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Abstract

This paper investigates conditions for an underdeter-
mined linear system to have a unique nonnegative solution.
A necessary condition is derived which requires the mea-
surement matrix to have a row-span intersecting the pos-
itive orthant. For systems that satisfy this necessary con-
dition, we provide equivalent characterizations for having
a unique nonnegative solution. These conditions general-
ize existing ones to the cases where the measurement matrix
may have different column sums. Focusing on binary mea-
surement matrices especially ones that are adjacency matri-
ces of expander graphs, we obtain an explicit threshold. Any
nonnegative solution that is sparser than the threshold is the
unique nonnegative solution. Compared with previous ones,
this result is not only more general as it does not require
constant degree condition, but also stronger as the threshold
is larger even for cases with constant degree.

1. Introduction

Finding the sparest solution to a linear underdetermined
system is in general a difficult problem. However, if the sys-
tem satisfies certain conditions, then efficient recovery of the
sparest solution is possible. Recently, there has been an ex-
plosion of research on this topic, see e.g., [1–5]. Formally,
one wants to recover a n-dimensional signal x which is
known apriori to be at most k-sparse from a m-dimensional
(m < n) measurement y = Ax, where the m by n matrix A is
referred to as the measurement matrix. [5] gives a sufficient
condition known as Restricted Isometry Property (RIP) on A
that guarantees the recovery of x via L1 minimization which
can be casted as a linear programming problem.

In many interesting cases, the vector x is known to be
nonnegative. [6] gives a necessary and sufficient condition
known as the outwardly neighborliness property of A for L1
minimization to successfully recover a sparse non-negative
solution. Moreover, recent studies [7–9] suggested that a
sparse solution could be the unique non-negative solution
there. This certainly leads to potentially better alternatives
to L1 minimization as in this case any optimization problem
over this constraint set can recover the solution. To have a
unique nonnegative solution, what is the requirement for the
measurement matrix? How sparse that unique solution has

to be? What is the relation between having a unique solution
and successful recovery by L1 minimization? Building on
prior related literature, the first part of our paper (Section 3)
discusses these questions.

Motivated by networking inference problems such as
network tomography (see the example at the end of Section
3), we are particularly interested in systems where the mea-
surement matrix is binary. There has not been many exist-
ing results on this type of systems except a few very recent
papers [9–12]. A serious restriction in these papers is the
requirement of the matrix to have constant column sum. In
section 4 we make progress in this regard and our result al-
lows different column sums.

We here summarize the main contribution of this pa-
per. The paper focuses on characterizing the phenomenon
that {x|Ax = Ax0,x≥ 0,x0 ≥ 0} is a singleton if x0 is sparse
enough. We demonstrate

• Different equivalent characterizations of the unique-
ness property (Theorem 1),

• A necessary condition on matrix A such that the sparse
solution is also the only solution (Theorem 2),

• Existence of a (2m + 1)× n measurement matrix for
any n ≥ 2m + 2 such that any m-sparse solution is the
unique nonnegative solution (Theorem 3),

• Sparsity threshold for uniqueness for adjacency matri-
ces of general expander graphs (Theorem 5).

2. Problem formulation and background

The goal of compressive sensing is to recover an n-
dimensional vector x from a system of under-determined lin-
ear equations. Am×n(m < n) is the measurement matrix, and
y = Ax is the m-dimensional measurement. In many appli-
cations, x is non-negative, which is our main focus here. In
general, the task seems impossible as we have fewer mea-
surements than variables. However, if x is known to be
sparse, it can be recovered by solving the following prob-
lem,

min‖x‖0 s.t.Ax = y,x≥ 0, (1)

where the L0 norm ‖ · ‖0 measures the number of nonzero
entries of a given vector. Since (1) in general is NP-hard,



people solve an alternative convex problem by replacing L0
norm with L1 norm where ‖x‖1 = ∑i |xi|. Note for a non-
negative vector x, ‖x‖1 = 1T x. [6] proves that if A is out-
wardly k-neighborly, then a k-sparse vector x can be recov-
ered by solving the following L1 minimization problem,

min1T x s.t.Ax = y,x≥ 0. (2)

In order to improve the recover ability, people also consider
“weighted” L1 minimization problem ( [13] [9])

minβ T x s.t.Ax = y,x≥ 0, (3)

where the weight β is a positive vector.
In this paper we will show that for a certain class of

matrices, if x is sufficiently sparse, not only can we recover
x from (2) or (3), but also x is the only solution to {x|Ax =
y,x ≥ 0}. In other words, {x|Ax = y,x ≥ 0} is a singleton,
and x can possibly be recovered by techniques other than L1
minimization. Notice that if A has a column that is all 0, then
the corresponding entry of x can never be recovered from y.
Thus we assume A has no zero column throughout the paper.

