
Consolidating Virtual Machines with Dynamic
Bandwidth Demand in Data Centers

Meng Wang∗, Xiaoqiao Meng†, and Li Zhang†
∗ School of ECE, Cornell University, Ithaca, NY 14853, USA. Email: mw467@cornell.edu

†IBM T.J. Watson Research Center. 19 Skyline Drive, Hawthorne, NY 10532, USA. Email: {xmeng,zhangli}@us.ibm.com

Abstract—Recent advances in virtualization technology have
made it a common practice to consolidate virtual machines(VMs)
into a fewer number of servers. An efficient consolidation scheme
requires that VMs are packed tightly, yet receiving resources
commensurate with their demands. On the other hand, mea-
surements from production data centers show that the network
bandwidth demands of VMs are dynamic, making it difficult
to characterize the demands by a fixed value and to apply
traditional consolidation schemes. In this work, we capture VM
bandwidth demand by random variables following probabilistic
distributions. We study how VMs should be consolidated with
bandwidth limit imposed by network devices such as Ethernet
adapters and edge switches. We formulate a Stochastic Bin
Packing problem and propose an online packing algorithm by
which the number of servers required is within (1+ε)(

√
2+1) of

the optimum for any ε > 0. In a special case that there are finite
number of possibilities for the means of the random variables, the
number of servers required by our algorithm is within (

√
2+1)

of the optimum. In addition, we use numerical experiments to
evaluate the proposed consolidation algorithm and observe 30%
server reduction compared to several benchmark algorithms.

I. INTRODUCTION

Virtualization technologies promise opportunities for mod-
ern data centers to host applications on shared infrastructure.
Now data center operators can create a large number of virtual
machines (VMs) for different workload requests. Each VM
is provisioned with certain amount of computing resources
commensurate with workload requirements. The operators can
then consolidate all the VMs into a smaller number of physical
servers, with the goal of minimizing the total required server
number. Such a VM consolidation procedure is the key factor
for a data center to achieve economy of scale.

Traditional VM consolidation schemes are concerned with
CPU, memory and disk I/O [13][23][26][29][31][32]. In these
schemes, the operators need to estimate a deterministic amount
of resources required by the future workload; such an estimate
is usually made from either an understanding of the underlying
applications or a forecast using historical workload patterns.
The actual amount of allocated resources to VMs are based on
the estimate. In the consolidation phase, all such VMs with
fixed size must be packed on servers with known capacity
limit. In this way, the consolidation phase becomes the classi-
cal bin packing problem and can be solved by many heuristics.

Compared to the capacity limit of CPU, memory and disk
I/O, network bandwidth limit has not been well studied. In
fact, with an explosive growth of data center traffic, network
bandwidth limit becomes more and more critical, and such

limit exists at multiple consolidation levels. E.g., at the server
level, due to the shared Ethernet adapters, the aggregate traffic
rate for VMs placed on the same server must not exceed the
adapter capacity. At the chassis/rack level, the aggregate rate
must not exceed the capacity of the end-of-row/top-of-rack
switch. Thus it is imperative to find efficient consolidation
methods that respect the limit imposed by various network
devices.

One can easily apply the traditional VM consolidation
schemes to handle network bandwidth limit. Nevertheless, this
might raise a fundamental drawback as recent measurement
studies show that, in production data centers, network traffic
are highly volatile and bursty[2][19][27]. It thus becomes
difficult for the traditional schemes to make a reliable, deter-
ministic estimate of bandwidth demand. Although one can take
a conservative strategy by making an estimate much higher
than the actual traffic rate, it leads to over-provisioning and
resource waste.

In this work, instead of using deterministic values, we use
random variables to characterize the future bandwidth usage.
The random variables follow certain distributions that are
estimated from either historical traffic rates or forecasting
algorithms. Such a probabilistic characterization can better
represent the uncertainty of the future bandwidth demand.
With VM size being a random variable, the VM consolidation
issue is formulated into a NP-hard Stochastic Bin Packing
problem (SBP), which states that items with sizes following
a probabilistic distribution must be packed into bins such
that the number of bins used is minimal and the chance for
violating any bin size is below a threshold. Similar problems
are studied in [11][22], assuming the random variables all
have Bernoulli-type distributions, Poisson distributions, or
exponential distributions. In our work, all random variables
have Gaussian distributions, and we propose an approximation
algorithm and prove its asymptotical worst-case performance
bound. In our algorithm, random variables are divided into
groups according to their means and variances. The random
variables are then assigned to different bins based on which
groups they belong to. We prove the worst-case performance
ratio of our algorithm is within (1+ ε)(

√
2+1) for any ε > 0.

In a special case where there are finite number of possibilities
of the mean value, the worst-case performance ratio is within√

2+1. We run numerical experiments to evaluate performance
of the proposed algorithm. The results show that our algorithm
saves up to 30% of required servers compared with several

2

benchmark schemes.
The rest of the paper is organized as follows. Section II

discusses the related work. Section III elaborates on problem
formulation. Section IV and V present algorithms and bound
analysis for a special case and generic cases respectively.
Section VI considers a more general case with variable-sized
bins. Section VII uses numerical experiments to evaluate the
proposed algorithms. Section VIII concludes the paper.

II. RELATED WORK

A. Virtual Machine Consolidation

VM consolidation in Compute Clouds has been tackled in
both commercial products and research work. Representative
products include VMWare’s Distributed Resource Scheduler
(DRS) [33] and IBM Server Planning Tool (SPT) [12].
These tools use server utilization data to dynamically as-
sign resources to servers based on various policies. In the
research literature, most work [1][18][26][28][34] formulate
VM consolidation as an optimization problem with the number
of required servers as the objective. Such an optimization
problem is often associated with constraints imposed by server
capacity, service-level-agreement, legal, etc. To solve the op-
timization problem, these work use various algorithms with a
nature similar to these bin packing heuristics such as First Fit
Decreasing (FFD) [1].

While these products and research work consider CPU,
memory or disk, they do not take into account the network
capacity limit imposed by network devices. On the methodol-
ogy aspect, these work denote the resource demand of VMs
by a deterministic value. In contrast, in this work we model
the VM resource demand as a random variable which better
captures the dynamics of bandwidth usage in data centers.

