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Synchrophasor data suffer from quality issues like missing and bad data.
Exploiting the low-rankness of the Hankel matrix of the synchrophasor data,
this paper formulates the data recovery problem as a robust low-rank Hankel
matrix completion problem and proposes a Bayesian data recovery method
that estimates the posterior distribution of synchrophasor data from partial ob-
servations. In contrast to the deterministic approaches, our proposed Bayesian
method provides an uncertainty index to evaluate the confidence of each
estimation. To the best of our knowledge, this is the first method that provides
confidence measure for synchrophasor data recovery. Numerical experiments
on synthetic data and recorded synchrophasor data demonstrate that our
method outperforms existing low-rank matrix completion methods.
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1 INTRODUCTION

PHASOR Measurement Units (PMU) provide synchronized phasor
measurements of various locations of the power system, and

these data can be used for state estimation [Aminifar et al. 2013;
Dobakhshari et al. 2020; Zhao et al. 2015a], post-disturbance anal-
ysis [Bhui and Senroy 2016; Guo and Milanović 2015] and system
identification [Kamwa and Gerin-Lajoie 2000; Zhou et al. 2006].
Synchrophasor data have quality issues such as missing and bad data,
including false data injection attacks from malicious intruders [Liu
et al. 2011]. Such quality issues prevent synchrophasor data from
being employed for real-time control.

A variety of methods have been developed for PMU missing data
recovery such as training deep neural networks [James et al. 2019,
2018; Ren and Xu 2019], designing a dynamic state estimator based
on Kalman filter [Jones et al. 2014; Zhou et al. 2014], filling the
missing data based on the inference of a dynamic model [Foggo and
Yu 2021], formulating it as a low-rank matrix completion problem
[Gao et al. 2016b; Genes et al. 2018; Liao et al. 2018; Zhang et al.
2018] and the more general tensor completion problem [Osipov and
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Chow 2020]. Bad data are corrected by methods like hypothesis test-
ing [Huang et al. 2018; Kosut et al. 2011; Mestav et al. 2019; Mestav
and Tong 2020], exploiting spatio-temporal similarities [Wu and Xie
2016], spatial clustering [Wang et al. 2019], independent component
analysis [Esmalifalak et al. 2015], and low-rank approaches [Gao
et al. 2016a; Hao et al. 2018; Zhang and Wang 2018]. Low-rank
methods have the unique advantages among all these efforts: (1) no
need of power system topology and line parameters as required by
state estimators, (2) no need of training data as required by neural-
network-based approaches, and (3) more computationally efficient
than tensor approaches. Moreover, synchrophasor data have the spe-
cial property that not only the data matrix but also the corresponding
Hankel matrix is low-rank, and [Hao et al. 2018; Zhang et al. 2018;
Zhang and Wang 2019] have leveraged this low-rank Hankel property
to enhance the data recovery performance. One major advantage of
low-rank Hankel methods is the ability to recover simultaneous and
consecutive data issues across all channels, while the conventional
low-rank methods fail in this extreme scenario.

The critical limitation of the above methods is the lack of a confi-
dence measure of the returned estimation. Although low-rank meth-
ods have theoretical guarantees that the recovery is accurate if the
loss/error percentage is less than a threshold, such bound generally
underestimates the methods’ capabilities and thus is not practical.
Only a few works consider the uncertainty modeling for matrix
completion problem. Ref. [Zhao and Udell 2020] quantifies the un-
certainty based on Gaussian copula. Ref. [Chen et al. 2019] builds a
confidence interval for noisy matrix completion. Both works require
strong assumptions and consider missing data only. [Babacan et al.
2012] develops a Bayesian approach to recover low-rank matrices.
However, [Babacan et al. 2012] develops two separate approaches to
handle missing and bad data, respectively, and no confidence measure
is provided.

This paper develops a Bayesian low-rank Hankel matrix recovery
method to recover missing and bad data. The method also returns
an uncertainty index for each recovered value such that the operator
can evaluate the confidence of the recovery. Specifically, given the
prior distribution of the data, the method computes the posterior dis-
tribution using partial observations that contain noise and errors. The
mean of the posterior is employed to estimate each data point, and
the corresponding variance is viewed as the uncertainty index. The
advantage of our method over the existing deterministic approaches
[Zhang et al. 2018; Zhang and Wang 2019] on low-rank Hankel ma-
trix recovery are threefold. First, our method provides the uncertainty
index to evaluate the confidence of each estimation. Second, our
method outperforms the deterministic approaches in handling cor-
rupted data. Third, our method is more robust to parameter selection.
For instance, the estimated rank of the Hankel matrix can be set to
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be much larger than the actual value initially, and our method can es-
timate the actual value from the data by iterative pruning. Moreover,
our method significantly outperforms conventional Bayesian matrix
completion approaches like [Babacan et al. 2012] , because the latter
perform poorly on simultaneous data losses or corruptions across
all channels. In addition, [Babacan et al. 2012] handles missing and
bad data separately, while our method can recover missing data and
correct bad data at the same time.

The rest of the paper is organized as follows. The low-rank Hankel
property of synchrophasor data and the problem formulation are
introduced in Section II. Our proposed approach is presented in
Section III. The numerical experiments are reported in Section IV,
and Section V concludes the paper. Technical details of our method
are described in the supplementary material.

2 PROBLEM FORMULATION
Let a matrix Y contain the ground-truth measurements of𝑚 channels
in 𝑛 time instants,

𝒀 = [𝒚1,𝒚2, ...,𝒚𝑛] ∈ R𝑚×𝑛, (1)

where 𝒚𝑖 ∈ R𝑚 contains the data of𝑚 channels at 𝑖th time instant.
Let 𝑬 denote the additive bad data and 𝑵 denote the additive noise
data. 𝑬 is a sparse matrix, and the values in 𝑬 can be arbitrarily large.
𝑵 is a dense noise matrix and the values in 𝑵 are small. Let matrix
𝒀𝑜 ∈ R𝑚×𝑛 denote the observed data with each entry satisfying

𝑌𝑜𝑖,𝑗 = 𝑌𝑖, 𝑗 + 𝐸𝑖, 𝑗 + 𝑁𝑖, 𝑗 (𝑖, 𝑗) ∈ 𝛀, (2)

where the set 𝛀 contains the indices of the observed entries in 𝒀𝑜 .
The objective of robust matrix completion is to recover 𝒀 from

partial observations 𝑌𝑜
𝑖,𝑗

that contain missing data, bad data and noise.
Moreover, this paper wants to provide an uncertainty index for the
confidence evaluation of each estimation 𝑌𝑖, 𝑗 .

2.1 Low-Rank Hankel Property of PMU Data

Fig. 1. The measurements of voltage magnitude [Hao et al. 2018]

The Hankel operator H : R𝑚×𝑛 → R𝑚𝑛2×𝑛1 (𝑛1 + 𝑛2 = 𝑛 + 1)
linearly maps a matrix to its corresponding Hankel matrix, the 𝑖th
column of which contains the data from all𝑚 channels in 𝑛2 consec-
utive time steps starting from time 𝑖, i.e.,

𝑿 = H𝑛2 (𝒀 ) =


𝒚1 𝒚2 ... 𝒚𝑛1
𝒚2 𝒚3 ... 𝒚𝑛1+1
.
.
.

.

.

. ...
.
.
.

