 of [26], we have

B0 =

k∑
i ̸=l

Ex∼ 1
2N (µ,Id)+

1
2N (−µ,Id)

[
r⊤i

(
ϕ′(σ · xi)ϕ′(σ · xl)

(
x2
ieie

⊤
i + x2

l ele
⊤
l + xixl(eie

⊤
l +

ele
⊤
i ) +

∑
j ̸=i

xjxleje
⊤
l +

∑
j ̸=l

xjxieje
⊤
i +

∑
j ̸=i,l

∑
j′ ̸=i,l

xjxj′eje
⊤
j′

))
rl

]
=
∑
i ̸=l

riirliα2(i,µ, σ)α0(l,µ, σ) +
∑
i ̸=l

rijrljα0(i,µ, σ)α0(l,µ, σ)(1 + µ2
j )

(181)

Therefore,

A0 +B0 =

k∑
i=1

(
rii

α2(i,µ, σ)√
1 + µ2

i

+
∑
l ̸=i

rliα0(l,µ, σ)
√
1 + µ2

i

)2

−
k∑
i=1

r2ii
α2
2(i,µ, σ)

1 + µ2
i

−
k∑
i=1

∑
l ̸=i

r2liα0(l,µ, σ)
2(1 + µ2

i ) +

k∑
i=1

r2iiβ2(i,µ, σ) +

k∑
i=1

∑
j ̸=i

r2ijβ0(i,µ, σ)(1 + µ2
j )

≥
k∑
i=1

r2ii

(
β2(i,µ, σ)−

α2
2(i,µ, σ)

1 + µ2
i

)
+

k∑
i=1

∑
j ̸=i

r2ij

(
β0(i,µ, σ)− α2

0(i,µ, σ)
)
(1 + µ2

j )

≥ ρ(µ, σ)||R||2F

(182)
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2) Proof of Lemma 5: Following the equation (92) in Lemma 8 of [28] and by (131)

||∇2ℓ(W )−∇2ℓ(W ′)|| ≤
K∑
j=1

K∑
l=1

|ξj,l(W )− ξj,l(W
′)| · ||xx⊤|| (183)

By Lagrange’s inequality, we have

|ξj,l(W )− ξj,l(W
′)| ≤ (max

k
|Tj,k,l|) · ||x|| ·

√
K||W −W ′||F (184)

From Lemma 6, we know
max
k
|Tj,k,l| ≤ C7 (185)

By Property 7, we have

Ex∼
∑L

l=1 λlN (µl,Σl)
[||x||2t||] ≤ dt(2t− 1)!!

L∑
l=1

λl(∥µl∥∞ + ∥Σl∥)2t (186)

Therefore, for some constant C12 > 0

Ex∼
∑L

l=1 λlN (µl,Σl)
[ sup
W ̸=W ′

||∇2ℓ(W )−∇2ℓ(W ′)||
||W −W ′||F

] ≤ K
5
2E[||x||32]

≤K 5
2

√√√√d

L∑
l=1

λl(∥µ∥∞ + ∥Σl∥)2

√√√√3d2
L∑
l=1

λl(∥µl∥∞ + ∥Σl∥)4

=C12 · d
3
2K

5
2

√√√√ L∑
l=1

λl(∥µl∥∞ + ∥Σl∥)2
L∑
l=1

λl(∥µl∥∞ + ∥Σl∥)4

(187)

3) Proof of Lemma 6 : Let a = (a⊤
1 , · · · ,a⊤

K)⊤ ∈ RdK . Let ∆j,l ∈ Rd×d be the (j, l)-th block of∇2f̄(W )−∇2f̄(W ∗P ) ∈
RdK×dK . By definition,

||∇2f̄(W )−∇2f̄(W ∗P )|| = max
||a||=1

K∑
j=1

K∑
l=1

a⊤
j ∆j,lal (188)

Denote P = (p1, · · · ,pK) ∈ RK×K . By the mean value theorem and (131),

∆j,l =
∂2f̄(W )

∂wj∂wl
− ∂2f̄(W ∗P )

∂w∗
j∂w

∗
l

= Ex∼
∑L

l=1 λlN (µl,σ2
l Id)

[(ξj,l(W )− ξj,l(W
∗P )) · xx⊤]

= Ex∼
∑L

l=1 λlN (µl,Σl)
[

K∑
k=1

〈
∂ξj,l(W

′)

∂w′
k

,wk −W ∗pk

〉
· xx⊤]

= Ex∼
∑L

l=1 λlN (µl,Σl)
[

K∑
k=1

⟨Tj,l,k · x,wk −W ∗pk⟩ · xx⊤]

(189)

where W ′ = γW + (1 − γ)W ∗P for some γ ∈ (0, 1) and Tj,l,k is defined such that ∂ξj,l(W
′)

∂w′
k

= Tj,l,k · x ∈ Rd. Then we
provide an upper bound for ξj,l. Since that y = 1 or 0, we first compute the case in which y = 1. From (131) we can obtain

ξj,l(W ) =

{
1
K2ϕ

′(w⊤
j x)ϕ

′(w⊤
l x) · 1

H2(W ) , j ̸= l
1
K2ϕ

′(w⊤
j x)ϕ

′(w⊤
l x) · 1

H2(W ) −
1
Kϕ′′(w⊤

j x) · 1
H(W ) , j = l

(190)

We can bound ξj,l(W ) by bounding each component of (190). Note that we have

1

K2
ϕ′(w⊤

j x)ϕ
′(w⊤

l x) ·
1

H2(W )
≤ 1

K2

ϕ(w⊤
j x)ϕ(w

⊤
l x)(1− ϕ(w⊤

j x))(1− ϕ(w⊤
l x))

1
K2ϕ(w⊤

j x)ϕ(w
⊤
l x)

≤ 1 (191)

1

K
ϕ′′(w⊤

j x) ·
1

H(W )
≤ 1

K

ϕ(w⊤
j x)(1− ϕ(w⊤

j x))(1− 2ϕ(w⊤
j x))

1
Kϕ(w⊤

j x)
≤ 1 (192)

where (191) holds for any j, l ∈ [K]. The case y = 0 can be computed with the same upper bound by substituting (1−H(W )) =
1
K

∑K
j=1(1− ϕ(w⊤

j x)) for H(W ) in (190), (191) and (192). Therefore, there exists a constant C9 > 0, such that

|ξj,l(W )| ≤ C9 (193)
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We then need to calculate Tj,l,k. Following the analysis of ξj,l(W ), we only consider the case of y = 1 here for simplicity.