B. Bin Packing

In the classical bin packing problem, a list L with real
numbers between 0 and 1 must be assigned to bins with
unit capacity such that the sum of the numbers in each bin
is no more than 1 and the number of bins used is minimal.
Let OPT denote the minimum. For a packing algorithm B,
let B(L) denote the number of bins used for L, then the
worst case performance ratio of this algorithm is defined
as limOPT→∞ supL[B(L)/OPT]. Since finding the optimal
packing involves solving an NP-complete partition problem
[10][20], various heuristic algorithms [4][14][15][16][35] with
performance guarantee have been proposed. One simple algo-
rithm First Fit Decreasing (FFD) has a worst case performance
ratio of 11

9 [10][36], and is later shown to be tight [7]. MFFD
[17], a variance of FFD can have a ratio of 71

60 .
These algorithms require to first sort the items, and are

not applicable for an online bin packing problem. An online
algorithm is required to process L in the same order as given.
First Fit [10] is an simple online algorithm with a performance
ratio of 17

10 , and a refined version [35] has a ratio of 5
3 . Next Fit

[4] is another popular online algorithm which has a worst case
performance ratio of 2 and takes O(n) time and O(1) space.
First Fit (FF), on the other hand, takes O(n log n) time and

O(n) space. [24] proposes a HARMONIC algorithm which
has a worst case performance ratio of 1.692. [35] shows that
no online algorithm has a performance ratio less than 3

2 , and
this lower bound is later improved to 1.53635 [6][25].

Our problem formulation is the same as the Stochastic
Bin Problem in [11][22]. Given a positive constant α, the
goal is to use a minimum number of bins to pack the items
such that the violation probability of each bin is at most
α. [22] consider the case that item sizes have a Bernoulli-
type distribution, and the worst-case performance ratio of
their algorithm is O(

√
log p−1

log log p−1). [11] provide a polynomial
time approximation algorithm for the cases that item sizes
have Poisson or exponential distributions, a quasi-polynomial
approximation scheme with running time polynomially on n
and log 1/p for Bernoulli-distributed items.

III. PROBLEM FORMULATION

In this section, we present a model of VM consolidation
with network bandwidth constraint imposed by network de-
vices. We first introdece the Stochastic Bin Packing (SBP)
in Section III-A. We then compare SBP to the classical bin
packing problem in Section III-B and illustrate its special
properties in Section III-C.

A. Stochastic Bin Packing

We consider a scenario in which n VMs with known
bandwidth demands must be consolidated onto a number of
servers (or chassis, racks). We assume an online consolidation
senario that each VM should be consolidated once a request is
made. We assume servers have identical capacity limit. This
corresponds to the common case that server configurations are
homogeneous in the same data center. Heterogeneous cases
will be discussed in Section VI. Let xi denote the normalized
bandwidth demand of VM i, the n-VM consolidation problem
is to pack a list of items L = (x1, x2, ..., xn) into bins with
unit capacity. Instead of assuming xi a fixed value in the
classical bin packing problem, here we assume xi follows
a probabilistic distribution. The distributions of the sizes of
different items i and j are independent, and the probability
distribution of their total size xi + xj is the convolution of
the two probability distributions of xi and xj . In the classical
bin packing problem, a packing strategy is feasible if for
each bin, the total item size in that bin does not exceed
one. Here we define a packing strategy feasible if for each
bin, the probability that the unit capacity is exceeded is no
greater than a given constant α ∈ (0, 1). Our goal is to find
a feasible packing strategy that uses the least number of bins.
We formally describe the Stochastic Bin Packing problem as
following:
Given a list of items L = (x1, x2, ..., xn), where xi’s are
independent random variables, what is the minimum number
of unit capacity bins needed to pack all the items, such that
for each bin, the probability that its capacity is exceeded is
no greater than a given constant α ∈ (0, 1)?

Different from previous assumptions that xi follows a
Bernoulli distribution, a Poisson distribution or an exponential

3

distribution [11][22], in this paper we assume that xi inde-
pendently follows a normal distribution N (µi, σ

2
i). In reality

server consolidation usually occurs at weekly or monthly
timescale. At such a large timescale, we believe the VM band-
width usage can be approximated by a Gaussian distribution.
We assume the mean µi is positive and the standard deviation
σi is small enough compared with µi, thus the probability of
xi being negative is very small and negligible.

If σi = 0 for all i, then xi = µi and the problem is reduced
to the classical NP-hard one-dimensional bin packing problem.
Clearly SBP is NP-hard.

For a packing strategy, let U j denote the set of indices of
the items that are packed in bin j. Since xi ∼ N (µi, σ

2
i) and

xi and xj are independent if i 6= j, then the total size of the
items in a bin follows normal distribution with mean

∑
i∈Uj µi

and variance
∑
i∈Uj σ

2
i . For the normal distribution, we have

the following fact,

Lemma 1. Given x ∼ N (µ, σ2) with µ ∈ (0, 1) and α ∈
(0, 1), then Prob[x > 1] ≤ α holds if and only if µ+Φ−1(1−
α)σ ≤ 1, where the a quantile function Φ−1 is the inverse of
the cdf Φ of N (0, 1).

Proof: Since x ∼ N (µ, σ2), then Prob[x > µ+ Φ−1(1−
α)σ] = α from definition. Thus Prob[x > 1] ≤ α if and only
if µ+ Φ−1(1− α)σ ≤ 1.

Given the violation probability α, let β := Φ−1(1 − α).
Thus, from Lemma 1, we say a packing strategy is feasible
for a given α if and only if

∑
i∈Uj µi + β

√∑
i∈Uj σ

2
i ≤ 1

for all bin j. In this paper, we only consider the case that
α ≤ 0.5 and β ≥ 0. In order to make sure that there exists
a feasible packing for a given α, throughout this paper we
assume that each item should be able to be packed into one
bin, i.e. µi + βσi ≤ 1, ∀i.

B. SBP v.s. Deterministic Packing

Because
∑
i∈Uj µi+β

√∑
i∈Uj σ

2
i ≤

∑
i∈Uj (µi+βσi), if

we use constant µi+βσi as the size of item i, and reduce the
problem to the classical bin packing, obviously any feasible
packing strategy for the classical bin packing is also feasible
for SBP. Therefore,

Observation 1. The optimal number of bins used in SBP is no
greater than the optimum of a classical bin packing problem
with µi + βσi as the size for item i.

Since SBP only requires µi + µj + β
√
σ2
i + σ2

j ≤ 1 when
item i and item j are packed in one bin, the required bins by
simply fitting into the classical bin packing problem may be
much larger than the optimum of SBP. We provide an example
to illustrate this difference.
Example 1 Let n = 160 and xi

i.i.d.∼ N (2
41 , (

3
164)2) for all i.

α = 0.0013, and β = Φ−1(1− α) = 3.
Since µi = 2

41 , σi = 3
164 for all i, and 16× 2

41 +3×
√

16×
3

164 = 1, then each bin can pack exactly 16 items. For 160
items, the optimal strategy is to pack them into 10 bins.

If we use µi + βσi as the size of item i and treat it as a
classical bin packing problem, since 2

41 + 3× 3
164 = 17

164 , then
each bin can pack at most 9 items. Thus, the best strategy is
to pack 9 items in each bin, which results in using 18 bins.

In general, if we directly fit into the classical bin packing
problem with sizes µi + βσi, even if we could solve the NP-
hard problem and find the minimum bin number, this value
might still be much larger than the number of bins that are
indeed needed for SBP.