3. Uniqueness with general measurement ma-
trices

We focus on a class of matrices with a row-span inter-
secting the positive orthant as defined in [7].

Definition 1 ( [7]). A has a row-span intersecting the pos-
itive orthant, denoted by A ∈ M+, if there exists a strictly
positive vector β in the row space of A, i.e. ∃h such that

hT A = β T > 0. (4)

We now state a simple observation regarding matrices
in M+.

Lemma 1. Let ai ∈Rm (i = 1,2, ...,n) be the ith column of a
matrix A, then A∈M+ if and only if 0 /∈Conv(a1,a2, ...,an),
where

Conv(a1,a2, ...,an) = {y =
n

∑
i=1

λiai|
n

∑
i=1

λi = 1,λ ≥ 0} (5)

Proof. If A ∈ M+, then there exists h such that hT A =
β T > 0. Suppose we also have 0 ∈ Conv(a1,a2, ...,an),
then there exists λ ≥ 0 such that Aλ = 0 and 1T λ = 1.
Then (hT A)λ = β T λ > 0 as β > 0, λ ≥ 0 and λ 6= 0. But
(hT A)λ = hT (Aλ ) = 0 as Aλ = 0. Contradiction! Therefore
0 /∈ Conv(a1,a2, ...,an).

Conversely, if 0 /∈ Conv(a1,a2, ...,an), there exists a
separating hyperplane {x|hT x + b = 0,h 6= 0} that strictly
separates 0 and Conv(a1,a2, ...,an). We assume WLOG
that hT 0 + b < 0 and hT x + b > 0 for any point x in
Conv(a1,a2, ...,an). Then hT ai >−b > 0,∀i. Thus we con-
clude hT A > 0.

As first discovered in [7], for a matrix A in M+, if a non-
negative vector x0 is sparse enough, then {x|Ax = Ax0,x≥ 0}
admits x0 as the unique nonnegative solution. We will
state two necessary and sufficient conditions, one in high-
dimensional geometry and one in null space property, to
characterize this phenomenon. To this end, we need another
definition.

Suppose Am×n ∈M+, then there exist h ∈ Rm such that
hT A = β T > 0. Define a polytope P as the convex hull of
vectors (ai/βi, i = 1,2, ...,n), i.e.

P , Conv(
a1

β1
,

a2

β2
, ...,

an

βn
)

= {y =
n

∑
i=1

λi

βi
ai ∈ Rm|

n

∑
i=1

λi = 1,λ ≥ 0} (6)

Definition 2 ( [6]). We say a polytope P is k-neighborly if
every set of k vertices spans a face F of P. F is a face of
P if there exists a vector αF such that αT

F x = c,∀x ∈ F, and
αT

F x < c,∀x /∈ F and x ∈ P.

We present the following theorem in the same style as
in [6] and [9].

Theorem 1. If Am×n ∈ M+, i.e. there exists β > 0 in the
space spanned by rows of A, then the following three prop-
erties of A are equivalent:

• The polytope P defined in (6) has n vertices and is k-
neighborly.

• For any non-negative vector x0 with a support size no
greater than k, the set {x|Ax = Ax0,x ≥ 0} is a single-
ton.

• For any w 6= 0 in the null space of A, both the positive
support and the negative support of w have a size at
least k +1.

Proof. We first show that statement 2 and statement 3 are
equivalent for any matrix A. [9] (Theorem 3.3) states this
equivalence for matrices with constant column sum. How-
ever, their proof does not require A to have constant column
sum. We reformulate the proof as follows.

Forward direction. Suppose statement 3 fails. WLOG
we assume there exists w in the null space of A with the size
of negative support less than k +1. We write w as

w =
[

ws
wsc

]
, (7)

where the index set s⊂ {1,2, ...,n} has size |s| ≤ k, ws < 0,
and wsc ≥ 0. Define

x1 =
[ −ws

0

]
≥ 0, x2 =

[
0

wsc

]
≥ 0. (8)

Clearly x1 6= x2, and x1 is a non-negative vector whose pos-
itive support has a size no greater than k. But {x|Ax =



Ax1,x≥ 0} also contains x2, thus not a singleton. Then state-
ment 2 is not true.