Tj,l,k =
−2

K3H3(W ′)
ϕ′(w′⊤

j x)ϕ
′(w′⊤

l x)ϕ
′(w′⊤

k x), where j, l, k are not equal to each other (194)

Tj,j,k =

{ −2
K3H3(W ′)ϕ

′(w′⊤
j x)ϕ

′(w′⊤
j x)ϕ

′(w′⊤
k x) +

1
K2H2(W ′)ϕ

′′(w′⊤
j x)ϕ

′(w′⊤
k x), j ̸= k

−2
K3H3(W ′) (ϕ

′(w′⊤
j x))

3 + 3
K2H2(W ′)ϕ

′′(w′⊤
j x)ϕ

′(w′⊤
j x)−

ϕ′′′(w′⊤
j x)

KH(W ′) , j = k
(195)

a⊤
j ∆j,lal = Ex∼

∑L
l=1 N (µl,Σl)

[(

K∑
k=1

Tj,l,k ⟨x,wk −W ∗pk⟩) · (a⊤
j x)(a

⊤
l x)]

≤

√√√√Ex∼
∑L

l=1 N (µl,Σl)
[

K∑
k=1

T 2
j,k,l] · E[

K∑
k=1

(⟨x,wk −W ∗pk⟩ (a⊤
j x)(a

⊤
l x))

2]

≤

√√√√Ex∼
∑L

l=1 N (µl,Σl)
[

K∑
k=1

T 2
j,k,l]

√√√√ K∑
k=1

√
E((wk −W ∗pk)⊤x)4 ·

√
E[(a⊤

j x)
4(a⊤

l x)
4]

≤ C8

√√√√Ex∼
∑L

l=1 N (µl,Σl)
[

K∑
k=1

T 2
j,k,l]

√√√√ K∑
k=1

||wk −W ∗pk||22 · ||aj ||22 · ||al||22

·
( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
4

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
8
) 1

4

(196)

for some constant C8 > 0. All the three inequalities of (196) are derived from Cauchy-Schwarz inequality. Note that we have∣∣∣ −2
K3H3(W )

(ϕ′(w⊤
j x))

2ϕ′(w⊤
k x)

∣∣∣ ≤ 2ϕ2(w⊤
j x)(1− ϕ(w⊤

j x))
2ϕ(w⊤

k x)(1− ϕ(w⊤
k x))

K3 1
K3ϕ2(w⊤

j x)ϕ(w
⊤
k x)

= 2(1− ϕ(w⊤
j x))

2(1− ϕ(w⊤
k x)) ≤ 2

(197)

∣∣∣ −2
K3H3(W )

ϕ′(w⊤
j x)ϕ

′(w⊤
l x)ϕ

′(w⊤
k x)

∣∣∣ ≤ 2 (198)∣∣∣ 3

K2H2(W )
ϕ′′(w⊤

j x)ϕ
′(w⊤

k x)
∣∣∣

≤
∣∣∣3ϕ(w⊤

j x)(1− ϕ(w⊤
j x))(1− 2ϕ(w⊤

j x))ϕ(w
⊤
k x)(1− ϕ(w⊤

k x))

K2 1
K2ϕ(w⊤

j x)ϕ(w
⊤
k x)

∣∣∣
=
∣∣∣3(1− ϕ(w⊤

j x))(1− 2ϕ(w⊤
j x))(1− ϕ(w⊤

k x))
∣∣∣ ≤ 3

(199)

∣∣∣ϕ′′′(w⊤
j x)

KH(W )

∣∣∣ ≤ ∣∣∣ϕ(w⊤
j x)(1− ϕ(w⊤

j x))(1− 6ϕ(w⊤
j x) + 6ϕ2(w⊤

j x))

K 1
Kϕ(w⊤

j x)

∣∣∣ ≤ 1 (200)

Therefore, by combining (194), (195) and (197) to (200), we have

|Tj,l,k| ≤ C7 ⇒ T 2
j,l,k ≤ C2

7 ,∀j, l, k ∈ [K], (201)

for some constants C7 > 0. By (188), (189), (196), (201) and the Cauchy-Schwarz’s Inequality, we have

∥∇2f̄(W )−∇2f̄(W ∗P )∥

≤C8

√
C2

7K||W −W ∗P ||F
( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
4

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
8
) 1

4

· max
||a||=1

K∑
j=1

K∑
l=1

||aj ||2||al||2

≤C8

√
C2

7K · ||W −W ∗P ||F ·
( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
4

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
8
) 1

4 ·
( K∑
j=1

||aj ||
)2

≤C8

√
C2

7K
3 · ||W −W ∗P ||F ·

( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
4

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
8
) 1

4

(202)
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Hence, we have
||∇2f̄(W )−∇2f̄(W ∗P )||

≤C5K
3
2

( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
4

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
8
) 1

4 ||W −W ∗P ||F
(203)

for some constant C5 > 0.