C. Equivalent Sizes Vary under Different Packing

In fact, for items that can be packed in one bin with U as
the set of indices, we have

1 ≥
∑
i∈U

µi + β

√∑
i∈U

σ2
i =

∑
i∈U

µi +
(βσi)

2

β
√∑

i∈U σ
2
i

 . (1)

Thus, we can view µi + (βσi)
2

β
√∑

i∈U σ
2
i

as the “equivalent size”

of item i, which in general depends on other items packed
together. In a special case that σi = 0 or β = 0, the equivalent
size reduces to µi, which does not depend on the size of other
items and coincides with the classical case. However, when
σi 6= 0 and β 6= 0, the equivalent size changes if the items
that are packed in the same bin changes. For example, if item
i is the only one in a bin, then its equivalent size achieves
the maximum, which is µi + βσi. If item i is packed in the
same bin with some item having a non-zero variance, then the
equivalent size is strictly less than µi + βσi.

Note that in the classical bin packing problem, the number
of bins used is indeed the sum of the item sizes plus the
sum of the residual capacity of each bin. Since the item size
is fixed, we only need to pack each bin in a compact way
so as to reduce the residual capacity of each bin. However,
in our problem setup, reducing the residual capacity does not
necessarily reduce the number of bins used since the equivalent
size can change. Let us first consider a simple example.
Example 2. Let n = 35, α = 0.0013, β = 3. There are
three types of items:(1) xi

i.i.d.∼ N (1/6, 1/324), ∀i = 1, ..., 4,
(2) xi

i.i.d.∼ N (1/12, 1/1296), ∀i = 5, ..., 13, and (3) xi =
1/3−

√
3/6, ∀i = 14, ..., 35.

Since 4× 1
6 +3×

√
4× 1

18 = 1, then the first four items can
fit into one bin. One can check that the next nine items can
exactly fit into one bin. Since 22 × (1

3 −
√
3
6) ≈ 0.9825 < 1,

then the rest twenty-two items can be packed in one bin. This
strategy uses three bins and there is no residual capacity in
two bins. One can also check that this strategy is also optimal
since that there is no way to pack all the items into two bins.

If we pack two items in the first type and four items in
the second type and one item in the third type together, one
can check that they can just fit into one bin with no residual
capacity. If two bins are packed in this way, then we have one
item in the second type and twenty items in the third type left,
which cannot fit into one bin. Therefore, even though the first
two bins are fully packed, we need four bins in this strategy.

4

Algorithm 1 Group packing algorithm for items with means
choosing from a finite set
Initial: tkh = 0 for all k,h

1 Each item i (i = 1, ..., n) belongs to a group Gkh for
some k ∈ {1, ...,m}, h ∈ {1, ...,Wk}

2 If item i fits into the current Gkh bin, the pack it.
3 Otherwise, tkh = tkh + 1, open a new Gkh bin to pack

item i, and make it the current Gkh bin.

As shown in the example, it is the variation of equivalent
size that leads to different packing results. Since the equivalent
size is larger in the second strategy than the first one, even
though there is no residual capacity, we cannot fit them into
three bins. Therefore, in order to reduce the number of bins,
we need to (1) reduce the residual capacity and (2) reduce the
equivalent size at the same time while packing items.

Since the equivalent size of item i depends on other items,
we provide its upper bound and lower bound that only depend
on µi and σi. From (1), we have β

√∑
i∈U σ

2
i ≤ 1 −∑

i∈U µi ≤ 1−µi, therefore, µi + (βσi)
2

β
√∑

i∈U σ
2
i

≥ µi + (βσi)
2

1−µi ,

where the righthand side only depends on µi and σi. Let

g(µ, σ) := µ+ (βσ)2/(1− µ), (2)

then we have

g(µi, σi) ≤ µi +
(βσi)

2

β
√∑

i∈U σ
2
i

≤ µi + βσi. (3)

In later discussion, we will use the two bounds in (3) to
characterize the equivalent size of item i.

IV. A SPECIAL CASE: FINITE POSSIBILITIES OF MEANS

In this section we consider a special case that the means
of all items are from m distinct values e1, e2,...,em with
ek ∈ (η, 1) (η > 0). While m is a constant, n, the number
of items, can grow to infinity. We will provide an online
packing algorithm, and prove that it can achieve a worse case
performance ratio of

√
2+1. The result is slightly better than in

the general scenario in Section V. Besides, the algorithm and
the analysis technique used here are the basis for the general
scenario.

We first describe the algorithm (see Algorithm 1). In the
algorithm, we divide items into different groups according to
their means and variances, we then pack the items in the same
group by Next Fit [4]. Specifically, we keep one active bin
for each group. If the current item cannot fit into the active
bin, we open a new bin and make it active. For items with
the same mean ek (k = 1, ...,m), the standard deviation is
no greater than (1 − ek)/β from previous assumptions. We
divide them into Wk(= b1/ekc ≤ b1/ηc) groups according
to their variances. If µi = ek, and σi ∈ (1−(h+1)ek

β
√
h+1

, 1−hek
β
√
h

]

(h = 1, ...,Wk−1), then we say item i belongs to group Gkh.
If µi = ek, and σi ∈ [0, 1−Wkek

β
√
Wk

], then item i belongs to group
GkWk

.

Let tkh be the number of bins used by Algorithm 1 to
pack the items in group Gkh, then the total number of bins
used is B :=

∑m
k=1

∑Wk

h=1 tkh. Since the item classification
can be done in O(log(mb1/ηc)) time, Algorithm 1 runs in
O(n log(mb1/ηc)) time. For given m and η, it takes O(n)
time. Since there are at most mb1/ηc active bins at any time,
the algorithm takes mb1/ηc storage space to store active bins.

Now we derive the worst case performance ratio of Al-
gorithm 1. If Wk ≥ 2, note that since for each item i that
belongs to Gkh (h = 1, ...,Wk − 1) we have µi = ek, and
σi ∈ (1−(h+1)ek

β
√
h+1

, 1−hek
β
√
h

], then the total size of the items in
one bin for group Gkh follows normal distribution with mean
µ = dek and variance σ ∈ (

√
d(1−(h+1)ek)

β
√
h+1

,
√
d(1−hek)
β
√
h

], where
d is the number of items in a bin. From Lemma 1, for a feasible
packing with violation probability α, we want µ + βσ ≤ 1.
If d = h, we have µ + βσ ≤ hek + (1 − hek) = 1, and if
d = h+1, we have µ+βσ > (h+1)ek+(1−(h+1)ek) = 1.
Therefore there are exactly h items in each bin except the last
one for group Gkh (h = 1, ...,Wk−1). For group GkWk

, since
each item has mean ek and variance no greater than 1−Wkek

β
√
Wk

,
then there are at least Wk items in each bin except the last
one. Thus, we have the following key observation,

Observation 2. In the resulting packing strategy of Algorithm
1, there are exactly h items in each bin except the last one of
group Gkh (h = 1, ...,Wk−1), and at least Wk items in each
bin except the last one of group GkWk

for K = 1, ...,m.