Converse direction. Suppose statement 2 is not true.
Then there exists a non-negative k-sparse vector x0 such that
{x|Ax = Ax0,x≥ 0} is not a singleton, i.e. there exists x̃≥ 0
such that Ax̃ = Ax0 and x̃ 6= x0. We assume WLOG that

x0 =
[

xs
0

]
≥ 0, x̃ =

[
x̃s
x̃sc

]
≥ 0, (9)

where xs > 0 and |s| ≤ k. Let w = x̃− x0, then

w =
[

x̃s− xs
x̃sc

]
. (10)

Since x̃sc ≥ 0, the negative support of w has a size no greater
than k, thus statement 3 fails.

We now show that statement 1 and statement 2 are
equivalent. Define B = diag(β ) and let D = AB−1. Then
there is a one-to-one correspondence z = Bx between the two
sets

{x|Ax = y,x≥ 0} and {z|Dz = y,z≥ 0}. (11)

For any non-negative k sparse x0, z0 = Bx0 is also non-
negative and k-sparse. {x|Ax = Ax0,x ≥ 0} is a singleton
if and only if Q = {z|Dz = Dz0 = Ax0,z ≥ 0} is a single-
ton. The polytope P defined in (6) is the convex hull of the
column vectors of D.

First we show statement 1 implies statement 2. Since
P is k-neighborly, it is easy to check that a polytope γP =
γConv( a1

β1
, a2

β2
, ..., an

βn
) is also k-neighborly for any γ > 0.

Note that hT x = 1 holds for any point x ∈ P, then P lies
in an n-dimensional hyperplane {x|hT x = 1}. Then for any
γ1,γ2 > 0 and γ1 6= γ2, the polytopes γ1P and γ2P belong
to two disjoint hyperplanes {x|hT x = γ1} and {x|hT x = γ2}
respectively, and hence γ1P and γ2P are disjoint.

For any point z ∈ Q, we have x = B−1z belongs to
{x|Ax = Ax0,x≥ 0}, thus

1T z = 1T Bx = β T x = hT Ax = hT (Ax) = hT (Ax0) = c, (12)

where the constant c = hT Ax0 > 0. Then for any z ∈ Q, we
have Dz ∈ cP. Conversely, since γ1P and γ2P are disjoint for
any positive γ1 6= γ2, then for any z ≥ 0 such that Dz ∈ cP,
we must have 1T z = c. Since z0 is k-sparse, Dz0 belongs to
a k-face F ∈ cP. Since cP is k-neighborly, Dz0 has a unique
representation as a convex combination of vertices of cP,
i.e. there is a unique λ such that Dz0 = ∑n

i=1 λi
ai
wi

,1T λ =
c,λ ≥ 0. But z0 is already such a representation. Therefore
Q is a singleton, which implies {x|Ax = Ax0,x≥ 0} is also a
singleton.

Then we show statement 2 implies statement 1. Since
{x|Ax = Ax0,x ≥ 0} is a singleton, then Q is a singleton.
Then the L1 minimization problem minQ 1T z can recover z0.
From the Theorem 1 of [6] we know that the polytope P′ =
Conv(0, a1

β1
, a2

β2
, ..., an

βn
) has n+1 vertices and is outwardly k-

neighborly. Then P, the outward part of P′, has n vertices
and is k-neighborly.

Note that assuming that A∈M+, there could exist more
than one pair of (h,β ) such that hT A = β T > 0, and The-
orem 1 holds for any such pair. Therefore different poly-
topes defined from different β ’s have the same neighbor-
liness property, and we can just check the neighborliness
property of any one of these polytopes. For a binary ma-
trix A, one simple choice is that h = 1, and consequently
βi = 1T ai, i = 1,2, ...,n.

The next theorem states that the singleton phenomena
is a property only for matrices in M+.

Theorem 2. For any matrix A /∈ M+ and for any non-
negative vector x0, {x|Ax = Ax0,x≥ 0} is never a singleton.