𝒚𝑛2 𝒚𝑛2+1 ... 𝒚𝑛


∈ R𝑚𝑛2×𝑛1 . (3)

Let 𝝈𝑖 denote the 𝑖th largest singular value of H𝑛2 (𝒀 ), and let 𝒖𝑖
and 𝒗𝑖 denote the corresponding left and right singular vectors. The
rank-𝑟 (𝑟 ≪𝑚,𝑛) approximation of H𝑛2 (𝒀 ) can be computed from

Q𝑟 (H𝑛2 (𝒀 )) =
𝑟∑
𝑖=1

𝝈𝑖𝒖𝑖𝒗
𝑇
𝑖 . (4)

Q𝑟 (H𝑛2 (𝒀 )) has the smallest normalized approximation error to
H𝑛2 (𝒀 ) among all rank 𝑟 matrices. The normalized approximation

error can be computed from
| |Q𝑟 (H𝑛2 (𝒀 ))−H𝑛2 (𝒀 ) | |𝐹

| |H𝑛2 (𝒀 ) | |𝐹 .

Fig. 2. The normalized approximation errors of different Hankel matri-
ces H𝑛2 (𝑌 )

As discussed in [Hao et al. 2018], the Hankel matrix H𝑛2 (𝒀 ) is
often approximately low-rank. That is because for a well-operated
power system, some system modes may be highly damped, or not
directly measured, or not excited by the input [Hao et al. 2018].
During an event, the observations usually contain at most 𝐾 modes
where 𝐾 is much less than the system dimension. Then H𝑛2 (𝒀 ) is
approximately rank 𝐾 .

[Hao et al. 2018] provides a formal analysis of the low-rank Hankel
property. Here we only show the empirical evaluation on a recorded
synchrophasor dataset in Central New York Power System. The
dataset in [Hao et al. 2018] contains 11 voltage phasors with 30 sam-
ples per second. Fig. 1 shows the voltage magnitude in 10 seconds,
and a disturbance occurs at around 2.3 seconds.

Let 𝒀 ∈ R11×300 denote measured magnitude of 11 channels in
10 seconds. Fig.2 shows the approximation errors of H𝑛2 (𝒀 ) with
varying approximation rank 𝑟 and the Hankel parameter 𝑛2. All
the matrices H𝑛2 (𝒀 ) can be approximated by a rank-6 matrix with a
negligible error. For example, when 𝑛2 = 4, the rank-6 approximation
to H𝑛2 (𝒀 ) has error 0.00067.

3 BAYESIAN ROBUST HANKEL MATRIX
COMPLETION

The proposed approach factorizes the Hankel matrix of 𝒀 as the
product of two factors, the basis matrix 𝑫 and the coefficient matrix
𝑾 . 𝑾 is modeled as an element-wise product of two matrices 𝒁
and 𝑺, where the binary matrix 𝒁 represents the sparse support, and
𝑺 represents the non-zero coefficients. Bad data are modeled by a
sparse matrix 𝑬 . Each item is modeled by a probability distribution.
The algorithm learns the posterior distributions of 𝑫, 𝒁 , 𝑺, and 𝑬
from obtained partial observations. Our approach then infers the
distribution of each entry 𝑌𝑖, 𝑗 . The predictive mean will be calculated
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Fig. 3. An overall illustration of the proposed approach. The approach arranges the ground-truth data 𝑌 into a Hankel matrix𝑋 and then decomposes
𝑋 in a factorized form with a basis, the sparse support, and the coefficient matrices.

as the estimation of 𝑌𝑖, 𝑗 and the predictive variance will be computed
to measure the uncertainty of the estimation. Fig. 3 shows an overall
framework of our proposed algorithm.

This method extends from the conventional Bayesian matrix com-
pletion in the following aspects. First, the low-rank Hankel property
is exploited to capture the temporal correlations in time series. In
conventional low-rank matrix completion, one needs at least 𝑟 entries
in each channel to recover the missing data. The recovery would
fail if measurements in all channels were corrupted at the same time
instant. Our algorithm additionally considers the temporal correla-
tions and can recover simultaneous missing or bad data. Moreover,
the recovery accuracy is enhanced significantly by exploiting the
temporal correlations. Second, our method provides the uncertainty
measure, which characterizes the confidence of the recovery results.
Third, our method can recover both missing and bad data at the
same time, as shown in equation (5), while missing and bad data are
treated separately in [Babacan et al. 2012]. Lastly, we introduce the
additional binary matrix 𝒁 to enhance the sparsity of the coefficients
𝑾 , which in turn leads to a more accurate estimation of the rank and
improves the recovery performance.

3.1 Proposed Probabilistic Model
A hierarchical probabilistic model is employed to infer all the latent
variables, and (5) to (16) show the model and the prior distribution.
(5) is derived from (2), where we use𝑿 to denote the low-rank Hankel
matrix of the ground-truth data, and the inverse of Hankel matrix
(H†𝑿 )𝑖, 𝑗 is employed here to represent 𝑌𝑖, 𝑗 . The formal definition
of the inverse Hankel operator H† can be found in supplementary
material. Let 𝑿 be rank 𝐾 , then its 𝑞th column, denoted by 𝒙.𝑞 , can
be written as the product of the basis 𝑫 ∈ R𝑚𝑛2×𝐾 with a coefficient
vector𝒘.𝑞 , where𝒘.𝑞 is modeled as the element-wise product of two
vectors 𝒛.𝑞 and 𝒔.𝑞 . We introduce the additional binary vector 𝒛.𝑞
to enhance the sparsity of the coefficients𝒘.𝑞 . The 𝑘th entry of 𝒛.𝑞 ,
denoted by 𝒛𝑘𝑞 , is assumed to have a prior Bernoulli distribution
with probability 𝜋𝑘 . The prior of 𝜋𝑘 is a Beta distribution with pre-
defined values 𝑎0 and 𝑏0. Reference [Zhou et al. 2009] shows that
data generated from this so-called Beta-Bernoulli process is sparse.

Because the actual rank of the Hankel matrix may be unknown, the
initial rank 𝐾 can be set as a large number, and our method can infer
the actual rank by gradually pruning the basis using the sparsity of
learned 𝒁 from data.

The prior distribution 𝒔.𝑞 is a multivariate Gaussian N(0, 𝛾−1
𝑠 𝑰𝐾 ),

where 𝑰𝐾 is a 𝐾 × 𝐾 identity matrix. Each entry of the noise matrix
𝑵 and the error matrix 𝑬 is drawn from N(0, 𝛾−1

𝜖 ) and N(0, 𝛽−1
𝑖, 𝑗

),
respectively. Three gamma priors are incorporated on 𝛾𝑠 , 𝛾𝜖 and
𝛽𝑖, 𝑗 , following Gamma priors with parameters (𝑐0, 𝑑0), (𝑒0, 𝑓0), and
(𝑔0, ℎ0), respectively. The prior distribution of each row of 𝑫 is
N(0, _−1

𝑑
𝑰𝐾 ), where _𝑑 is a pre-defined value. [Babacan et al. 2012]

shows that the Gaussian distribution with Gamma priors models the
sparsity of the bad data 𝐸𝑖, 𝑗 . The Gaussian assumption for the bad
data has been employed in the literature, see, e.g., [Luttinen et al.
2012][Zhao et al. 2015b] and [Babacan et al. 2012]. We employ con-
jugate priors to simplify calculations and obtain analytical posterior
distributions.