4) Proof of Lemma 7 : From [28], we know

∇2f̄(W ∗P ) ⪰ min
||a||=1

4

K2
Ex∼

∑L
l=1 λlN (µl,Σl)

[( K∑
j=1

ϕ′(w∗
π∗(j)

⊤x)(a⊤
π∗(j)x)

)2]
· IdK

= min
||a||=1

4

K2
Ex∼

∑L
l=1 λlN (µl,Σl)

[( K∑
j=1

ϕ′(w∗
j
⊤x)(a⊤

j x)
)2]
· IdK

(204)

with a = (a⊤
1 , · · · ,a⊤

K)⊤ ∈ RdK , where P is a specific permutation matrix and {π∗(j)}Kj=1 is the indices permuted by P .
Similarly,

∇2f̄(W ∗P ) ⪯
(

max
||a||=1

a⊤∇2f̄(W ∗)a
)
· IdK ⪯ C4 · max

||a||=1
Ex∼

∑L
l=1 λlN (µl,Σl)

[ K∑
j=1

(a⊤
π∗(j)x)

2
]
· IdK

= C4 · max
||a||=1

Ex∼
∑L

l=1 λlN (µl,Σl)

[ K∑
j=1

(a⊤
j x)

2
]
· IdK

(205)

for some constant C4 > 0. By applying Property 8, we can derive the upper bound in (205) as

C4 · Ex∼
∑L

l=1 λlN (µl,Σl)

[ K∑
j=1

(a⊤
j x)

2
]
· IdK ⪯ C4 ·

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2 · IdK (206)

To find a lower bound for (204), we can first transfer the expectation of the Gaussian Mixture Model to the weight sum of
the expectations over general Gaussian distributions.

min
||a||=1

Ex∼
∑L

l=1 λlN (µl,Σl)

[( K∑
j=1

ϕ′(w∗
j
⊤x)(a⊤

j x)
)2]

= min
||a||=1

L∑
l=1

λlEx∼N (µl,Σl)

[( K∑
j=1

ϕ′(w∗
j
⊤x)(a⊤

j x)
)2] (207)

Denote U ∈ Rd×k as the orthogonal basis of W ∗. For any vector ai ∈ Rd, there exists two vectors bi ∈ RK and ci ∈ Rd−K
such that

ai = Ubi +U⊥ci (208)

where U⊥ ∈ Rd×(d−K) denotes the complement of U . We also have U⊤
⊥µl = 0 by Property 1. Plugging (208) into RHS of

(207), and then we have

Ex∼N (µl,Σl)

[( K∑
i=1

a⊤
i x · ϕ′(w∗

i
⊤x)

)2]
=Ex∼N (µl,Σl)

[( K∑
i=1

(Ubi +U⊥ci)
⊤x · ϕ′(w∗

i
⊤x)

)2]
= A+B + C

(209)

A = Ex∼N (µl,Σl)

[( K∑
i=1

b⊤i U
⊤x · ϕ′(w∗

i
⊤x)

)2]
(210)
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C = Ex∼N (µl,Σl)

[
2
( K∑
i=1

c⊤i U
⊤
⊥x · ϕ′(w∗

i
⊤x)

)
·
( K∑
i=1

b⊤i U
⊤x · ϕ′(w∗

i
⊤x)

)]
=

K∑
i=1

K∑
j=1

Ex∼N (µl,Σl)

[
2c⊤i U

⊤
⊥x

]
Ex∼N (µl,Σl)

[
b⊤i U

⊤x · ϕ′(w∗
i
⊤x)ϕ′(w∗

j
⊤x)

]
=

K∑
i=1

K∑
j=1

[
2c⊤i U

⊤
⊥µl

]
Ex∼N (µl,Σl)

[
b⊤i U

⊤x · ϕ′(w∗
i
⊤x)ϕ′(w∗

j
⊤x)

]
= 0

(211)

where the last step is by U⊤
⊥µl = 0 by Property 1.

B =Ex∼N (µl,Σl)

[
(

K∑
i=1

c⊤i U
⊤
⊥x · ϕ′(w∗

i
⊤x))2

]
=Ex∼N (µl,Σl)[(t

⊤s)2] by defining t =

k∑
i=1

ϕ′(w∗
i
⊤x)ci ∈ Rd−K and s = U⊤

⊥x

=

K∑
i=1

E[t2i s2i ] +
∑
i ̸=j

E[titjsisj ]

=

K∑
i=1

E[t2i ]
d∑
k=1

(U⊥)
2
ikσ

2
lk +

( K∑
i=1

E[t2i ](U⊤
⊥µl)

2
i +

∑
i ̸=j

E[titj ](U⊤
⊥µl)i · (U⊤

⊥µl)j

)

=E[
d−K∑
i=1

t2i ·
d∑
k=1

(U⊥)
2
ikσ

2
lk] + E[(t⊤U⊤

⊥µl)
2] = E[

d−K∑
i=1

t2i ·
d∑
k=1

(U⊥)
2
ikσ

2
lk]

(212)

The last step is by U⊤
⊥µl = 0. The 4th step is because that si is independent of ti, thus E[titjsisj ] = E[titj ]E[sisj ]

E[sisj ] =
{

(U⊤
⊥µl)i · (U⊤

⊥µl)j , if i ̸= j

(U⊤
⊥µl)

2
i +

∑d
k=1(U⊥)

2
ikσ

2
lk, if i = j

(213)

Since
(∑k

i=1 r
⊤
i x · ϕ′(σ · xi)

)2

is an even function for any ri ∈ Rd, i ∈ [k], so from Property 5 we have

Ex∼N (µl,Σl)

[
(

k∑
i=1

r⊤i x · ϕ′(σ · xi))2
]
= Ex∼ 1

2N (µl,Σl)+
1
2N (−µl,Σl)

[
(

k∑
i=1

r⊤i x · ϕ′(σ · xi))2
]

(214)

Combining Lemma 4 and Property 5, we next follow the derivation for the standard Gaussian distribution in Page 36 of [26]
and generalize the result to a Gaussian distribution with an arbitrary mean and variance as follows.
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A = Ex∼N (µl,Σl)

[( K∑
i=1

b⊤i U
⊤x · ϕ′(w∗

i
⊤x)

)2]
≥

∫
(2π)−

K
2 |U⊤ΣlU |−

1
2

[( K∑
i=1

b⊤i z · ϕ′(vi
⊤z)

)2]
exp

(
− 1

2
∥Σ−1

l ∥∥z −U⊤µl∥2
)
dz

=

∫
(2π)−

K
2 |U⊤ΣlU |−

1
2

[( K∑
i=1

b⊤i V
†⊤s · ϕ′(si)

)2]
exp

(
− 1

2
∥Σ−1

l ∥∥V
†⊤s−U⊤µl∥2

)∣∣∣det(V †)
∣∣∣ds

≥
∫
(2π)−

K
2 |U⊤ΣlU |−

1
2

[( k∑
i=1

b⊤i V
†⊤s · ϕ′(si)