From Observation 2, in the resulting packing strategy, for
group Gkh (k = 1, ...,m, h = 1, ...,Wk−1), each item (except
those in the last bin) takes up exactly 1/h of a bin. And for
group GkWk

, each item (except those in the last bin) takes up
at most 1/Wk of a bin. Thus, like in [24] we can define an
effective occupation f(µ, σ) as follows

f(µ, σ) =
1

h
if

1− (h+ 1)µ

β
√
h+ 1

< σ ≤ 1− hµ
β
√
h

for some h ∈ {1, ..., b1/µc} (4)

f(µi, σi) can be roughly interpreted as the fraction of a bin
that is occupied by each item i in the packing strategy of
Algorithm 1. In fact, the effective occupation f(µ, σ) is very
important for the performance analysis of the algorithms in
this paper. Given violation probability α, let OPT denote the
number of bins used by the optimal strategy. Define S to be
the set of all the possible item subsets that can fit into one
bin such that the violation probability for the bin capacity is
at most α, i.e.,

S := {U ⊂ {1, 2, ..., n} |
∑
i∈U

µi + β

√∑
i∈U

σ2
i ≤ 1}. (5)

Now we can state a general lemma which will be used both
here and in Section V for algorithm analysis.

Lemma 2. Given α, a list of items L = (x1, x2, ..., xn) with
xi ∼ N (µi, σ

2
i) are packed into B bins. Let U j be the set of

indices of items in bin j. If there exists function f such that

5

for every bin j except Q bins (Q does not depend on n),∑
i∈Uj

f(µi, σi) ≥ 1, (6)

and let r∗ := maxU∈S
∑
i∈U f(µi, σi), where S is defined in

(5), then we have

B ≤ r∗OPT +Q. (7)

Moreover, when OPT go to infinity,

lim
OPT→∞

B/OPT ≤ r∗ (8)

Proof: Since (6) holds for B − Q bins, then B − Q ≤∑n
i=1 f(µi, σi). It follows from the definition of r∗ that∑n
i=1 f(µi, σi) ≤ r∗OPT . Then we have (7) by combing

the above two inequalities. (8) follows if we let both sides of
(7) divide OPT and let OPT go to infinity.

Since it is hard to directly compute r∗, we will next give
an upper bound which is also an upper bound for the worst-
case performance ratio of Algorithm 1. Since

∑
i∈U µi +

β
√∑

i∈U σ
2
i ≤ 1 for every U in S, we know

r∗ ≤ max
U∈S

∑
i∈U f(µi, σi)∑

i∈U
µi + β

√∑
i∈U σ

2
i

≤ max
U∈S

∑
i∈U f(µi, σi)∑
i∈U g(µi, σi)

≤ max
U∈S

max
i∈U

f(µi, σi)

g(µi, σi)
= max

i

f(µi, σi)

g(µi, σi)
, (9)

where g is defined in (2), the second inequality follows from
(3) and the third holds since f and g are always positive.

Now consider the effective occupation f defined in (4). For
group Gkh (k = 1, ...,m, h = 1, ...,Wk−1), Algorithm 1 uses
tkh bins, and for each bin j except the last one, one can easily
check that

∑
i∈Uj f(µi, σi) = 1. In group GkWk

, we have that∑
i∈Uj f(µi, σi) ≥ 1 for each bin j ∈ {1, .., tkWk

− 1}. Thus,
the assumption of Lemma 2 is satisfied with Q ≤

∑m
k=1Wk,

where
∑m
k=1Wk accounts for the total number of possibly

unfilled bins in all the groups. Therefore, from Lemma 2 and
(9), and ek ≥ η ∀k, we have

B ≤ r∗OPT+

m∑
k=1

Wk ≤ max
i

f(µi, σi)

g(µi, σi)
OPT+mb1

η
c. (10)

Now the question is how to estimate maxi
f(µi,σi)
g(µi,σi)

. We state

an important lemma for f(µ,σ)
g(µ,σ) .

Lemma 3. For all h = 1, ..., b1/µc, we have

max
µ∈(0,1),σ∈[0, 1−hµ

β
√
h

]

f(µ, σ)

g(µ, σ)
< λ(h) :=

(
2h2(

√
h

h+ 1
−1)+h

)−1
,

(11)
where f and g are defined in (4) and (2), and λ(h) strictly
decreases as h increases. Specially,

max
µ+βσ≤1

(
f(µ, σ)/g(µ, σ)

)
<
√

2 + 1. (12)

Proof: We study f(µ, σ)/g(µ, σ) in three different cases.

(i) If µ > 1/2, then f(µ, σ) = 1, and g(µ, σ) = µ+ σ2/(1−
µ) > 1/2. Therefore, f(µ, σ)/g(µ, σ) < 2.

(ii) If µ ≤ 1/2 and σ ∈ (1−(h+1)µ

β
√
h+1

, 1−hµ
β
√
h

] for some h belongs
to {1, 2, ..., b1/µc − 1}, then f(µ, σ) = 1/h. Therefore,

f(µ, σ)

g(µ, σ)
<

(
h(µ+

(1− (h+ 1)µ)2

(h+ 1)(1− µ)
)
)−1

=
(
h2(1− µ) +

h3

(h+ 1)(1− µ)
+ h− 2h2

)−1
≤ (2h2(

√
h/(h+ 1)− 1) + h)−1, (13)

where the last inequality holds from the fact that h2(1−µ) +
h3

(h+1)(1−µ) ≥ 2h2
√

h
h+1 , and the equality holds when µ =

1−
√
h/(h+ 1). Therefore, for h = 2, ..., b1/µc, we have

max
µ

max
σ∈(1−(h+1)µ

β
√
h+1

, 1−hµ
β
√
h

]

(
f(µ, σ)/g(µ, σ)

)
< λ(h).

One can check that λ(h) > 0 and λ′(h) < 0 for all h. Then
λ(h) strictly decreases as h increases. When h = 1, λ(h)
achieves the maximum value

√
2+1. When h goes to infinity,

λ(h) goes to 4
3 .

(iii) If µ ≤ 1/2, and σ ≤ 1−b1/µcµ
β
√
b1/µc

, then f(µ, σ) = 1/b1/µc,

and g(µ, σ) ≥ µ. Therefore, f(µ,σ)g(µ,σ) ≤
1

µb1/µc .
Let D := b1/µc, then D ≥ 2. Besides, 1 − µ < Dµ ≤ 1.