For all 𝑝 = 1, 2, 3, ...,𝑚𝑛2, 𝑞 = 1, 2, 3, ..., 𝑛1, and 𝑘 = 1, 2, 3, ..., 𝐾 ,

𝑌𝑜𝑖,𝑗 = (H†𝑿 )𝑖, 𝑗 + 𝐸𝑖, 𝑗 + 𝑁𝑖, 𝑗 (𝑖, 𝑗) ∈ Ω, (5)

𝒙.𝑞 = 𝑫𝒘.𝑞, (6)

𝒘.𝑞 = (𝒛.𝑞 ⊙ 𝒔.𝑞), (7)

𝑑𝑝. ∼ N(0, _−1
𝑑

𝑰𝐾 ), (8)

𝒛.𝑞 ∼
𝐾∏
𝑘=1

Bernoulli(𝜋𝑘 ), (9)

𝜋𝑘 ∼ Beta(𝑎0/𝐾,𝑏0 (𝐾 − 1)/𝐾), (10)

𝒔.𝑞 ∼ N(0, 𝛾−1
𝑠 𝑰𝐾 ), (11)

𝐸𝑖, 𝑗 ∼ N(0, 𝛽−1
𝑖, 𝑗 ) (𝑖, 𝑗) ∈ Ω, (12)

𝑁𝑖, 𝑗 ∼ N(0, 𝛾−1
𝜖 ), (13)

𝛾𝑠 ∼ Γ(𝑐0, 𝑑0), (14)

𝛾𝜖 ∼ Γ(𝑒0, 𝑓0), (15)

𝛽𝑖, 𝑗 ∼ Γ(𝑔0, ℎ0) . (16)
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3.2 Variational Inference for Approximating the
Posterior Distributions

Let 𝚯 = {𝒅𝑝., 𝒔.𝑞, 𝒛.𝑞, 𝐸𝑖, 𝑗 , 𝝅𝑘 , 𝛾𝑠 , 𝛾𝜖 , 𝛽𝑖, 𝑗 , 𝑝 = 1, 2, 3, ...,𝑚𝑛2, 𝑞 = 1, 2,
3, ..., 𝑛1, 𝑘 = 1, 2, 3, ..., 𝐾, (𝑖, 𝑗) ∈ 𝛀} denote all the latent variables.
Given 𝒀𝑜Ω , we aim to compute the posterior 𝑃 (𝚯, 𝒀 |𝒀𝑜Ω). From the
Bayes’ theorem,

𝑃 (𝚯, 𝒀 |𝒀𝑜Ω) =
𝑃 (𝚯, 𝒀 , 𝒀𝑜Ω)
𝑃 (𝒀𝑜Ω)

. (17)

Because 𝑃 (𝒀𝑜Ω) is difficult to calculate by marginalizing all the latent
variables, computing (17) is intractable.

The mean field variational inference [Bishop 2006] is employed
here to approximate 𝑃 (𝚯, 𝒀 |𝒀𝑜Ω) by the variational distribution 𝑞(𝚯).
Mean field approximation assumes that elements in 𝚯 are mutually
independent and 𝑞(𝚯) is factorized as

𝑞(𝚯) = 𝑞(𝑫)𝑞(𝑺)𝑞(𝒁 )𝑞(𝝅)𝑞(𝑬)𝑞(𝜷)𝑞(𝛾𝑠 )𝑞(𝛾𝜖 ) =∏𝑚𝑛2
𝑝=1 𝑞(𝒅𝑝.)

∏𝑛1
𝑞=1 𝑞(𝒔.𝑞)𝑞(𝒛.𝑞)

∏𝐾
𝑘=1 𝑞(𝜋𝑘 )

∏
(𝑖, 𝑗) ∈Ω 𝑞(𝐸𝑖, 𝑗 )𝑞(𝛽𝑖, 𝑗 )𝑞(𝛾𝑠 )𝑞(𝛾𝜖 ) .

(18)

The Kullback–Leibler (KL) divergence is employed to measure
the similarity of two distributions. Variational inference finds the
closest approximation 𝑞(𝚯) to 𝑃 (𝚯, 𝒀Ω |𝒀𝑜Ω) by solving the following
optimization problem,

𝑞(𝚯) = argmin
𝑞 (𝚯)
KL(𝑞(𝚯) | |𝑃 (𝚯, 𝒀 |𝒀𝑜Ω))

= argmax
𝑞 (𝚯)
E[ln 𝑃 (𝚯, 𝒀 , 𝒀𝑜Ω)] − E[ln𝑞(𝚯)] .

(19)

The above optimization problem is solved approximately by se-
quentially estimating the approximation distribution of each factor
given all the others. Each approximation distribution is obtained
through computing the expectations of all the other factors based on
learned distributions [Bishop 2006; Blei et al. 2017]. The station-
ary approximation distribution of the variational inference is a local
optimum to the optimization problem (19) [Bishop 2006; Blei et al.
2017]. For example, 𝑞(𝒅𝑝.) denotes the approximation distribution
of 𝒅𝑝. while keeping other latent variables fixed. The optimal 𝑞(𝒅𝑝.)
which maximizes the objective function in (19) is

ln𝑞(𝒅𝑝.) = E𝑞 (𝚯\𝒅𝑝 ) [ln 𝑃 (𝚯, 𝒀 , 𝒀
𝑜
Ω)] + constant, (20)

E𝑞 (𝚯\𝒅𝑝 ) means taking the expectation with respect to all the latent
variables except 𝒅𝑝 .

As all the distributions in the proposed model have conjugate
priors, the conditional posterior distributions have explicit forms.
We directly present the conditional distribution and expectation of
each variable. The details of the derivations are summarized in the
supplementary material.
(I) The approximate posterior distribution of 𝒅𝑝. (for all 𝑝 = 1, ...,𝑚𝑛2),
the 𝑝th row of basis, is a Gaussian distribution with mean E[𝒅𝑝.],
which denotes the expectation of 𝑞(𝒅𝑝.), and covariance 𝚺𝒅𝑝. , i.e.,

𝑞(𝒅𝑝.) ∼ N (E[𝒅𝑝.], 𝚺𝒅𝑝. ), (21)

where

𝚺𝒅𝑝. = [E[𝛾𝜖 ]
∑

𝑞:(𝑝,𝑞) ∈ΨΩ

E[(𝒔.𝑞 ⊙𝒛.𝑞) (𝒔.𝑞 ⊙𝒛.𝑞)𝑇 ] +_𝑑 𝑰𝐾 ]−1, (22)

Fig. 4. Graphical representation of the dependence of the random
variables in the proposed Bayesian Hankel matrix completion model

E[𝒅𝑝.] = E[𝛾𝜖 ]
∑

𝑞:(𝑝,𝑞) ∈ΨΩ

H(𝒀𝑜 − 𝑬)𝑝,𝑞 (E[𝒔.𝑞]𝑇 ⊙ E[𝒛.𝑞]𝑇 )𝚺𝒅𝑝. ,

(23)

ΨΩ denotes the set of observed entries in the Hankel matrix of 𝒀𝑜 .
(II) The approximate posterior distribution of 𝒔.𝑞 (𝑞 = 1, ..., 𝑛1 ) is a
Gaussian distribution.