Proof. Since A /∈ M+, then from Lemma 1 we know 0 ∈
Conv(a1,a2, ...,an). Then there exists a vector w ≥ 0 such
that Aw = 0 and 1T w = 1. Clearly w ∈ Null(A) and w 6= 0.
Then for any γ > 0 we have A(x0 +γw) = Ax0 +γAw = Ax0,
and x0 + γw≥ 0 provided x0 ≥ 0. Hence x0 + γw ∈ {x|Ax =
Ax0,x≥ 0}.

Remark: Theorem 2 shows that a necessary condition for
the singleton phenomenon to happen is that A belongs to
M+. If Am×n is a random matrix such that every entry is in-
dependently sampled from Gaussian distribution with zero
mean, then the probability that 0 lies in the convex hull of
the column vectors of A, or equivalently {x|Ax = Ax0,x≥ 0}
is never a singleton for any x0 ≥ 0, is 1− 2−n+1

m−1
∑

k=0

(n−1
k

)
(

[14]), which goes to 1 asymptotically as n increases if
lim

n→+∞
m−1
n−1 < 1

2 .

We next show that for any positive integers m and n
(m < n), there exists a matrix Am×n in M+ such that the
uniqueness property holds for all non-negative bm−1

2 c-sparse
vectors. We state the theorem as follows.

Theorem 3. For any n, p ∈ Z+ such that n ≥ 2p + 2, there
exists a matrix A(2p+1)×n ∈ M+ such that {x|Ax = Ax0,x ≥
0} is a singleton for any non-negative k-sparse signal x0 if
k ≤ p.

Proof. We borrow the idea from [15] in the proof of the exis-
tence of a m-neighborly polytope with n vertices in 2m space
for any n > m.

First we state without proof an important result from
[15]. For any positive integers q and j, let Sq be the (q+1)-
dimensional unit sphere. Then there exist 2 j + q differ-
ent points b1, ...,b2 j+q that are uniformly distributed on Sq.
By uniform distribution we mean that any open hemisphere
H(α) = {x|x∈ Sq,and αT x > 0} contains at least j points in
b1, ...,b2 j+q.

In our problem, let n = 2 j + q, j = p + 1, then q =
n− (2p + 2). From the previous result, there exist points
b1, ...,bn ∈ Rq+1 that are uniformly distributed on Sq. In
other words, for any λ 6= 0 in Rq+1, λ T bi > 0 for at
least p + 1 vectors among bi,(i = 1, ...,n). And similarly
−λ T bi > 0 for at least p+1 vectors among bi,(i = 1, ...,n).



Let
G =

[
b1,b2, . . .,bn

]T
. (13)

Let Range(G) be the subspace generated by the columns of
G. For any w 6= 0 in Range(G), there exists some λ 6= 0
such that

w = Gλ =
[

λ T b1,λ T b2, . . .,λ T bn
]T

. (14)

Then w has at least p + 1 negative terms and at least p + 1
positive terms.

If Range(G) is the null space of some matrix A, then
from Theorem 1 we know {x|Ax = Ax0,x≥ 0} is a singleton
for any non-negative p-sparse x0. To construct such A, take
the orthogonal complement of Range(G) in Rn, denoted by
(Range(G))⊥. Since Range(G) has dimension q + 1, then
(Range(G))⊥ has dimension n− (q + 1) = 2p + 1. Pick a
basis h1,h2, ...,h2p+1 ∈ Rn for (Range(G))⊥, and define

A =
[

h1,h2, . . .,h2p+1
]T

. (15)

Then A is the desired matrix.
Clearly 0 /∈ Conv(A), since otherwise there exists w ≥

0 such that Aw = 0 and w 6= 0, contradicting the fact that
for any w 6= 0 in the null space of A should have a negative
support with size at least p + 1. Therefore A ∈ M+ from
Lemma 1.

Conversely, for a given a measurement matrix Am×n, we
can reverse the steps in the proof of Theorem 3 to find the
threshold of sparsity such that the singleton property holds.
To be specific, we choose a basis of its null space Null(A),
say s1,s2, ...,sn−m ∈ Rn. Let G = [ s1 s2 . . . sn−m ],
then take the row vectors of G and normalize them to unit
norm. Let b1,b2, ...,bn ∈ Rn−m denote the vectors after nor-
malization. Since for any w in Null(A), there exists a λ in
Rn−m such that w = Gλ , then wi has the same sign as λ T bi
for all i = 1, ...,n. Let K be the minimum number of nodes
among b1,b2, ...,bn that are covered by a open hemisphere,
i.e. K = minα(∑n

i=1 1{bi∈H(α)}), where 1{bi∈H(α)} is 1 if bi
belongs to H(α), and 0 otherwise. Then {x|Ax = Ax0,x≥ 0}
is a singleton for any non-negative x0 with a support size less
than K. However, it is in general hard to compute such K
since that requires searching over all the open hemispheres.