)2]
exp

(
−
∥Σ−1

l ∥∥s− V ⊤U⊤µl∥2

2δ2K(W ∗)

)∣∣∣det(V †)
∣∣∣ds

≥
∫
(2π)−

K
2 |U⊤ΣlU |−

1
2

[( k∑
i=1

b⊤i V
†⊤(δK(W ∗)∥Σ−1

l ∥
− 1

2 )g · ϕ′(δK(W ∗)∥Σ−1
l ∥

− 1
2 · gi)

)2]

· exp
(
−
||g −

√
∥Σ−1

l ∥W ∗⊤
µl

δK(W ∗) ||2

2

)∣∣∣det(V †)
∣∣∣∥Σ−1

l ∥
−K

2 δKK (W ∗)dg

=
∥Σ−1

l ∥−1

τKη
Eg

[
(

K∑
i=1

(b⊤i V
†⊤δK(W ∗))g · ϕ′(∥Σ−1

l ∥
− 1

2 δK(W ∗) · gi))2
]

≥
∥Σ−1

l ∥−1

τKκ2η
ρ(

W ∗⊤µl

∥Σ−1
l ∥−

1
2 δK(W ∗)

, ∥Σ−1
l ∥

− 1
2 δK(W ∗))||b||2.

(215)

The second step is by letting z = U⊤x ∼ N (U⊤µl,U
⊤ΣU), y⊤U⊤Σ−1

l Uy ≤ ∥Σ−1
l ∥∥y∥2 for any y ∈ RK . The third

step is by letting s = V ⊤z. The last to second step follows from g = s

∥Σ−1
l ∥− 1

2 δK(W ∗)
, where g ∼ N ( W ∗⊤µl

∥Σ−1
l ∥− 1

2 δK(W ∗)
, IK)

and the last inequality is by Lemma 4. Similarly, we extend the derivation in Page 37 of [26] for the standard Gaussian
distribution to a general Gaussian distribution as follows.

B =

d∑
k=1

(U⊥)
2
ikσ

2
lkEx∼N (µl,Σl)[||t||

2] ≥
∥Σ−1

l ∥−1

ητKκ2
ρ(

W ∗⊤µl

∥Σ−1
l ∥−

1
2 |δK(W ∗)

, ∥Σ−1
l ∥

− 1
2 δK(W ∗))||c||2 (216)

Combining (209) - (212), (215) and (216), we have

min
||a||=1

Ex∼N (µl,Σl)

[
(

k∑
i=1

a⊤
i x · ϕ′(w∗

i
⊤x))2

]
≥
∥Σ−1

l ∥−1

ητKκ2
ρ(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

, δK(W ∗)∥Σ−1
l ∥

− 1
2 ). (217)

For the Gaussian Mixture Model x ∼
∑L
l=1N (µl,Σ), we have

min
∥a∥=1

Ex∼
∑L

l=1 λlN (µl,Σl)

[
(

k∑
i=1

a⊤
i x · ϕ′(w∗

i
⊤x))2

]
≥

L∑
l=1

λl
∥Σ−1

l ∥−1

ητKκ2
ρ(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

, δK(W ∗)∥Σ−1
l ∥

− 1
2 )

(218)

Therefore,
4

K2

L∑
l=1

λl
∥Σ−1

l ∥−1

ητKκ2
ρ(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

, δK(W ∗)∥Σ−1
l ∥

− 1
2 ) · IdK

⪯∇2f̄(W ∗P ) ⪯ C4 ·
L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2 · IdK

(219)

From (19) in Lemma 6, since that we have the condition ∥W −W ∗P ∥F ≤ r and (139), we can obtain

||∇2f̄(W )−∇2f̄(W ∗P )||

≤C5K
3
2

( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
4

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
8
) 1

4 ||W −W ∗P ||F

≤4ϵ0
K2

L∑
l=1

λl
∥Σ−1

l ∥−1

ητKκ2
ρ(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

, δK(W ∗)∥Σ−1
l ∥

− 1
2 ),

(220)
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where ϵ0 ∈ (0, 1
4 ). Then we have

||∇2f̄(W )|| ≥ ||∇2f̄(W ∗P )|| − ||∇2f̄(W )−∇2f̄(W ∗P )||

≥ 4(1− ϵ0)

K2

L∑
l=1

λl
∥Σ−1

l ∥−1

ητKκ2
ρ(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

, δK(W ∗)∥Σ−1
l ∥

− 1
2 )

(221)

||∇2f̄(W )|| ≤ ||∇2f̄(W ∗)||+ ||∇2f̄(W )−∇2f̄(W ∗P )||

≤ C4 ·
L∑
l=1

λl(∥µl∥+ ∥Σ
1
2 ∥)2 + 4

K2

L∑
l=1

λl
∥Σ−1

l ∥−1

ητKκ2
ρ(

W ∗⊤µl

δK(W ∗)∥Σ− 1
2

l ∥
, δK(W ∗)∥Σ− 1

2

l ∥)

≲ C4 ·
L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2

(222)

The last inequality of (222) holds since C4 ·
∑
l=1 λl(∥µl∥ + ∥Σ

1
2

l ∥)2 = Ω(maxl{∥Σl∥}),
4
K2

∑L
l=1 λl

∥Σ−1
l ∥−1

ητKκ2 ρ( W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥− 1

2
, δK(W ∗)∥Σ−1

l ∥−
1
2 ) = O(maxl{∥Σl∥}

K2 ) and Ω(maxl{∥Σl∥}) ≥ O(maxl{∥Σl∥}
K2 ).

Combining (221) and (222), we have

4(1− ϵ0)

K2

L∑
l=1

λl
∥Σ−1

l ∥−1

ητKκ2
ρ(

W ∗⊤µl

δK(W ∗)∥Σ−1
l ∥−

1
2

, δK(W ∗)∥Σ−1
l ∥

− 1
2 ) · I

⪯∇2f̄(W ) ⪯ C4 ·
L∑
l=1

λl(∥µl∥+ σl)
2 · I

(223)

5) Proof of Lemma 8: Let Nϵ be the ϵ-covering number of the Euclidean ball B(W ∗P , r). It is known that logNϵ ≤
dK log( 3rϵ ) from [76]. Let Wϵ = {W1, ...,WNϵ

} be the ϵ-cover set with Nϵ elements. For any W ∈ B(W ∗P , r), let
j(W ) = argmin

j∈[Nϵ]

||W −Wj(W )||F ≤ ϵ for all W ∈ B(W ∗P , r).