𝑞(𝒔.𝑞) ∼ N (E[𝒔.𝑞], 𝚺𝒔.𝑞 ), (24)

where

𝚺𝒔.𝑞 = [E[𝛾𝜖 ]
∑

𝑝 :(𝑝,𝑞) ∈ΨΩ

E[𝝓𝑇𝑝,𝑞𝝓𝑝,𝑞] + E[𝛾𝑠 ]𝑰𝐾 ]−1, (25)

E[𝒔.𝑞] = E[𝛾𝜖 ]𝚺𝒔.𝑞
∑

𝑝 :(𝑝,𝑞) ∈ΨΩ

E[𝝓𝑝,𝑞]𝑇H(𝒀𝑜 − 𝑬)𝑝,𝑞, (26)

𝝓𝑝,𝑞 = 𝒅𝑝. ⊙ 𝒛𝑇.𝑞 .
(III) The approximate posterior distribution of 𝑧𝑘𝑞 (for all 𝑞 =

1, ..., 𝑛1, and 𝑘 = 1, ..., 𝐾) is a Bernoulli distribution.

𝑞(𝑧𝑘𝑞) ∼ Bernoulli(
𝑞(𝑧𝑘𝑞 = 1)

𝑞(𝑧𝑘𝑞 = 1) + 𝑞(𝑧𝑘𝑞 = 0) ), (27)

with mean and variance

E[𝑧𝑘𝑞] =
𝑞(𝑧𝑘𝑞 = 1)

𝑞(𝑧𝑘𝑞 = 1) + 𝑞(𝑧𝑘𝑞 = 0) , (28)

𝚺𝑧𝑘𝑞 = E[𝑧𝑘𝑞] (1 − E[𝑧𝑘𝑞]), (29)
where
ln(𝑞(𝑧𝑘𝑞 = 1)) ∝
−E[𝛾𝜖 ]

2

∑
𝑝 :(𝑝,𝑞) ∈ΨΩ

[trace(E[𝒅𝑇𝑝.𝒅𝑝.] (E[𝒔.𝑞𝒔𝑇.𝑞] ⊙ E[�̂�.𝑞 �̂�𝑇.𝑞]))]

+E[𝛾𝜖 ]
∑
𝑝 :(𝑝,𝑞) ∈ΨΩ

H(𝒀𝑜 − 𝑬)𝑝,𝑞 [(E[𝒔.𝑞] ⊙ E[�̂�.𝑞])𝑇E[𝒅𝑝.]𝑇 ] + E[ln(𝜋𝑘 )],
(30)

where ∝ denotes “proportional to.” 𝑧.𝑞 = [𝑧1𝑞, 𝑧2𝑞, ..., 𝑧𝑘𝑞, ..., 𝑧𝐾𝑞]𝑇 .
𝑧𝑘𝑞 = 1 and other entries in 𝑧.𝑞 equal to the corresponding entries in
𝑧.𝑞 .

ln(𝑞(𝑧𝑘𝑞 = 0)) ∝
−E[𝛾𝜖 ]

2

∑
𝑝 :(𝑝,𝑞) ∈ΨΩ

[trace(E[𝒅𝑇𝑝.𝒅𝑝.] (E[𝒔.𝑞𝒔𝑇.𝑞] ⊙ E[�̂�.𝑞 �̂�𝑇.𝑞]))]

+E[𝛾𝜖 ]
∑
𝑝 :(𝑝,𝑞) ∈ΨΩ

H(𝒀𝑜 − 𝑬)𝑝,𝑞 [(E[𝒔.𝑞] ⊙ E[�̂�.𝑞])𝑇E[𝒅𝑝.]𝑇 ] + E[ln(1 − 𝜋𝑘 )],
(31)
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𝑧𝑘𝑞 = 0, and other entries in 𝑧.𝑞 equal to the corresponding entries in
𝑧.𝑞 .
(IV) The approximate distribution of 𝜋𝑘 ( 𝑘 = 1, ..., 𝐾) is from a Beta
distribution.

𝑞(𝜋𝑘 ) ∼ Beta(𝑎0/𝐾 +∑𝑛1
𝑞=1 E[𝑧𝑘𝑞], 𝑏0 (𝐾 − 1)/𝐾 + 𝑛1 −

∑𝑛1
𝑞=1 E[𝑧𝑘𝑞]).

(32)
Therefore,

E[ln(𝜋𝑘 )] = 𝜓 (𝑎0/𝐾 +∑𝑛1
𝑞=1 E[𝑧𝑘𝑞]) −𝜓 ((𝑎0 + 𝑏0 (𝐾 − 1))/𝐾 + 𝑛1),

(33)

E[ln(1 − 𝜋𝑘 )] = 𝜓 (𝑏0 (𝐾 − 1)/𝐾 + 𝑛1 −
∑𝑛1
𝑞=1 E[𝑧𝑘𝑞]) −𝜓 ((𝑎0 + 𝑏0 (𝐾 − 1))/𝐾 + 𝑛1),

(34)
where𝜓 (.) is the diagamma function.
(V) The approximate posterior distribution of 𝛾𝑠 is a Gamma distri-
bution.

𝑞(𝛾𝑠 ) ∼ Γ(𝑛1𝐾

2
+ 𝑐0,

1
2

𝑛1∑
𝑞=1
E[𝑠𝑇.𝑞𝑠.𝑞] + 𝑑0), (35)

with mean
E[𝛾𝑠 ] =

𝑛1𝐾 + 2𝑐0∑𝑛1
𝑞=1 E[𝒔

𝑇
.𝑞𝒔.𝑞] + 2𝑑0

, (36)

where E[𝒔𝑇.𝑞𝒔.𝑞] = E[𝒔𝑇.𝑞]E[𝒔.𝑞] + trace(𝚺𝒔.𝑞 ).
(VI) The approximate posterior distribution of 𝐸𝑖, 𝑗 (for (𝑖, 𝑗) ∈ 𝛀) is
a Gaussian distribution.

𝑞(𝐸𝑖, 𝑗 ) ∼ N (E[𝐸𝑖, 𝑗 ], 𝚺𝐸𝑖,𝑗 ), (37)
with variance and mean

𝚺𝐸𝑖,𝑗 = (E[𝛾𝜖 ] + E[𝛽𝑖, 𝑗 ])−1, (38)

E[𝐸𝑖, 𝑗 ] = E[𝛾𝜖 ]Σ𝐸𝑖,𝑗 (𝑌
𝑜
𝑖,𝑗 − E[(H

†𝑿 )𝑖 𝑗 ]) . (39)

(VII) The approximate posterior distribution of 𝛽𝑖, 𝑗 (for (𝑖, 𝑗) ∈ 𝛀)
is a Gamma distribution.

𝛽𝑖, 𝑗 ∼ Γ( 1
2
+ 𝑔0,

1
2
E[𝐸2

𝑖, 𝑗 ] + ℎ0), (40)

with mean

E[𝛽𝑖, 𝑗 ] =
1 + 2𝑔0

E[𝐸2
𝑖, 𝑗
] + 2ℎ0

. (41)

(VI) The approximate posterior distribution of 𝛾𝜖 is a Gamma distri-
bution.