Thus, 1/D ≥ µ, and 0 ≤ 1−Dµ < µ. We claim that

Dµ > (D−1)2(1−µ)+
(D − 1)3

D(1− µ)
+(D−1)−2(D−1)2. (14)

Since the righthand side of (14) minus its lefthand side is

((D − 1)µ2 − (1−Dµ)2)/(1− µ) + (1/D − µ)

> ((D − 1)µ2 − µ2)/(1− µ) + (1/D − µ)

= (D − 2)µ2/(1− µ) + (1/D − µ) ≥ 0,

where the first inequality holds from 1 − Dµ < µ, and the
second inequality holds from D ≥ 2, µ ≤ 1 and 1/D ≥ µ.
Therefore (14) holds. From (14) we have

Dµ > 2
√

(D−1)2(1−µ)(D−1)3
D(1−µ) + (D − 1)− 2(D − 1)2

= 2(D − 1)2(
√

(D − 1)/D − 1) +D − 1.

Thus,

f(µ, σ)

g(µ, σ)
≤ 1

µb1/µc
<
(
2(D−1)2(

√
(D − 1)/D−1)+D−1

)−1
.

Combing cases (i), (ii) and (iii), we conclude that

max
µ∈(0,1),σ∈[0, 1−hµ

β
√
h

]
(f(µ, σ)/g(µ, σ)) < λ(h),

where h = 1, ..., b1/µc. When h = 1, we get (12).
Now we are ready to present our first main result.

Theorem 1. Given a finite set {e1, ..., em} with ek ∈ (η, 1)
(η > 0) for all k = 1, ...,m and a violation probability α ≤
0.5, a list L = (x1, ..., xn) with xi ∼ N (µi, σ

2
i) and µi ∈

{e1, ..., em} for all i = 1, ..., n needs to be packed into the

6

least number of bins while for each bin, the probability that
its capacity is exceeded does not exceed α. Then the number
of bins B used by Algorithm 1 to pack L satisfies

B < (
√

2 + 1)OPT +mb1/ηc, (15)

where OPT is the minimum number of bins needed. And the
worst-case performance ratio satisfies

lim
n→∞

B/OPT ≤
√

2 + 1. (16)

Proof: (15) follows by combing (7), (10) and (12). When
n goes to infinity, since the number of items that each bin
could pack is at most b1/ηc, then OPT also goes to infinity.
Since mb1/ηc is also a constant, then (16) holds.

Note that in Theorem 1, we only assume that σi ≥ 0 and
µi + βσi ≤ 1 for all i. In fact, the upper bound of the worst-
case performance ratio is achieved in the group that µ ≤ 1

2

and σ ∈ (1−2µ√
2β
, 1 − µ]. If no item belongs to this group, the

upper bound can be reduced. Therefore, provided with further
constraints on µ and σ such that no item belongs to groups
with a large ratio f(µ,σ)

g(µ,σ) , we can indeed obtain a stronger result
than that in Theorem 1.

Theorem 2. Same assumption as in Theorem 1. If it further
holds that for some h ∈ Z+, hµi +β

√
hσi ≤ 1 for all i, then

B < λ(h)OPT +mb1/ηc, and lim
n→∞

B/OPT ≤ λ(h),

where λ(h) = (2h2(
√
h/(h+ 1)− 1) + h)−1.

Proof: It follows by combing (7), (9) and (11).
The worst-case performance ratio λ(h) strictly decreases

as h increases, and limh→∞ λ(h) = 4/3. In practice, since
µi > η for all item i, then h is no greater than 1/η.

V. GENERIC SCENARIOS

Section IV discussed the special case that the means of the
items form a finite set whose cardinality does not change as the
number of items increases. Here we consider the general case
that every two items can have different means and different
variances. In other words, we only assume that µi ∈ (η, 1),
σi ≥ 0, and µi +βσi ≤ 1 for all i. For any ε > 0, we provide
an online packing algorithm whose worst case performance
ratio is (1 + ε)(

√
2 + 1).

We first introduce the algorithm. Same as Algorithm 1, the
key idea is to divide items into different groups and pack items
in the same group by Next Fit. In Algorithm 1, since there are
only m possibilities for the mean, then we classify items with
the same mean according to the variance such that for different
groups, the number of items that one bin can pack is different.
Here we come across the difficulty that each item could have
a unique mean. Therefore we need to divide the items in a
different and more cautious way.

We will define a strictly decreasing sequence {ck} to divide
the means into intervals (c1, 1] and (ck+1, ck] (k ≥ 2), and for
items with means belong to (ck+1, ck], we will use {dkh, h =
1, ...,mk = b1/ckc} to divide their standard deviations into

intervals [dkmk , d
k
mk−1] and (dkh, d

k
h−1](h = 1, ...,mk − 1).

Then items with means in the same interval and standard
deviations in the same interval belong to the same group.
To ensure that the number of groups is finite, (η, 1) should
be covered by finite number of intervals we defined. More-
over, for interval (ck+1, ck], the union of [dkmk , d

k
mk−1] and

(dkh, d
k
h−1](h = 1, ...,mk − 1) should cover [0, (1− ck+1)/β],

since µi + βσi ≤ 1 for every item i.
We define a sequence ck together with dkh (h =

0, 1, ..., b1/ckc) as follows. Given ε > 0, let r := (1+ε)(
√

2+
1), then c1 = 1/r, m1 = b1/c1c, and

d1h =
1− (h+ 1)c1

β
√
h+ 1

, h = 0, 1, ...,m1 − 1. (17)

For k ∈ Z+ and k ≥ 2,

pkh =
1

2

(1

hr
+ 1−

√
(

1

hr
− 1)2 + 4(βdk−1h)2

)
, (18)

where h = 1, ...,mk−1 − 1, and pkmk−1
= 1/rmk−1,

ck = max
h∈{1,...,mk−1}

pkh, mk = b1/ckc, (19)

dkh =
1− (h+ 1)ck

β
√
h+ 1

, h = 0, 1, ...,mk − 1. (20)

We also define m0 = 1, and dkmk = 0 for all k ≥ 0.
To show that this partition is valid, note that from (20), cor-

responding to an interval (ck+1, ck], the union of [dkmk , d
k
mk−1]

and (dkh, d
k
h−1](h = 1, ...,mk − 1) is exactly [0, (1 − ck)/β].

Therefore, we only need to show that (η, 1) could be covered
by a finite number of intervals induced by {ck}. Formally, we
state the following lemma,

Lemma 4. For a given ε > 0, the sequence {ck} defined in
(17)∼(20) satisfies ck ≤ ck−1/(1 + ε), ∀k ≥ 2. Thus, {ck}
is strictly decreasing, and there exists M ≤ − log

(
(
√

2 +

1)η
)
/(log(1+ ε)) such that cM̃ ≤ η, where M̃ = max(1,M).

Proof: If k ≥ 2, from the definition we know pkh < 1
for all h = 1, ...,mk−1. Then from (19) we have ck < 1.
Note that given dk−1h (h = 1, ...,mk−1), the function π(x) =
x+ (βdk−1h)2/(1− x) strictly increases on [−∞, 1). One can
also check that π(pkh) = 1/(hr) with pkh defined in (18). Thus,
we have x+ (βdk−1h)2/(1− x) ≥ 1/(hr) for all x ∈ [pkh, 1),
and x+ (βdk−1h)2/(1− x) < 1/hr for all x ∈ [0, pkh).