Then for any W ∈ B(W ∗P , r), we have

∥∇2fn(W )−∇2f̄(W )∥

≤ 1

n
||

n∑
i=1

[∇2ℓ(W ;xi)−∇2ℓ(Wj(W );xi)]||

+ || 1
n

n∑
i=1

∇2ℓ(Wj(W );xi)− Ex∼
∑L

l=1 λlN (µl,Σl)
[∇2ℓ(Wj(W );xi)]||

+ ||Ex∼
∑L

l=1 λlN (µl,Σl)
[∇2ℓ(Wj(W );xi)]− Ex∼

∑L
l=1 λlN (µl,Σl)

[∇2ℓ(W ;xi)]||

(224)

Hence, we have

P
(

sup
W∈B(W ∗P ,r)

||∇2fn(W )−∇2f̄(W )|| ≥ t
)
≤ P(At) + P(Bt) + P(Ct) (225)

where At, Bt and Ct are defined as

At = { sup
W∈B(W ∗P ,r)

1

n
||

n∑
i=1

[∇2ℓ(W ;xi)−∇2ℓ(Wj(W );xi)]|| ≥
t

3
} (226)

Bt = { sup
W∈B(W ∗P ,r)

|| 1
n

n∑
i=1

∇2ℓ(Wj(W );xi)− Ex∼
∑L

l=1 λlN (µl,Σl)
[∇2ℓ(Wj(W );xi)]|| ≥

t

3
} (227)

Ct ={ sup
W∈B(W ∗P ,r)

||Ex∼
∑L

l=1 λlN (µl,Σl)
[∇2ℓ(Wj(W );xi)]

− Ex∼
∑L

l=1 λlN (µl,Σl)
[∇2ℓ(W ;xi)]|| ≥

t

3
}

(228)

Then we bound P(At), P(Bt), and P(Ct) separately.
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1) Upper bound on P(Bt). By Lemma 6 in [28], we obtain∣∣∣∣∣∣ 1
n

n∑
i=1

∇2ℓ(W ;xi)− Ex∼
∑L

l=1 λlN (µl,Σl)
[∇2ℓ(W ;xi)]

∣∣∣∣∣∣
≤2 sup

v∈V 1
4

∣∣∣〈v, (
1

n

n∑
i=1

∇2ℓ(W ;xi)− Ex∼
∑L

l=1 λlN (µl,Σl)
[∇2ℓ(W ;xi)])v

〉∣∣∣ (229)

where V 1
4

is a 1
4 -cover of the unit-Euclidean-norm ball B(0, 1) with log |V 1

4
| ≤ dK log 12. Taking the union bound over Wϵ

and V 1
4

, we have

P(Bt) ≤P
(

sup
W∈Wϵ,v∈V 1

4

∣∣∣ 1
n

n∑
i=1

Gi

∣∣∣ ≥ t

6

)
≤ exp(dK(log

3r

ϵ
+ log 12)) sup

W∈Wϵ,v∈V 1
4

P(| 1
n

n∑
i=1

Gi| ≥
t

6
)

(230)

where Gi =
〈
v, (∇2ℓ(W ,xi)− Ex∼

∑L
l=1 λlN (µl,Σl)

[∇2ℓ(W ,xi)]v)
〉

and E[Gi] = 0. Here v = (u⊤
1 , · · · ,u⊤

K)⊤ ∈ RdK .

|Gi| =
∣∣∣ K∑
j=1

K∑
l=1

[
ξj,lu

⊤
j xx

⊤ul − Ex∼
∑L

l=1 λlN (µl,Σl)
(ξj,lu

⊤
j xx

⊤ul)
]∣∣∣

≤ C9 ·
[ K∑
j=1

(u⊤
j x)

2 +

K∑
j=1

Ex∼
∑L

l=1 λlN (µl,Σl)
(u⊤

j x)
2
] (231)

for some C9 > 0. The first step of (231) is by (130). The last step is by (193) and the Cauchy-Schwarz’s Inequality.

E[|Gi|p] ≤
p∑
l=1

(
p

l

)
C9 · Ex∼

∑L
l=1 λlN (µl,Σl)

[
(

K∑
j=1

(u⊤
j x)

2)l
]

·
( K∑
j=1

Ex∼
∑L

l=1 λlN (µl,Σl)
(u⊤

j x)
2
)p−l

=

p∑
l=1

(
p

l

)
C9 · Ex∼

∑L
l=1 λlN (µl,Σl)

[ ∑
l1+···+lK=l

l!∏K
j=1 lj !

K∏
j=1

(u⊤
j x)

2lj
]

·
( K∑
j=1

Ex∼
∑L

l=1 λlN (µl,Σl)
(u⊤

j x)
2
)p−l

=

p∑
l=1

(
p

l

)
C9 ·

[ ∑
l1+···+lK=l

l!∏K
j=1 lj !

K∏
j=1

Ex∼
∑L

l=1 λlN (µl,Σl)
(u⊤

j x)
2lj

]
·
( K∑
j=1

Ex∼
∑L

l=1 λlN (µl,Σl)
(u⊤

j x)
2
)p−l

= C9 ·
p∑
l=1

(
p

l

)( K∑
j=1

Ex∼
∑L

l=1 λlN (µl,Σl)
(u⊤

j x)
2
)l

·
( K∑
j=1

Ex∼
∑L

l=1 λlN (µl,Σl)
(u⊤

j x)
2
)p−l

= C9 ·
( K∑
j=1

Ex∼
∑L

l=1 λlN (µl,Σl)
(u⊤

j x)
2
)p

≤ C9 ·
( K∑
j=1

1!!||uj ||2
L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2
)p

≤ C9 ·
( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2
)p

(232)
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where the first step is by the triangle inequality and the Binomial theorem, and the second step comes from the Multinomial
theorem. The second to last inequality in (232) results from Property 8. The last inequality is because v ∈ V 1

4
,
∑K
j=1 ||uj ||2 =

||v||2 ≤ 1.