𝑞(𝛾𝜖 ) ∼ Γ( |𝛀 |
2

+ 𝑒0,
1
2
E[| |𝒀𝑜 − 𝑃Ω (H†𝑿 + 𝑬) | |2𝐹 ] + 𝑓0), (42)

with mean

E[𝛾𝜖 ] =
|𝛀 | + 2𝑒0

E[| |𝒀𝑜 − 𝑃Ω (H†𝑿 + 𝑬) | |2
𝐹
] + 2𝑓0

. (43)

Pruning the basis 𝑫 and the error matrix 𝑬 . As 𝑫 is a redundant
basis when 𝐾 is larger than the ground-truth rank, we propose to
prune the basis E[𝑫] to reduce computation. If E[𝑧𝑘𝑞] = 0 for
all 𝑞 in each iteration, the algorithm removes 𝑘th basis atom 𝒅.𝑘
because 𝒅.𝑘 does not contribute to the representation of X. Then the

algorithm also removes the corresponding E[ln(𝜋𝑘 )], E[ln(1 − 𝜋𝑘 )],
E[𝑧𝑘𝑞], E[𝑠𝑘𝑞] for all 𝑞. Because 𝑬 is sparse, we also prune E[𝑬] by
thresholding, i.e., if entries in E[𝑬] are very small (e.g., 10−1), these
entries are set as zeroes.
Convergence criteria. Matrix �̄� is the estimation for𝑿 at the current
iteration. Matrix �̄�pre is the estimation for X at the previous iteration

The algorithm terminates if ∥�̄�−�̄�pre ∥𝐹
∥�̄�pre ∥𝐹

< b for a pre-determined

threshold b (e.g., 10−4) or if the maximum iterations 𝑇max is reached.
Initialization. After constructing the Hankel matrix 𝑿 from 𝒀𝑜 ,
where missing entries are filled in zeros, we compute the SVD of 𝑿 as
𝑿 = 𝑼𝑨𝑽𝑇 . 𝑫 is initialized by 𝑼𝑨

1
2 and 𝑺 is initialized with 𝑨

1
2 𝑽𝑇 .

𝒛.𝑞 are initialized with all ones. All values in 𝜋𝑘 are initialized as 0.5.

𝛾𝑠 , and _𝑑 are initialized by | |𝒀𝑜 | |𝐹√
𝑚𝑛

. 1/𝛾𝜖 is initialized by
| |𝒀𝑜 | |2

𝐹

𝑚𝑛 .

The initial �̄�0 = 𝑫 (𝑺 ⊙ 𝒁 ). The initial 𝑬 is 𝐸𝑖, 𝑗 = 𝑌𝑜𝑖,𝑗 − (H†�̄�0)𝑖, 𝑗
if (𝑖, 𝑗) ∈ 𝛀 and 𝐸𝑖, 𝑗 = 0 otherwise. All the covariance matrices
for 𝒅𝑝. and 𝒔.𝑞 are initialized by a 𝐾 × 𝐾 diagonal matrix where the

diagonal elements are equal to | |𝒀𝑜 | |𝐹√
𝑚𝑛

. The covariance matrices for
𝒛.𝑞 are initialized by a 𝐾 × 𝐾 zero matrix. All the elements in 𝜷 are

initialized as | |𝒀𝑜 | |𝐹√
𝑚𝑛

.
Missing data only. Our algorithm can be simplified if only missing
data presents. One can skip steps VI and VII about updating E[𝐸𝑖, 𝑗 ]
and E[𝛽𝑖, 𝑗 ], and other steps remain unchanged.
Computational complexity. The per-iteration computational com-
plexity is O(^𝑚𝑛2𝑛1𝐾4 +𝑚𝑛2𝐾3 + 𝑛1𝐾3 +𝑚𝑛2𝑛1𝐾), where ^ (0 <

^ ≤ 1) is the portion of observed entries. Thus, it is at most linear
in the dimension of the Hankel matrix. Derivation of the complexity
can be found in Section A.4 in the supplementary materials.

3.3 The uncertainty measure
Let 𝜽 = {𝑫,𝒁 , 𝑺, 𝛾𝜖 } denote all the latent variables related to 𝑌𝑖, 𝑗 .
After computing the posterior distributions, we employ Monte-Carlo
integration [Paisley et al. 2012] to estimate the mean and variance of
𝑌𝑖, 𝑗 . Define

𝑓 𝜽 (𝑌𝑖, 𝑗 ) = H† (𝑫 (𝑺 ⊙ 𝒁 ))𝑖, 𝑗 . (44)

The predictive mean is computed by

𝑌𝑖, 𝑗 = E[𝑌𝑖, 𝑗 ] ≈
1
𝐿

𝑙=𝐿∑
𝑙=1

𝑓 𝜽𝑙 (𝑌𝑖, 𝑗 ), (45)

where each 𝜽 𝑙 is independently drawn from the learned approxima-
tion distributions of 𝑫 , 𝒁 , 𝑺, and 𝛾𝜖 . 𝐿 is the number of Monte-Carlo
samples. Similarly, the predictive variance is approximated by

Var[𝑌𝑖, 𝑗 ] = E[𝑌 2
𝑖, 𝑗 ] − E[𝑌𝑖, 𝑗 ]

2

≈ 1
𝐿

𝑙=𝐿∑
𝑙=1

1
𝛾𝜖

+ 1
𝐿

𝑙=𝐿∑
𝑙=1

𝑓 𝜽𝑙 (𝑌𝑖, 𝑗 )2 − ( 1
𝐿

𝑙=𝐿∑
𝑙=1

𝑓 𝜽𝑙 (𝑌𝑖, 𝑗 ))2 .
(46)

The derivation details of (45) and (46) are provided in the supplemen-
tary materials. A larger 𝐿 offers a more accurate estimate but also
leads to a higher computational cost. In our experiments, 𝐿 = 50 is
sufficient to provide a reliable estimate of the mean and the variance.
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E[𝑌𝑖, 𝑗 ] is used to as an estimate 𝑌𝑖, 𝑗 of 𝑌𝑖, 𝑗 , and Var[𝑌𝑖, 𝑗 ] is used
as an uncertainty index of the estimation, because a larger variance
indicates a higher uncertainty in the estimation.

3.4 Parameter Selections of the Algorithm
Several pairs of parameters (𝑎0, 𝑏0),(𝑐0, 𝑑0),(𝑒0, 𝑓0), (𝑔0, ℎ0) are need-
ed in the prior distributions (10), (14), (15) and (16) respectively. [Yi
and Wang 2021; Zhou et al. 2009] show that 𝑐0 and 𝑑0 are non-
informative priors, which have a negligible impact on the results, and
can be set as small values (e.g., 10−6 ). A larger 𝑎0 with fixed 𝑏0 leads
to a larger mean of the prior distribution of 𝜋𝑘 , which in turn leads to
less number of zero entries in 𝒛.𝑞 . Decreasing 𝑓0 with fixed 𝑒0 leads
to a larger 𝛾𝜖 , which leads to a smaller variance of the measurement
noise 𝑁 . A larger ℎ0 with fixed 𝑔0 leads to smaller values of 𝜷 ,
which leads to larger values in 𝑬 . Note that these parameters only
have slight impact on the inferred posterior distributions. Section
4.2.3 demonstrates that the proposed method is robust to parameter
selections and these parameters can be set in a wide range. A larger
𝑛2 improves the performance of the algorithm but also suffers from
higher computational burden. In our experiments, 𝑛2 is set as at most
30, and it is sufficient to obtain reliable recovery results.