From the definition of ck in (19), we have for all x ∈ [ck, 1),

x+ (βdk−1h)2/(1− x) ≥ 1/(hr), ∀h = 1, ...,mk−1, (21)

and for every y ∈ [0, ck), there exists some h such that y +
(βdk−1h)2/(1− y) < 1/(hr). Let γk = ck−1/(1 + ε), then in
order to prove ck ≤ γk holds, we only need to prove that

γk+(βdk−1h)2/(1−γk) ≥ 1/(hr), ∀h = 1, ...,mk−1. (22)

If ck−1 > 1/2, then mk−1 = 1, and dk−11 = 0. Therefore,

γk + (βdk−11)2/(1− γk) = ck−1/(1 + ε) > 1/r. (23)

7

~

21G
~

22G
2c

1kc−

kc

Mc

~

11G

~

1kG1

~

kkmG −

~

khG

1
1d

1
1
kd −1

1
k
hd −

−
1k

hd −
1

1
1k

k
md

−

−
−

1c

... ...

1

µ

σ

...

...

11 c

β
−

21 c

β
−

1 kc

β
−

Fig. 1. Grouping items according to µ and σ

If ck−1 ≤ 1/2, then 1 − γk = 1 − ck−1/(1 + ε) = (1 +
ε)(1−ck−1)+ε(2+ε

1+εck−1−1) ≤ (1+ε)(1−ck−1). Therefore,
for all h = 1, ...,mk−1 − 1,

γk +
(βdk−1h)2

1− γk
≥ 1

1 + ε

(
ck−1 +

(βdk−1h)2

1− ck−1
)
. (24)

From (13) and the arguments following it, we know that

h
(
ck−1+

(βdk−1h)2

1− ck−1
)
≥ 2h2(

√
h

h+ 1
−1)+h ≥

√
2−1, (25)

for all ck−1 ∈ (0, 1/2] and h = 1, ...,mk−1−1. Combing (24)
and (25), we have for h = 1, ...,mk−1 − 1,

γk + (βdk−1h)2/(1− γk) ≥ (
√

2− 1)/(h(1 + ε)) =
1

hr
. (26)

Note that since ck−1 ≤ 1/2, then ck−1mk−1 ≥ ck−1(1/ck−1−
1) ≥ 1/2 >

√
2− 1, thus,

γk ≥
ck−1
1 + ε

>

√
2 + 1

(1 + ε)mk−1
=

1

mk−1r
. (27)

Combing (23), (26) and (27), we have that (22) holds,
therefore ck ≤ ck−1/(1 + ε).Then, ck ≤ (1/(1 + ε))k−1c1 =
(
√

2−1)(1+ε)−k. If η ≥
√

2−1, then c1 ≤ η. If η <
√

2−1,
then CM ≤ η. Therefore, cM̃ ≤ η.

If we further let c0 = 1, then (η, 1) ⊂ ∪M̃k=1(ck, ck−1] with
M̃ defined in Lemma 4. Item i belongs to group G̃kmk−1

if µi ∈ (ck, ck−1](k = 1, ..., M̃), and σi ∈ [0, dk−1mk−1−1]. It
belongs to group G̃kh if µi ∈ (ck, ck−1] and σi ∈ (dk−1h , dk−1h−1]

(h = 1, ...,mk−1− 1). Since k ≤ M̃ , and mk ≤ b1/ηc for all
k, then there are at most M̃b1/ηc groups. Figure 1 illustrates
how to divide items according to the mean and the standard
deviation. We briefly summarize the packing strategy in Algo-
rithm 2. Since the classification takes O(log(M̃b1/ηc)) time
for each item, Algorithm 2 runs in O(n log(M̃b1/ηc)) time.
Since there are at most M̃b1/ηc active bins at any time, the
algorithm takes M̃b1/ηc storage space to store active bins.

Algorithm 2 General group packing algorithm

1 Keep one active bin for each group G̃kh.
2 For each item, decide which group it belongs to. If it fits

into the current bin for that group, then pack it. Otherwise,
open a new bin and make it the current bin for that group.

Let t̃kh denote the number of bins used to pack items
in group G̃kh, then the total number of bins used is B̃ :=∑M̃
k=1

∑mk−1

h=1 t̃kh. We have one main result as follows,

Theorem 3. A list L = (x1, ..., xn) with xi ∼ N (µi, σ
2
i)

(µi ∈ (η, 1)) needs to be packed into the minimum of bins, such
that for each bin, the probability that its size is exceeded does
not exceed a given probability α. For any ε > 0, Algorithm 2
with {ck} and {dkh} defined in (17)∼(20) produces a feasible
packing strategy with the number of bins B̃ satisfying

B̃ ≤ (1 + ε)(
√

2 + 1)OPT + M̃b1/ηc, (28)

where OPT is the minimum number of bins needed. And the
worst-case performance ratio satisfies

lim
n→∞

B̃/OPT ≤ (1 + ε)(
√

2 + 1). (29)

Proof: Since for any item i in group G̃kh, µi ≤ ck−1 and
σi ≤ dk−1h−1, then the total size of h items in group G̃kh follows
N (µ, σ2) with µ ≤ hck−1 and σ ≤

√
hdk−1h−1. Since µ+βσ ≤

hck−1 + β
√
hdkh−1 = 1, then there are at least h items in one

bin except the last bin for group G̃kh. We define the effective
occupation f̃(µ, σ) such that f̃(µi, σi) = 1

h if item i belongs
to G̃kh (k = 1, ..., M̃ , h = 1, ...,mk−1). For each bin j of
group G̃kh except the last bin, let U j denote the set of indices
of the items in this bin, then

∑
i∈Uj f(µi, σi) ≥ 1. Then from

Lemma 2, we have

B̃ ≤ r̃∗OPT + M̃b1/ηc, (30)

where M̃b1/ηc accounts for the total number of possibility un-
filled bins in all the groups, and r̃∗ = maxU∈S

∑
i∈U f̃(µi, σi)

with S defined in (5). From (9), we have r̃∗ ≤ maxi
f̃(µi,σi)
g(µi,σi)

,
where g(µ, σ) is defined in (2).

For any item i in group G̃kh, (k = 1, ..., M̃ , h =
1, ...,mk−1), we have µi > ck and σi ≥ dk−1h , thus,

g(µi, σi) = µi + (βσi)
2/(1− µi) ≥ ck + (βdk−1h)2/(1− ck)

= ck +
(
1− (h+ 1)ck−1

)2
/
(
(h+ 1)(1− ck)

)
≥ 1/(hr),

where the last inequality holds from (21). Then

f̃(µi, σi)/g(µi, σi) ≤ 1/r = (1 + ε)(
√

2 + 1). (31)

Since for every item i, (31) holds, then

r∗ ≤ max
i

(
f̃(µi, σi)/g(µi, σi)

)
≤ (1 + ε)(

√
2 + 1). (32)

Therefore, (28) follows from (30) and (32). Since given ε,
M̃b1/ηc is a constant, and OPT goes to infinity as n goes to
infinity, then (29) follows.