The following proposition states that Theorem 3 is the
“best” we can hope for in some sense.

Proposition 1. Let Am×n with its columns ai ∈ Rn, i =
1,2, ...,n in general position such that {x|Ax = Ax0,x ≥ 0}
is a singleton for any non-negative signal x0 that is at most
p-sparse. If m≤ 2p, then n≤ m.

Proof. First from Theorem 2 we know that A belongs to
M+, i.e. there exists h such that hT A = β T > 0. We will
prove our claim by contradiction. Suppose we have n ≥
m+1, pick the first m+1 columns of A, i.e. a1,a2, ...,am+1.
Then the equations

m+1

∑
i=1

λi
ai

βi
= 0 (16)

have m equations and m + 1 variables λ1,λ2, ...,λm+1, and
have a non-zero solution. Taking the inner product of both
sides of (16) with h, we have

m+1

∑
i=1

λi = 0. (17)

Since ai ∈Rn, i = 1,2, ...,n are in general position, none
of λi is zero. Since A is in M+, from Lemma 1 we know
0 /∈Conv(A), thus λ should have both positive and negative
terms. Collecting positive and negative terms of λ separa-
tively, we can rewrite (16) as follows,

∑
i∈Ip

λi
ai

βi
= ∑

i∈In

λi
ai

βi
, (18)

where Ip is the set of indices of positive terms and In is the
set of indices of negative terms. We also have ∑i∈Ip λi =

∑i∈In λi , r > 0 from (17).
Since |Ip|+ |In| = m + 1 ≤ 2p + 1, we assume WLOG

that |Ip| ≤ p. From Theorem 1 we know is p-neighborly,
i.e. for any index set I with size p, there exists α such that
αT ai

βi
= c for any i in I, and αT ai

βi
< c for all i not in I.

We consider specifically an index set I which contains Ip
and its corresponding vector α . Taking the inner product
of both sides of (18) with α , we would get rc on the left
and some value strictly greater than rc on the right, giving a
contradiction.

As mentioned earlier, L1 minimization is a widely-
used technique to recover a sparse signal from its low-
dimensional measurements. Interestingly, if A is in M+,
which means the row space of A contains some positive vec-
tor β , then the success of weighted L1 minimization using β
as the weight is equivalent to the singleton property. To see
this, we first state the following theorem.

Theorem 4. Given a matrix A and any vector h, {x|Ax =
Ax0,x≥ 0} is a singleton if and only if x0 is the unique solu-
tion to the following linear program,

min(hT A)x s.t.Ax = Ax0,x≥ 0. (19)

Proof. For any point x in {x|Ax = Ax0,x ≥ 0}, hT Ax =
hT (Ax) = hT (Ax0) is a constant. Thus x is a solution to (19).
Therefore {x|Ax = Ax0,x ≥ 0} is a singleton if and only if
x0 is the unique solution to (19).

Remark: If {x|Ax = Ax0,x≥ 0} is not a singleton, then (19)
has infinite number of solutions. That is because if x1 and x2
are two different solutions of (19), then λx1 +(1−λ )x2 is
also a solution for any λ ∈ [0,1].

Corollary 1. For matrix A ∈ M+ with hT A = β T > 0, (3)
with weight β admits a unique non-negative solution x0 if
and only if {x|Ax = Ax0,x≥ 0} is a singleton.

To see possible application of Corollary 1, we briefly
introduce network inference problems here. Network infer-
ence problems are problems to extract individual parame-
ters based on aggregate measurements in networks. For ex-
ample, how to calculate loss rate/delay of each link based
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Figure 1. A network with six links and four paths

on end-to-end loss rate/delay measurements along certain
paths? Another example is from traffic volume at each link
and routing information, how to determine traffic between
each source and destination pair. There has been active re-
search in this area including a wide spectrum of approaches
ranging from theoretical reasoning to empirical measure-
ments. See [16–18] as a sample list.