E[exp(θGi)] = 1 + θE[Gi] +

∞∑
p=2

θpE[|Gi|p]
p!

≤ 1 +

∞∑
p=2

|eθ|p

pp
C9 ·

(∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2
)p

≤ 1 + C9 · |eθ|2
( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2
)2

(233)

where the first inequality holds from p! ≥ (pe )
p and (232), and the third line holds provided that

max
p≥2
{

|eθ|(p+1)

(p+1)(p+1) ·
(∑L

l=1 λl(∥µl∥+ ∥Σ
1
2

l ∥)2
)p+1

|eθ|p
pp ·

(∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)2
)p } ≤ 1

2
(234)

Note that the quantity inside the maximization in (234) achieves its maximum when p = 2, because it is monotonously
decreasing. Therefore, (234) holds if θ ≤ 27

4e

∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)2. Then

P
( 1

n

n∑
i=1

Gi ≥
t

6

)
= P

(
exp(θ

n∑
i=1

Gi) ≥ exp(
nθt

6
)
)
≤ e−

nθt
6

n∏
i=1

E[exp(θGi)]

≤ exp(C10θ
2n

( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2
)2

− nθt

6
)

(235)

for some constant C10 > 0. The first inequality follows from Markov’s Inequality. When θ =

min{ t

12C10

(∑L
l=1 λl(∥µl∥+∥Σ

1
2
l ∥)2

)2 ,
27
4e

∑L
l=1 λl(∥µl∥ + ∥Σ

1
2

l ∥)2}, we have a modified Bernstein’s Inequality for the

Gaussian Mixture Model as follows

P(
1

n

n∑
i=1

Gi ≥
t

6
) ≤ exp

(
max{ − C10nt

2

144
(∑L

l=1 λl(∥µl∥+ ∥Σ
1
2

l ∥)2
)2 ,

− C11n

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2 · t}

) (236)

for some constant C11 > 0. We can obtain the same bound for P(− 1
n

∑n
i=1 Gi ≥ t

6 ) by replacing Gi as −Gi. Therefore, we
have

P(| 1
n

n∑
i=1

Gi| ≥
t

6
) ≤ 2 exp

(
max{ − C10nt

2

144
(∑L

l=1 λl(∥µl∥+ ∥Σ
1
2

l ∥)2
)2 ,

− C11n

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2 · t}

) (237)

Thus, as long as

t ≥ C6 ·max{
L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2

√
dK log 36r

ϵ + log 4
δ

n
,

dK log 36r
ϵ + log 4

δ∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)2n
} (238)

for some large constant C6 > 0, we have P(Bt) ≤ δ
2 .
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2) Upper bound on P(At) and P(Ct). From Lemma 5, we can obtain

sup
W∈B(W ∗P ,r)

||Ex∼
∑L

l=1 λlN (µl,Σl)
[∇2ℓ(Wj(W );x)]− Ex∼

∑L
l=1 λlN (µl,Σl)

[∇2ℓ(W ;x)]||

≤ sup
W∈B(W ∗P ,r)

||Ex∼
∑L

l=1 λlN (µl,Σl)
[∇2ℓ(Wj(W );x)]− Ex∼

∑L
l=1 λlN (µl,Σl)

[∇2ℓ(W ;x)]||
||W −Wj(W )||F

· sup
W∈B(W ∗P ,r)

||W −Wj(W )||F

≤ C12 · d
3
2K

5
2

√√√√ L∑
l=1

λl(∥µl∥∞ + ∥Σ
1
2

l ∥)2
L∑
l=1

λl(∥µl∥∞ + ∥Σ
1
2

l ∥)4 · ϵ

(239)

Therefore, Ct holds if

t ≥ C12 · d
3
2K

5
2

√√√√ L∑
l=1

λl(∥µl∥∞ + ∥Σ
1
2

l ∥)2
L∑
l=1

λl(∥µl∥∞ + ∥Σ
1
2

l ∥)4 · ϵ (240)

We can bound the At as below.

P
(

sup
W∈B(W ∗P ,r)

1

n
||

n∑
i=1

[∇2ℓ(Wj(W );xi)−∇2ℓ(W ;xi)]|| ≥
t

3

)
≤ 3

t
Ex∼

∑L
l=1 λlN (µl,Σl)

[
sup

W∈B(W ∗P ,r)

1

n
||

n∑
i=1

[∇2ℓ(Wj(W );xi)−∇2ℓ(W ;xi)]||
]

=
3

t
Ex∼

∑L
l=1 λlN (µl,Σl)

[
sup

W∈B(W ∗P ,r)

||∇2ℓ(Wj(W );xi)−∇2ℓ(W ;xi)||
]

≤ 3

t
E
[

sup
W∈B(W ∗P ,r)

||∇2ℓ(Wj(W );xi)−∇2ℓ(W ;xi)||
||W −Wj(W )||F

]
· sup
W∈B(W ∗P ,r)

||W −Wj(W )||F

≤
C12 · d

3
2K

5
2

√∑L
l=1 λl(∥µl∥∞ + ∥Σ

1
2

l ∥)2
∑L
l=1 λl(∥µl∥∞ + ∥Σ

1
2

l ∥)4 · ϵ
t

,

(241)

where the first inequality is by Markov’s inequality, and the last inequality comes from Lemma 5. Thus, taking

t ≥
C12 · d

3
2K

5
2

√∑L
l=1 λl(∥µl∥∞ + ∥Σ

1
2

l ∥)2
∑L
l=1 λl(∥µl∥∞ + ∥Σ

1
2

l ∥)4 · ϵ
δ

(242)

ensures that P(At) ≤ δ
2 .