8

We remark that if we define {ck} as ck = ck−1/(1 + ε)
instead of (19), and modify Algorithm 2 accordingly, Theorem
3 still holds. However, compared with the current algorithm
with (19), the items are divided into more groups if we make
this change, which could lead to more unfilled bins. Thus,
Algorithm 2 with {ck} and {dkh} defined in (17)∼(20) has a
better practical performance.

In the analysis of Algorithm 1 and Algorithm 2, since it is
hard to compute r∗ and r̃∗ directly, we use their upper bounds
maxi

f(µi,σi)
g(µi,σi)

(for r∗) and maxi
f̃(µi,σi)
g(µi,σi)

(for r̃∗) instead.
However, since these upper bounds are in general loose, the
worst-case performance ratio we obtained are also not tight.

VI. EXTENSION TO VARIABLE-SIZED BINS

Here we extend to a more general case that there are q > 1
kinds of bins with different capacities 0 < α1 < α2 < ... <
αq = 1, and there are an inexhaustible supply of bins of each
size. Then for a given list L of items, and a given violation
probability, we want to minimize the total capacities of the
bins used to pack L. Let OPTv denote this minimum total
capacity. We also consider packing L using only unit-capacity
bins like what we discussed previously and let OPT denote
the minimum number of unit-capacity bins needed. Then one
can easily check that OPTv ≤ OPT .

Theorem 1 established the relation of the number bins B
used by Algorithm 1 and OPT in (15) and (16). Theorem
3 established the relation of the number of bins B̃ used by
Algorithm 2 and OPT in (28) and (29). Here we claim that
(15-16) and (28-29) still hold if we replace OPT with OPTv .
In other words, even if the optimal strategy can choose bin size
for each bin, the worst-case performance ratio of implementing
Algorithm 1 and Algorithm 2 with unit-capacity bins do not
change. This result follows from the following lemma,

Lemma 5. Given α, a list of items L = (x1, x2, ..., xn) with
xi ∼ N (µi, σ

2
i) are packed into B bins. Let U j be the set

of indices of item in bin j. If there exists function f such
that for every bin j except Q bins (Q does not depend on n),∑
i∈Uj f(µi, σi) ≥ 1, and g is defined in (2), then

B ≤ max
i

(
f(µi, σi)/g(µi, σi)

)
OPTv +Q,

Proof: Note that B − Q ≤
∑n
i=1 f(µi, σi) from as-

sumption. Since the maximum possible bin size is 1, then
g(µi, σi) is still a lower bound of the equivalent size of item
i, i.e. (3) still holds. Thus,

∑n
i=1 g(µi, σi) ≤ OPTv . Then,

B ≤
∑n
i=1 f(µi, σi) +Q ≤ maxi

f(µi,σi)
g(µi,σi)

(
∑n
i=1 g(µi, σi)) +

Q ≤
(
f(µi, σi)/g(µi, σi)

)
OPTv +Q.

Then using the same analysis in Section IV and combining
Lemma 3 and Lemma 5, we conclude that

B < (
√

2 + 1)OPTv +mb1/ηc,

where B is the number of bins used by Algorithm 1. One can
compare this result with (15). Similarly, for the number of bins
B̃ used by Algorithm 2, following the analysis in Section V
and Lemma 5, we have

B̃ ≤ (1 + ε)(
√

2 + 1)OPTv + M̃b1/ηc.

0 0.01 0.02 0.03 0.04
0

0.2

0.4

0.6

0.8

1

Violation Probability (α)

P
er

ce
nt

ag
e

of
 S

er
ve

rs

Algorithm 2
HARMONIC (µ+β σ)
HARMONIC (µ+σ)

Fig. 2. Violation probability on physical machines in different strategies

0 0.5 1 1.5 2

x 10
4

0

1000

2000

3000

4000

5000

6000

Number of Items (n)
N

um
be

r
of

 B
in

s
U

se
d

HARMONIC
FF
FFD
Algorithm 2
Lower Bound

Fig. 3. Number of bins used by different algorithms

Therefore, the worst case performance bounds we obtained for
Algorithm 1 and Algorithm 2 still hold for the general problem
of packing random variables with variable-sized bins.

VII. NUMERICAL RESULTS

We use traffic dataset from global operational data centers.
Details of this dataset are provided in [27]. We compute the
mean and variance of the traffic rates for about 9K VMs in
a six-hour period. In our simulations, we assume these VMs
are consolidated onto servers equipped with 1 Gbps Ethernet
card. The capacity violation probability is α = 0.01, thus
we have β = 2.3263. The number of servers used by the
proposed group packing algorithm, i.e., Algorithm 2, is 421.
For comparison purposes, we also implement the HARMONIC
algorithm [24] (with M=12), a popular online algorithm for
the classical bin packing problem. To guarantee the actual
violation probability does not exceed α, we use µi+βσi as the
bandwidth requirement for VM i when HARMONIC is tested.
In this test, the number of servers used is 609. Comparing the
proposed algorithm and HARMONIC, the proposed one re-
duces the required servers by 30%. If we are less conservative
and use µi + 1.2σi as the bandwidth requirement for VM i,
then the number of servers used is 402, which is comparable
to the number used by Algorithm 2. However, the violation
probability in this case exceeds α for some servers. We then
draw 10000 samples from the obtained distributions for all

9

the VMs and calculate the empirical violation probability for
each server in differen schemes. As shown in Figure 2, both
our algorithm and HARMONIC with µ+ βσ as VM size can
guarantee that for each server, the violation probability does
not exceed 0.01, while in the HARMONIC case with µ+1.2σ
as VM size, the violation probability exceeds 0.01 in about 17
percents of the servers.

Next, we generate random samples and pack them with four
different algorithms: Algorithm 2, HARMONIC, FFD and FF.
We increase the number of items to pack from 2000 to 20000.
Given α = 0.0228 and β = 2, we let the distribution of the
size of item i follow N (µi, σ

2
i) with µi and σi satisfying

µi + βσi ≤ 1. Algorithm 2 packs the distributions, while
HARMONIC, FFD and FF take µi+βσi as the size of item i.
We also find a lower bound of the minimum number of bins
needed (OPT) as follows. We use FFD to pack items with
g(µi, σi) as the size of item i and let B be the number of bins
used. Since the minimum number of bins needed g(µi, σi)
(i = 1, ..., n), denoted by OPTg , is less than OPT , and the
FFD algorithm guarantees that B ≤ 11

9 OPTg + 1([36]), then
9
11 (B − 1) ≤ OPTg ≤ OPT , and 9

11 (B − 1) is a lower
bound of OPT . Figure 3 compares the number of bins used
by the four algorithms. The result for each n is averaged over
1000 runs. All the algorithms can guarantee that the violation
probability does not exceed 0.0228. The result shows that the
number of bins used varies significantly: Algorithm 2 uses the
least among the four, and is within 1.6 times optimum.