These network inference problems are intrinsically "in-
verse problems" and underdetermined. One in general needs
to add other conditions to make the problem mathematically
solvable [19, 20]. However, if the target object is known to
be sparse already1, then the solution may be the unique non-
negative solution.

In network inference problems, the measurement ma-
trix A is typically a binary routing matrix with rows and
columns indexed by the paths and links of a network. Ai j
is 1 if link j belongs to path i, and 0 otherwise. Let’s say
we want to recover link queueing delays and use the vector
x to denote them and it is known to be sparse. We hope to
locate these bottle-neck links and quantify their delays via
path delay measurements y. The delay of a path is the sum
of delays of links it passes through. Take the network in Fig.
1 as an example. It contains six links and four measurement
paths, and the routing matrix A is:

A =




1 1 1 0 0 0
1 0 0 1 0 0
0 0 0 1 1 1
0 0 1 0 0 1


 . (20)

From Corollary 1, one particular instance in network
inference where the success of L1 minimization and the sin-
gleton property of {x|Ax = Ax0,x ≥ 0} is equivalent is that
there exist a subset of paths such that they are disjoint from
each other, and their union cover all the links. For exam-
ple, consider the network in Fig. 1. Path P1 and path P3 are
disjoint, and for any link in the network, it belongs to either
P1 or P3. Mathematically, we have [ 1 0 1 0 ]T A =
[ 1 1 1 1 ]T , where A is the routing matrix in (20).
Thus from Corollary 1, a non-negative vector x0 is the
unique solution to L1 minimization if and only if {x|Ax =
Ax0,x≥ 0} is a singleton.

1This assumption can be valid in many cases. For example, if most links
are not congested, then there is no congestion loss or queueing delay.
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Figure 2. The bipartite graph corresponding to (20)

4. Uniqueness with expander measurement
matrices

As mentioned earlier, in many problems such as ones
on network inference, A is a binary matrix which is in M+.
In this section, we specialize to this case.

Theorem 1 gives two equivalent characterization of the
singleton property of a matrix in M+. But as discussed after
Theorem 3, it is hard to find the sparsity threshold of a given
matrix A such that {x|Ax = Ax0,x ≥ 0} is a singleton for
all non-negative x0 with a positive support below the thresh-
old. However, we can give a simple sufficient condition of
the singleton property if A is the adjacency matrix of an ex-
pander graph. An adjacency matrix of a graph is a binary
matrix with Ai j = 1 if node i and node j are connected and
zero otherwise. [9,10,12] studied related problems using ex-
pander graph with constant left degree. We instead employ
a general definition of expander which does not require con-
stant left degree.

Every m×n binary matrix A is the adjacency matrix of
an unbalanced bipartite graph with n left nodes and m right
nodes. There is an edge between right node i and left node j
if and only if Ai j = 1. Let d j denote the degree of left node
j, and let dl and du be the minimum and maximum of left
degrees. Define ρ = dl/du, then 0 < ρ ≤ 1. For example, the
bipartite graph corresponding to the routing matrix in (20) is
shown in Fig. 2. Here dl = 1, du = 2, and ρ = 0.5.

Definition 3 ( [21]). A bipartite graph with n left nodes and
m right nodes is an (α,δ ) expander if for any set S of left
nodes of size at most αn, the size of the set of its neigh-
bors Γ(S) satisfies |Γ(S)| ≥ δ |E(S)|, where E(S) is the set
of edges connected to nodes in S, and Γ(S) is the set of right
nodes connected to S.

Our next main result is stated in the following theorem
regarding the singleton property of an adjacency matrix of a
general expander.

Theorem 5. For an adjacency matrix A of an (α,δ ) ex-
pander with left degrees in the range [dl ,du], if δρ >

√
5−1
2 ≈

0.618, then for any non-negative k-sparse vector x0 with
k ≤ αn

1+δρ , {Ax = Ax0,x≥ 0} is a singleton.
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Figure 3. Comparison of L1 recovery and singleton property

Proof. From Theorem 1, we need to prove that for any
w 6= 0 such that Aw = 0, we have |w−| ≥ αn

1+δρ + 1 and
|w+| ≥ αn

1+δρ + 1, where w− and w+ are negative support
and positive support of w respectively.