3) Final step
Let ϵ = δ

C12·d
3
2K

5
2

√∑L
l=1 λl(∥µl∥∞+∥Σ

1
2
l ∥)2

∑L
l=1 λl(∥µl∥∞+∥Σ

1
2
l ∥)4·ndK

and δ = d−10, then from (238) and (242) we need

t >max{ 1

ndK
, C6 ·

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2

·

√√√√dK log(36rnd
25
2 K

7
2

√∑L
l=1 λl(∥µl∥∞ + ∥Σ

1
2

l ∥)2
∑L
l=1 λl(∥µl∥∞ + ∥Σ

1
2

l ∥)4) + log 4
δ

n
,

dK log(36rnd
25
2 K

7
2 ·

√∑L
l=1 λl(∥µl∥∞ + ∥Σ

1
2

l ∥)2
∑L
l=1 λl(∥µl∥∞ + ∥Σ

1
2

l ∥)4) + log 4
δ∑L

l=1 λl(∥µl∥+ ∥Σ
1
2

l ∥)2n
}

(243)

So by setting t =
∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)2
√

dK logn
n , as long as n ≥ C ′ · dK log dK, we have

P( sup
W∈B(W ∗P ,r)

||∇2fn(W )−∇2f̄(W )|| ≥ C6 ·
L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2

√
dK log n

n
) ≤ d−10 (244)
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M. Proof of Lemma 2 and its supportive lemmas

1) Proof of Lemma 9: Note that ∇f̃n(W ) = ∇fn(W ) + 1
n

∑n
i=1 νi, ∇f̃(W ) = ∇f̄(W ) + E[νi] = ∇f̄(W ). Therefore,

we have

sup
W∈B(W ∗P ,r)

||∇f̃n(W )−∇f̃(W )|| ≤ sup
W∈B(W ∗P ,r)

||∇fn(W )−∇f̄(W )||+ ∥ 1
n

n∑
i=1

νi∥ (245)

Then, similar to the idea of the proof of Lemma 8, we adopt an ϵ-covering net of the ball B(W ∗, r) to build a relationship
between any arbitrary point in the ball and the points in the covering set. We can then divide the distance between ∇fn(W )
and ∇f̄(W ) into three parts, similar to (224). (246) to (248) can be derived in a similar way as (226) to (228), with “∇2”
replaced by “∇”. Then we need to bound P(A′

t), P(B′
t) and P(C ′

t) respectively, where A′
t, B

′
t and C ′

t are defined below.

A′
t = { sup

W∈B(W ∗P ,r)

1

n
||

n∑
i=1

[∇ℓ(W ;xi)−∇ℓ(Wj(W );xi)]|| ≥
t

3
} (246)

B′
t = { sup

W∈B(W ∗P ,r)

|| 1
n

n∑
i=1

∇ℓ(Wj(W );xi)− Ex∼
∑L

l=1 λlN (µl,Σl)
[∇ℓ(Wj(W );xi)]|| ≥

t

3
} (247)

C ′
t ={ sup

W∈B(W ∗P ,r)

||Ex∼
∑L

l=1 λlN (µl,Σl)
[∇ℓ(Wj(W );xi)]

− Ex∼
∑L

l=1 λlN (µl,Σl)
[∇ℓ(W ;xi)]|| ≥

t

3
}

(248)

(a) Upper bound of P(B′
t). Applying Lemma 3 in [83], we have

|| 1
n

n∑
i=1

∇ℓ(Wj(W );xi)− Ex∼
∑L

l=1 λlN (µl,Σl)
[∇ℓ(Wj(W );xi)]||

≤2 sup
v∈V 1

2

∣∣∣〈 1

n

n∑
i=1

∇ℓ(Wj(W );xi)− Ex∼
∑L

l=1 λlN (µl,Σl)
[∇ℓ(Wj(W );xi)],v

〉∣∣∣ (249)

Define G′
i =

〈
v, (∇ℓ(W ,xi)− Ex∼

∑L
l=1 λlN (µl,Σl)

[∇ℓ(W ,xi)])
〉

. Here v ∈ Rd. To compute ∇ℓ(W ,xi), we require the
derivation in Property 9. Then we can have an upper bound of ζ(W ) in (129).

ζ(W ) =


∣∣∣− 1

K
1

H(W )ϕ
′(w⊤

j x)
∣∣∣ ≤ ϕ(w⊤

j x)(1−ϕ(w⊤
j x))

K· 1
K ϕ(w⊤

j x)
≤ 1, y = 1∣∣∣ 1

K
1

1−H(W )ϕ
′(w⊤

j x)
∣∣∣ ≤ ϕ(w⊤

j x)(1−ϕ(w⊤
j x))

K· 1
K (1−ϕ(w⊤

j x))
≤ 1, y = 0

(250)

Then we have an upper bound of G′
i.

|G′
i| =

∣∣∣ζj,lv⊤x− Ex∼
∑L

l=1 λlN (µl,Σl)
[ζv⊤x]

∣∣∣
≤ |v⊤x|+ Ex∼

∑L
l=1 λlN (µl,Σl)

[|v⊤x|]
(251)

Following the idea of (232) and (233), and by v ∈ V 1
2

, we have

E[|G′
i|p] ≤ O

(( L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2
) p

2
)

(252)

E[exp(θG′
i)] ≤ 1 +O

(
|eθ2|

L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)
2
)

(253)

where (253) holds if θ ≤ 27
4e

√∑L
l=1 λl(∥µl∥+ ∥Σl∥)2. Following the derivation of (230) and (235) to (238), we have

P(| 1
n

n∑
i=1

G′
i| ≥

t

6
)

≤2 exp
(
max

{
− C14nt

2

144
∑L
l=1 λl(∥µl∥+ ∥Σ

1
2

l ∥)2
,−C15n

√√√√ L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)2 · t
}) (254)
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for some constant C14 > 0 and C15 > 0. Moreover, we can obtain P(B′
t) ≤ δ

2 as long as

t ≥ C13 ·max{

√√√√ L∑
l=1

λl(∥µl∥+ ∥Σ
1
2

l ∥)2

√
dK log 18r

ϵ + log 4
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n
,

dK log 18r
ϵ + log 4

δ√∑L
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1
2

l ∥)2 · n
} (255)

(b) For the upper bound of P(A′
t) and P(C ′

t), we can first derive

Ex∼
∑L

l=1 λlN (µl,Σl)