3.5 Time Window Selection for Streaming data

Fig. 5. Non-overlapping and overlapping sliding windows

When handling streaming data in real-time, one needs to truncate
the measurements into blocks and process each time block separately.
One can use a sliding window with length 𝑛 and step size 𝑠. When the
window is non-overlapping (𝑛 = 𝑠), as shown in the left half of Fig. 5,
each entry is estimated once in one time window. Otherwise, every
entry is estimated ⌊𝑛/𝑠⌋ times in different time windows, where ⌊𝑥⌋
means the greatest integer less than or equal to 𝑥 . One can pick the
estimate that has the smallest uncertainty index. For example, the
right half of Fig. 5 shows overlapping windows with 𝑛 = 4 and 𝑠 = 1.

4 NUMERICAL EXPERIMENTS
4.1 Experimental Setup
Three modes of missing data and bad data are considered, as shown
in Fig. 6. For example, M1 means Mode 1 missing data, and B1
means Mode 1 bad data. The value of the additive error is randomly
generated from (2, 4) for synthetic data and (1, 1.5) for real data.

• Mode 1: Missing/bad data occur independently and randomly
across all the channels and time instants.

• Mode 2: Missing/bad data occur across all the channels at
some randomly selected time instants.

• Mode 3: Missing/bad data occur across all the channels at con-
secutive time instants. The starting time is selected randomly.

Fig. 6. The missing and bad data generation.

Our proposed Bayesian Robust Hankel matrix completion method,
abbreviated by “BRHMC,” is compared with the deterministic Han-
kel robust matrix completion method “SAP” in [Zhang and Wang
2019] and the deterministic robust matrix completion method “R-
RMC” in [Cherapanamjeri et al. 2017] for simultaneous recovery
of missing and bad data. When the goal is recovering missing data
only, we compare a simplified version of our method, abbreviated
by “BHMC,” with the deterministic Hankel missing data recovery
method “AM-FIHT” in [Zhang et al. 2018] and Bayesian missing
data recovery method “VSBL” in [Babacan et al. 2012]. Some param-
eters of BRHMC/BHMC are set as follows for all the experiments:
𝑎0 = 103, 𝑏0 = 1, 𝑐0 = 10−6, 𝑑0 = 10−6, 𝑒0 = 10−6, ℎ0 = 10−6. The
experiments are implemented in MATLAB 2019 on a desktop with
3.1 GHz Intel Core i9 and 32 GB RAM.
Evaluation Metrics: Two metrics are used to measure the recovery
performance. The Normalized Estimation Error (NEE) is defined as

NEE = ∥�̂� − 𝒀 ∥𝐹 /∥𝒀 ∥𝐹 , (47)

where �̂� and 𝒀 in R𝑚×𝑛 represent the estimated data and the ground-
truth data, respectively. A new metric weighted normalized estima-
tion error (WNEE) is defined as

WNEE =

√√√
Σ𝑖, 𝑗

( (𝑌𝑖, 𝑗 − 𝑌𝑖, 𝑗 )2

Var[𝑌𝑖, 𝑗 ]
)
/
(
Σ𝑖, 𝑗

𝑌 2
𝑖, 𝑗

Var[𝑌𝑖, 𝑗 ]
)
. (48)

When Var[𝑌𝑖, 𝑗 ] is large, there is a higher uncertainty in the estimate
𝑌𝑖, 𝑗 . Then from (48), a smaller weight in placed on 𝑌𝑖, 𝑗 when com-
puting the overall performance error. If the variance is the same for
all 𝑌𝑖, 𝑗 , WNEE is equal to NEE. If WNEE is smaller than NEE, then
those estimations with large errors are indeed penalized with a small
weight in WNEE and, thus, the corresponding variance is large. Thus,
WNEE being smaller than NEE indicates that the uncertainty index
indeed represents the accuracy of the estimation.

4.2 Performance on Synthetic Datasets
4.2.1 Dataset generation and parameter setting. We conduct
the experiments on synthetic spectrally sparse signals which have
the low-rank Hankel property [Zhang et al. 2018; Zhang and Wang
2019]. Each row of 𝒀 is a weighted sum of 𝑟 sinusoids. Specifically,
the ground truth 𝑌𝑖, 𝑗 is generated from

𝑌𝑖, 𝑗 = Real(
𝑟∑
𝑘=1

𝑏𝑖,𝑘𝑒
𝚤2𝜋 𝑓𝑘 𝑗 ) 𝑖 = 1, ...,𝑚, 𝑗 = 1, ..., 𝑛, (49)
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(a) M1 only (b) M2 only (c) M3 only

(d) M1 plus 10% B1 (e) M2 plus 10% B2 (f) M3 plus 10% B1

Fig. 7. The recovery results with different missing/bad data. (a)-(c) show the recovery results with
three missing modes. (d)-(f) show the recovery results with three missing and bad modes.

Fig. 8. The histogram of uncer-
tainty index in the M3 mode.

where 𝚤 is the imaginary unit, 𝑓𝑘 is the frequency, 𝑏𝑖,𝑘 is the normal-
ized complex amplitude of the 𝑘-th sinusoid, and Real(·) keeps the
real part only. We randomly select 𝑓𝑘 from (0, 1). The angle of 𝑏𝑖,𝑘
is randomly selected from (0, 2𝜋), and the magnitude is 1 + 100.5𝑎𝑖,𝑘 ,
where 𝑎𝑖,𝑘 is randomly generated from (0, 1). 𝑌 is rank 2𝑟 . Here, 𝑟
is set as 2.𝑚 = 20, and 𝑛 = 300. Each entry is added with a random
Gaussian noise from N(0, 0.032), which is about 1.1% NEE error.
Each bad data entry is randomly selected from (2, 4).

Some parameters of BRHMC/BHMC are set as follows: 𝑓0 = 10−6,
𝑔0 = 10−6, b = 10−4, 𝑛2 = 30. 𝐾 is 4. 𝑇max is 100. 𝐿 = 50 in (45) and
(46). All the results are averaged over 50 independent trials.

4.2.2 Recovery performance. Fig. 7 (a)-(c) compare the missing
recovery performance of BHMC with VSBL and AM-FIHT. Fig. 7
(d)-(f) compare the recovery performance of BRHMC with R-RMC
and SAP when both missing and bad data exist. BHMC-N denotes
NEE error in (47) for BHMC, and BHMC-WN denotes the WNEE
error in (48). Because no uncertainty index is provided for all other
methods, only NEE error is reported.

The recovery errors of BRHMC/BHMC stay consistently small
and outperform all the existing methods. Specifically, the conven-
tional low-rank methods like VSBL and R-RMC perform poorly in
Mode 2 and Mode 3, because they cannot handle simultaneous data
issues across all channels. Deterministic Hankel-based methods like
AM-FIHT and SAP outperform low-rank methods but perform worse
than our proposed methods. Moreover, AM-FIHT and SAP are more
sensitive to rank selections than our methods. We also tested other
distributions of bad data and noise and obtained similar results as
those in Fig. 7. Please see Fig. 11 in the supplementary materials.