VIII. CONCLUSION

Most traditional VM consolidation schemes only consider
CPU, memory and disk constraints, and solve a bin packing
type of problem by making a deterministic estimate of resource
demands. This paper studies VM consolidation problem when
network devices in data centers impose bandwidth constraints.
Because of the dynamic nature in data center traffic, we formu-
late the VM consolidation as a novel Random Variable Packing
problem which models the bandwidth demands of VMs as
probabilistic distributions. Such a probabilistic approach better
captures the uncertainty in network bandwidth demand than
the traditional deterministic model. We propose an approxi-
mation algorithm and prove its worst-case performance ratio
of (1+ε)(

√
2+1) for any ε > 0. The ratio is further improved

to
√

2 + 1 in special cases. We demonstrate with numerical
experiments that the proposed algorithm saves many servers
without violating the server capacity constraints. Due to the
generality of the defined RVP problem and the algorithm, the
results in this work can apply to the VM consolidation problem
for other resource types and beyond. SBP with general item
size distributions is interesting to explore.

REFERENCES

[1] Y. Ajiro and A. Tanaka, “Improving packing algorithms for server
consolidation,” in Proceedings of the International Conference for the
Computer Measurement Group (CMG), 2007.

[2] T. A. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding
data center traffic characteristics,” in ACM SIGCOMM WREN workshop,
2009.

[3] R. E. Burkard and G. Zhang, “Bounded space on-line variable-sized bin
packing,” Acta Cybern., vol. 13, no. 1, pp. 63–76, 1997.

[4] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, “Approximation
algorithms for bin packing: a survey,” pp. 46–93, 1997.

[5] J. Csirik, “An on-line algorithm for variable-sized bin packing,” Acta
Inf., vol. 26, no. 9, pp. 697–709, 1989.

[6] D.J.Brown, “A lower bound for on-line one-dimensional bin packing
algorithms,” Tech. Rep. No. R-864, 1979.

[7] G. Dósa, “The tight bound of first fit decreasing bin-packing algorithm is
FFD(I)=(11/9)OPT(I)+6/9,” in Combinatorics, Algorithms, Probabilistic
and Experimental Methodologies, 2007.

[8] D. K. Friesen and M. A. Langston, “A storage-size selection problem,”
Inf. Process. Lett., vol. 18, no. 5, pp. 295–296, 1984.

[9] ——, “Variable sized bin packing,” SIAM Journal on Computing,
vol. 15, no. 1, pp. 222–230, 1986.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co Ltd, January
1979.

[11] A. Goel and P. Indyk, “Stochastic load balancing and related problems,”
40th IEEE Annual Symposium on Foundations of Computer Science,
vol. 0, p. 579, 1999.

[12] IBM, “Server Planning Tool, http://www-
304.ibm.com/jct01004c/systems/support/tools/systemplanningtool/.”

[13] IBM WebSphere CloudBurst, “http://www-
01.ibm.com/software/webservers/cloudburst/.”

[14] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham,
“Worst-case performance bounds for simple one-dimensional packing
algorithms,” SIAM Journal on Computing, vol. 3, no. 4, pp. 299–325,
1974.

[15] D. S. Johnson, Ph.D. dissertation. MIT, Cambridge, Mass., June 1973.
[16] ——, “Fast algorithms for bin packing,” Journal of Computer and

System Sciences, vol. 8, no. 3, pp. 272 – 314, 1974.
[17] D. S. Johnson and M. R. Garey, “A 71/60 theorem for bin packing,”

Journal of Complexity, vol. 1, no. 1, pp. 65 – 106, 1985.
[18] J.Shahabuddin, A.Chrungoo, V.Gupta, S.Juneja, S.Kapoor, and

A.Kumar, “Stream-packing: Resource allocation in web server farms
with a QOS guarantee,” in HiPC, 2001.

[19] S. Kandula, S. Sengupta, A. Greenberg, and P. Patel, “The nature of
datacenter traffic: Measurements and analysis,” in ACM IMC, 2009.

[20] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of Computer Computations, R. E. Miller and J. W. Thatcher, Eds.
Plenum Press, 1972, pp. 85–103.

[21] N. G. Kinnerseley and M. A. Langston, “Online variable-sized bin
packing,” Discrete Applied Mathematics, vol. 22, no. 2, pp. 143 – 148,
1989.

[22] J. Kleinberg, Y. Rabani, and E. Tardos, “Allocating bandwidth for bursty
connections,” in Proc. STOC, 1997, pp. 664–673.

[23] Lanamark Suite, “http://www.lanamark.com/.”
[24] C. C. Lee and D. T. Lee, “A simple on-line bin-packing algorithm,” J.

ACM, vol. 32, no. 3, pp. 562–572, 1985.
[25] F. M. Liang, “A lower bound for on-line bin packing,” Information

Processing Letters, vol. 10, pp. 76 – 79, 1980.
[26] S. Mehta and A. Neogi, “Recon: a tool to recommend dynamic server

consolidation in multi-cluster data centers,” in NOMS, 2008.
[27] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data

center networks with traffic-aware virtual machine placement,” in IEEE
INFOCOM, 2010.

[28] N.Bobroff, A.Kochut, and K.Beaty, “Dynamic placement of virtual
machines for managing SLA violations,” in Integrated Network Man-
agement, 2007.

[29] Novell PlateSpin Recon, “http://www.novell.com/products/recon/.”
[30] S. S. Seiden, “An optimal online algorithm for bounded space variable-

sized bin packing,” SIAM Journal on Discrete Mathematics, vol. 14,
no. 4, pp. 458–470, 2001.

[31] VMware Inc., “VMware Capacity Planner,
http://www.vmware.com/products/capacity-planner/.”

[32] ——, “VMWare vCenter CapacityIQ,
http://www.vmware.com/products/vcenter-capacityiq/.”

[33] ——, “Resource Management with VMware DRS,” VMware Inc.,
Whitepaper, 2006.

[34] W.Leinberger, G.Karypis, and V.Kumar, “Multi-capacity bin packing al-
gorithms with applications to job scheduling under multiple constraints,”
in ICPP, 1999.

10

[35] A. C.-C. Yao, “New algorithms for bin packing,” J. ACM, vol. 27, no. 2,
pp. 207–227, 1980.

[36] M. Yue and L. Zhang, “A simple proof of the inequality MFFD(L)≤
71/60 OPT(L) + 1, L for the MFFD bin-packing algorithm,” Acta
Mathematicae Applicatae Sinica, vol. 11, no. 3, pp. 318–330, 1995.

[37] G. Zhang, “Worst-case analysis of the ffh algorithm for online variable-
sized bin packing,” Computing, vol. 56, no. 2, pp. 165–172, 1996.