[
sup

W ̸=W ′∈B(W ∗P ,r)

||∇ℓ(W ,x)−∇ℓ(W ′,x)||
||W −W ′||F

]
≤Ex∼

∑L
l=1 λlN (µl,Σl)

[
sup

W ̸=W ′∈B(W ∗P ,r)

|ζ(W )− ζ(W ′)| · ||x||
||W −W ′||F

]
≤Ex∼

∑L
l=1 λlN (µl,Σl)

[
sup

W ̸=W ′∈B(W ∗P ,r)

max1≤j,l≤K{|ξj,l(W ′′)|} · ||x||2
√
K||W −W ′||F

||W −W ′||F

]
≤Ex∼

∑L
l=1 λlN (µl,Σl)

[
sup

W ̸=W ′∈B(W ∗P ,r)

C9 · ||x||2
√
K||W −W ′||F
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]
≤C9 · 3

√
Kd ·

L∑
l=1

λl(∥µl∥∞ + ∥Σ
1
2

l ∥)
2

(256)

The first inequality is by (129). The second inequality is by the Mean Value Theorem. The third step is by (193). The last
inequality is by Property 7. Therefore, following the steps in part (2) of Lemma 8, we can conclude that C ′

t holds if

t ≥ 3C9 ·
√
Kd ·

L∑
l=1

λl(∥µl∥∞ + ∥Σ
1
2

l ∥)
2 · ϵ (257)

Moreover, from (242) in Lemma 8 we have that

t ≥
18C9 ·

√
Kd ·

∑L
l=1 λl(∥µl∥∞ + ∥Σl∥)2 · ϵ

δ
(258)

ensures P(A′
t) ≤ δ

2 . Therefore, let ϵ = δ
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√
Kd·
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By Hoeffding’s inequality in [76] and Property 2, we have

P
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(260)

Therefore,
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N. Proof of Lemma 3 and its supportive lemmas

We need Lemma 10 to Lemma 14, which are stated in Section D, for the proof of Lemma 3. Section D2 summarizes the
proof of Lemma 3. The proofs of Lemma 10 to Lemma 12 are provided in Section N1 to Section N3. Lemma 13 and Lemma
14 are cited from [26]. Although [26] considers the standard Gaussian distribution, the proofs of Lemma 13 and 14 hold for
any data distribution. Therefore, these two lemmas can be applied here directly.

The tensor initialization in [26] only holds for the standard Gaussian distribution. We exploit a more general definition of
tensors from [82] for the tensor initialization in our algorithm. We also develop new error bounds for the initialization.

1) Proof of Lemma 10: From Assumption 1, if the Gaussian Mixture Model is a symmetric probability distribution defined
in (64), then by Definition 3, we have

||Q̂3(I, I,α)−Q3(I, I,α)||

=
∣∣∣∣∣∣ 1
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[
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2
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(262)

Following [26], ⊗̃ is defined such that for any v ∈ Rd1 and Z ∈ Rd1×d2 ,

v⊗̃Z =

d2∑
i=1

(v ⊗ zi ⊗ zi + zi ⊗ v ⊗ zi + zi ⊗ zi ⊗ v), (263)

where zi is the i-th column of Z. By Definition 3, we have∣∣∣∣∣∣[y · p(x)−1
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The first step of (264) is because (x−µl)Σl)
⊗2(α⊤Σ−1

l (x−µl)) is the dominant term of the entire expression, and y ≤ 1. The
second step is because the expression can be considered as a normalized weighted summation of ((x−µl)Σl)

⊗2(α⊤Σ−1
l (x−

µl)) and (x⊤α)xx⊤ is its dominant term. Define Sm(x) = (−1)m∇m
x p(x)
p(x) , where p(x) is the probability density function of

the random variable x. From Definition 3, we can verify that

Qj = E[y · Sm(x)] j ∈ {1, 2, 3} (265)

Then define Gpi =
〈
v, ([yi · S3(xi)](Id, Id,α)− E

[
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]
v)
〉
, where ||v|| = 1, then E[Gpi] = 0. Similar to

the proof of (231), (232), and (233) in Lemma 8, we have
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E[exp(θGpi)] ≲ 1 +
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Hence, similar to the derivation of (235), we have

P
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for some constant C16 > 0. Let θ = t
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with probability at least 1− 2n−Ω(δ41(W
∗)d).

If the Gaussian Mixture Model is not a symmetric distribution which is defined in (64), we would have a similar result as follows.

||Q̂2 −Q2|| =
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Then define Gp′i =
〈
v, ([yi · S2(xi)]− E

[
yi · S2(xi)

]
v)
〉
, where ||v|| = 1, then E[Gp′i] = 0. Similar to the proof of (231),

(232) and (233) in Lemma 8, we have
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E[|Gp′i|p] ≲
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E[exp(θGp′i)] ≲ 1 +
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Hence, similar to the derivation of (235), we have
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for some constant C17 > 0. Let θ = t
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with probability at least 1− 2n−Ω(δ41(W
∗)d).

2) Proof of Lemma 11: We consider each component of y = 1
K

∑K
i=1 ϕ(w

∗
i
⊤x).

Define Ti(x) : Rd → RK×K×K such that

Ti(x) = [ϕ(w∗
i
⊤x) · S3(x)](Û , Û , Û) (278)

We flatten Ti(x) : Rd → RK×K×K along the first dimension to obtain the function Bi(x) : Rd → RK×K2

. Similar to the
derivation of the last step of Lemma E.8 in [26], we can obtain ∥Ti(x)∥ ≤ ∥Bi(x)∥. By (262), we have
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Define Gri = ⟨v,Bi(xi))− E[Bi(xi)]v)⟩, where ||v|| = 1, so E[Gri] = 0. Similar to the proof of (231), (232) and (233) in
Lemma 8, we have
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Hence, similar to the derivation of (235), we have
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for some constant C18 > 0. Let θ = t
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with probability at least 1− 2n−Ω(δ41(W
∗)).

3) Proof of Lemma 12: From Definition 3, we have
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Define Gqi =
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Hence, similar to the derivation of (235), we have
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for some constant C19 > 0. Let θ = t
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with probability at least 1− 2n−Ω(d).
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