When the data loss percentage is high, WNEE is less than NEE
of our proposed methods. As discussed after (48), this gap indicates
that those estimates with larger errors have larger variances. Fig. 8
further shows the histogram of uncertain indices in mode M3. When
the data loss percentage increase, the uncertain indices of some

entries increase, indicating a less reliable estimation. Our methods
can differentiate unreliable estimates from reliable ones.

The average time to compute the posterior distribution is 2-7 sec-
onds, and the Monte-Carlo computation of mean and variance takes
around 0.5-1 second. The computational time for AM-FIHT, VSBL,
R-RMC and SAP are 0.9-1.3 seconds, 0.1-0.4 seconds, 0.05-0.2
seconds, and 0.2-3 seconds, respectively.

4.2.3 The impact of parameter selections. Numerical experi-
ments are conducted on a dataset with 20% B1 and 20% M2 to test
the impact of parameter selections on the performance of BRHMC.
As discussed in Section 3.4, we only consider the impact of three
pairs (𝑎0, 𝑏0), (𝑒0, 𝑓0), (𝑔0, ℎ0), and vary one while fixing the other.
One can see from Tables 1-3, the recovery errors remain small in a
wide range of parameters, and NEE and WNEE are the same.

Table 1. The impact of 𝑎0 (𝑏0 is fixed and 𝑏0 = 1)

𝑎0 1 10 102 103 104 105

(W)NEE 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017

Table 2. The impact of 𝑓0 (𝑒0 is fixed and 𝑒0 = 10−6)

𝑓0 10−1 10−2 10−3 10−4 10−5 10−6

(W)NEE 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017

Table 3. The impact of ℎ0 (𝑔0 is fixed and 𝑔0 = 10−6)

ℎ0 10−1 10−2 10−3 10−4 10−5 10−6

(W)NEE 0.0024 0.0018 0.0017 0.0017 0.0017 0.0017

Table 4. The impact of the initial rank 𝐾

initial rank 𝐾 4 12 20 28 32

Proposed
(W)NEE 0.0017 0.0017 0.0017 0.0017 0.0017

estimated rank 4 5 5 5 5
SAP NEE 0.064 0.0040 0.0053 0.0063 0.0067

AM-FIHT NEE 0.0017 0.0027 0.0035 0.0042 0.0045

Because BHMC prunes the basis during the inference, it is robust
to the initial rank 𝐾 of basis. Table 4 shows that when 𝐾 is selected
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(a) (b) (c) (d)

Fig. 9. The recovery performance on 20% M2 missing data and additional noise during 5.6-6.6 seconds. (a) the observed data, (b) the estimated
data, (c) the estimated data in one channel with the confidence interval, (d) the corresponding uncertainty index for one channel in (c)

(a) (b) (c) (d)

Fig. 10. The recovery performance on 20% M1 missing data and 15% B1 bad data. (a) the observed data, (b) the estimated data, (c) the estimated
data in one channel with the confidence interval, (d) the corresponding uncertainty index for one channel in (c)

Table 5. The impact of Hankel parameter 𝑛2

𝑛2 1 10 20 30 40 50
NEE 0.45 0.0021 0.0018 0.0017 0.0017 0.0017

WNEE 0.014 0.0021 0.0018 0.0017 0.0017 0.0017

from a wide range, the recovery error of the proposed method is
always small, and the final estimated rank is close to the ground-truth
value 4. In contrast, the performance of SAP and AM-FIHT degrades
when the rank is not properly selected. In Table 4, AM-FIHT is tested
for 20% M2, while others are tested on 20% B1 and 20% M2.

Table 5 shows the performance when the Hankel block size 𝑛2
increases. When 𝑛2 = 1, the method reduces to the conventional
Bayesian matrix completion method, which has a large error. Increas-
ing 𝑛2 indeed improves the recovery performance.

4.3 Performance on practical PMU dataset
The recorded synchrophasor dataset in Central New York Power Sys-
tem as shown in Fig. 1 is employed here to evaluate the performance
on streaming data. The proposed method is compared with SAP al-
gorithm. 𝑔0 = 0.2, b = 10−6. The window length is set as 50 for our
algorithm and 60 for SAP. We use a sliding window with step size 1
for our algorithm. Non-overlapping windows are employed for SAP,
because it does not return an uncertainty index to compare the per-
formance of overlapping windows. Two case studies are considered.
𝑛2 = 20 for Case 1, and 𝑛2 = 6 for Case 2. 𝑓0 = 10−3 for Case 1 and
Case 2. Besides, the ranks are set as 𝐾 = 6 for two algorithms. The
computational time of the non-overlapping windows for Case 1 is 2.6
seconds and is 6.6 seconds for Case 2. Another two case studies for
the phasor angle data are included in the supplementary materials.

• Case 1: 20% data are removed following Mode M2. Moreover,
additional Gaussian noise from N(0, 0.0032) is added to every
observation during time 5.6 to 6.6 seconds.

• Case 2: 20% data are removed following Mode M1, and 15%
observations contain Mode B1 bad data. Each bad entry is
randomly selected from (1,1.5).

Our method can recover the data accurately in both cases. NEE and
WNEE for Case 1 are 8.8 × 10−4 and 8.4 × 10−4, respectively. NEE
and WNEE for Case 2 is 2.0 × 10−3 and 1.5 × 10−3, respectively. In
comparison, the NEE of SAP for Case 1 and 2 is 5.9 × 10−3 and
6.0 × 10−3, respectively, worse than our method. Because SAP does
not return the uncertainty index, we do not report the WNEE for SAP.
Fig. 9-Fig. 10 show the recovery performance of the cases 1 and 2.
We visualize the corrupted data, recovered data, the confidence inter-
val of one channel, and the uncertainty index of the corresponding
channel in each subfigure, respectively. The 95% confidence interval
for each time instant is the predictive mean plus and minus 1.96
times the predictive standard deviation. In both cases, the ground-
truth measurements are located within the confidence interval. At
time 2.3 seconds when the event happens, the uncertainty index in-
creases because the method is less confident about the estimation
at that time instant. Moreover, in Fig. 9(c), the uncertainty index in-
creases during the time interval 5.6-6.6 seconds, which corresponds
to the time when additional noise is introduced. Fig. 9(b) shows that
the noise is reduced in the recovery results.

5 CONCLUSIONS
This paper develops a Bayesian low-rank Hankel matrix recovery
method to address missing and bad data in synchrophasor measure-
ments. It provides the uncertainty index for the operator to evaluate
the estimation accuracy of recovered data in real-time. The method
outperforms all the existing methods numerically.

One future direction is to explore the Bayesian tensor matrix com-
pletion method by exploiting the Hankel structure. We will also in-
vestigate the theoretical guarantee of uncertainty modeling in robust
matrix completion problem.
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SUPPLEMENTARY MATERIAL
A.1 Beta and Gamma distributions
The Beta and Gamma distributions are introduced here.

The Gamma function is defined as

Γ(𝛼1) =
∫ ∞

0
𝑥𝛼1−1𝑒−𝑥𝑑𝑥 . (50)

The Beta distribution is

Beta(𝜋𝑘 |𝛼1, 𝛽1) =
Γ(𝛼1 + 𝛽1)
Γ(𝛼1)Γ(𝛽1)

(𝜋𝑘 )𝛼1−1 (1 − 𝜋𝑘 )𝛽1−1, (51)

The “Beta(𝜋𝑘 |𝛼1, 𝛽1)” denotes that 𝜋𝑘 is a Beta distribution with
two parameters 𝛼1 and 𝛽1. Other notations have same rule in the
following section. The mean of this Beta distribution is 𝛼1

𝛼1+𝛽1
and

the variance of this Beta distribution is 𝛼1𝛽1
(𝛼1+𝛽1)2 (𝛼1+𝛽1+1) .