We will prove by contradiction. Suppose WLOG that
there exists w 6= 0 in Null(A) such that |w−| = k ≤ αn

1+δρ ,
then the set E(w−) of edges connected to nodes in w− satis-
fies

dlk ≤ |E(w−)| ≤ duk. (21)

Then the set Γ(w−) of neighbors of w− satisfies

duk ≥ |E(w−)| ≥ |Γ(w−)| ≥ δ |E(w−)| ≥ δdlk, (22)

where the second to last equality comes from the expander
property.

Notice that Γ(w−) = Γ(w+) = Γ(w− ∪w+), otherwise
Aw = 0 does not hold, then

|w+| ≥ |Γ(w+)|
du

=
|Γ(w−)|

du
≥ δdlk

du
= δρk. (23)

Now consider the set w− ∪w+, we have |w− ∪w+| ≥
(1 + δρ)k. Pick an arbitrary subset w̃ ∈ w− ∪w+ such that
|w̃|= (1+δρ)k ≤ αn. From expander property, we have

|Γ(w̃)| ≥ δ |E(w̃)| ≥ δdl |w̃|= δρ(1+δρ)duk > duk. (24)

The last inequality holds since δρ(1 + δρ) > 1 provided
δρ >

√
5−1
2 . But |Γ(w̃)| ≤ |Γ(w− ∪w+)| = |Γ(w−)| ≤ duk.

A contradiction arises, which completes the proof.

Corollary 2. For an adjacency matrix A of an (α,δ ) ex-
pander with constant left degree d, if δ >

√
5−1
2 , then for

any non-negative k-sparse vector x0 with k ≤ αn
1+δ , {Ax =

Ax0,x≥ 0} is a singleton.

Theorem 5 together with Corollary 2 is an extension
to existing results. Theorem 3.5 of [9] shows that for an

(α,δ ) expander with constant left degree d, if dδ > 1,
then there exists a matrix Ã (a perturbation of A) such that
{Ãx = Ãx0,x ≥ 0} is a singleton for nonnegative x0 with
sparsity up to δαn. Our result instead can directly quantify
the sparsity threshold needed for uniqueness for the origi-
nal measurement matrix A. [12] discussed the success of L1
recovery of a general vector x for expanders with constant
left degree. If we apply Theorem 1 of [12] to cases where
x is known to be non-negative, the result can be interpreted
as that {Ax = Ax0,x≥ 0} is a singleton for any nonnegative
x0 with a sparsity up to 1

2 αn if δ > 5
6 ≈ 0.833. Corollary

2 implies that if δ >
√

5−1
2 ≈ 0.618, the singleton property

holds up to a sparsity of 1
1+δ αn, which is larger than 1

2 αn
for all δ < 1.

5. Simulation

In this section, we generate a random m× n matrix
A with n = 2m = 100 and empirically study the unique-
ness property and the success of L1 minimization for non-
negative vectors with different sparsity. For a sparsity k, we
select a support set S with size |S|= k uniformly at random,
and sample a non-negative vector x0 on S with independent
and identically distributed entries uniformly on the unit in-
terval. Then we check whether {Ax = Ax0,x≥ 0} is single-
ton or not by solving (19) . For each instance, we also check
whether L1 minimization can recover x0 from Ax0 or not.
Under a given sparsity k, we repeat the above experiment
200 times.

The results are shown in Fig. 3. In Fig. 3(a), A is a
positive matrix with each entry sampled uniformly from the
unit interval. In Fig. 3(b), A is a random binary matrix, and
the sum of each column ranges from 2 to 6. We can see that
if x0 is sparse enough, it is the only solution to the constraint
set. More interestingly, the thresholds where the singleton
property breaks down and where the fully recovery of L1



minimization breaks down are quite close.

6. Conclusion

This paper studies the phenomenon that {Ax = Ax0,x≥
0} is a singleton if x0 is sparse enough. We prove that this
is a special property for matrices with a row span intersect-
ing the positive orthant and give two necessary and suffi-
cient conditions characterizing it. We show the existence of
a (2p + 1)×n matrix for any p and n satisfying n ≥ 2p + 2
such that its singleton property holds up to the sparsity of p.
For the adjacency matrix of a general expander, we prove the
singleton property holds for all k-sparse non-negative vec-
tors where k is proportional to n.

There are several possible directions one can go along
to further this study. The most intriguing one is to obtain
uniqueness property threshold for a given measurement ma-
trix. Another interesting question is to investigate whether
the success of L1 in this case is largely due to the unique
solution as hinted by Fig. 3.
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