The Gamma distribution is

Γ(𝛾𝑠 |𝑐0, 𝑑0) =
𝑑0
𝑐0 (𝛾𝑠 )𝑐0−1𝑒−𝑑0𝛾𝜖

Γ(𝑐0)
∝ (𝛾𝑠 )𝑐0−1𝑒−𝑑0𝛾𝑠 , (52)

where 𝑐0 > 0, 𝑑0 > 0. ∝ denotes “proportional to”. The mean of this
Gamma distribution is 𝑐0

𝑑0
and the variance of this Gamma distribu-

tion is 𝑐0
𝑑0

2 .

A.2 The Hankel operator
H† is the Moore-Penrose pseudoinverse of H . For any 𝑿 ∈ R𝑚𝑛2×𝑛1 ,
(H†𝑿 )𝑖, 𝑗 ∈ R𝑚×𝑛 is defined as

(H†𝑿 )𝑖, 𝑗 = ⟨H†𝑿 , 𝑒𝑖𝑒𝑇𝑗 ⟩ =
1
^ 𝑗

∑
𝑢−𝑖
𝑚

+𝑣=𝑗
𝑋𝑢,𝑣

=

{ 1
^ 𝑗

∑𝑗

𝑗1=1 𝑋 ( 𝑗1−1)𝑚+𝑖, 𝑗+1−𝑗1 𝑗 ≤ 𝑛2
1
^ 𝑗

∑𝑛 𝑗
𝑗2=𝑗+1−𝑛2

𝑋 ( 𝑗−𝑗2)𝑚+𝑖, 𝑗2 𝑗 ≥ 𝑛2 + 1
, (53)

where ^ 𝑗 = #{( 𝑗1, 𝑗2) | 𝑗1 + 𝑗2 = 𝑗 + 1 1 ≤ 𝑗1 ≤ 𝑛2, 1 ≤ 𝑗2 ≤ 𝑛1} is
the number of entries in the 𝑗 th anti-diagonal of an 𝑛2 × 𝑛1 matrix.
𝑛 𝑗 = min( 𝑗, 𝑛1).

We employ two sets to define the mapping relationship between the
original matrix and the corresponding Hankel matrix. (𝑖, 𝑗) denotes
one coordinate in the original matrix. Ψ𝑖, 𝑗 denotes the set of the
mapping entries of (𝑖, 𝑗) in the corresponding Hankel matrix of 𝒀𝑜 .
Ψ𝑖, 𝑗 shows the mapping relationship in (53). One can simply check
the corresponding coordinate of (𝑖, 𝑗) in 𝑿 to obtain Ψ𝑖, 𝑗 . Ψ𝑖, 𝑗 is
a subset of ΨΩ . Ψ𝑖, 𝑗 only shows the mapping set of one point (i,j)
while ΨΩ denotes the set of all the mapping entries of all (𝑖, 𝑗) in the
corresponding Hankel matrix.

Ψ𝑖, 𝑗 = {(𝑢, 𝑣) | (𝑢, 𝑣) = (( 𝑗1 − 1)𝑚 + 𝑖, 𝑗 + 1 − 𝑗1) for every

𝑗1 = 1, 2, ..., 𝑗, under the case when 𝑗 ≤ 𝑛2;
(𝑢, 𝑣) = (( 𝑗 − 𝑗2)𝑚 + 𝑖, 𝑗2) for every 𝑗2 = 𝑗 + 1 − 𝑛2, ..., 𝑛 𝑗 ,

where 𝑛 𝑗 = min( 𝑗, 𝑛1), under the case when 𝑗 ≥ 𝑛2 + 1; } (𝑖, 𝑗) ∈ Ω.
(54)

ΨΩ = {(𝑢, 𝑣) | there exists (𝑖, 𝑗) ∈ Ω such that (𝑢, 𝑣) ∈ Ψ𝑖, 𝑗 }.
(55)

A.3 Updating rule for variational inference

Algorithm 1 Varational Inference for Bayesian Robust Hankel Ma-
trix Completion

Require: The observation matrix 𝒀𝑜 . The parameters _𝑑 ,
𝑎0, 𝑏0, 𝑐0, 𝑑0, 𝑒0, 𝑓0, 𝑔0, ℎ0 for prior distributions. The initial ba-
sis size 𝐾 . The maximum iterations 𝑇max. The convergence
threshold b . The Hankel matrix parameter 𝑛2.

1: Initialization:Form the Hankel matrix 𝑿 by 𝒀𝑜 . Take the SVD
of 𝑿 by 𝑿 = 𝑼𝑨𝑽𝑇 . 𝑫 is initialized by 𝑼𝑨

1
2 . 𝑺 is initialized

with 𝑨
1
2 𝑽𝑇 . 𝒁 is initialized with all-one matrix. All values in

𝜋𝑘 are initialized as 0.5. 𝛾𝑠 and _𝑑 are initialized by
| |𝒀𝑜 | |2

𝐹

𝑚𝑛 .

1/𝛾𝜖 is initialized by | |𝒀𝑜 | |𝐹√
𝑚𝑛

. �̄�0 = 𝑫 (𝑺 ⊙ 𝒁 ). The initial 𝑬 is

𝐸𝑖, 𝑗 = 𝑌
𝑜
𝑖,𝑗

− (H†�̄�0)𝑖, 𝑗 if (𝑖, 𝑗) ∈ 𝛀 and 𝐸𝑖, 𝑗 = 0 otherwise. All

the elements in 𝜷 are initialized as | |𝒀𝑜 | |𝐹√
𝑚𝑛

. [ = 1, 𝑡 = 1.
2: while [ > b and 𝑡 < 𝑇max do
3: Compute E[𝒅𝑝.] from 𝑞(𝒅𝑝.) by (23) for each 𝑝 =

1, 2, 3, ...,𝑚𝑛2;
4: Compute E[𝒔.𝑞] from 𝑞(𝒔.𝑞) by (26) for all 𝑞;
5: for 𝑘 = 1, 2, 3, ..., 𝐾 do
6: Compute E[𝑧𝑘𝑞] from 𝑞(𝑧𝑘𝑞) by (28) for all 𝑞;
7: Compute E[ln(𝜋𝑘 )] and E[ln(1 − 𝜋𝑘 )] from 𝑞(𝜋𝑘 ) by (33)

and (34);
8: end for
9: Compute E[𝛾𝑠 ] from 𝑞(𝛾𝑠 ) by (36);

10: Compute E[𝐸𝑖, 𝑗 ] from 𝑞(𝐸𝑖, 𝑗 ) by (39) for all (𝑖, 𝑗) ∈ Ω;
11: Compute E[𝛽𝑖, 𝑗 ] from 𝑞(𝛽𝑖, 𝑗 ) by (41);
12: Compute E[𝛾𝜖 ] from 𝑞(𝛾𝜖 ) by (43);
13: if E[𝑧𝑘𝑞] = 0 for all 𝑘 then
14: Remove E[𝒅.𝑘 ] in E[𝑫], E[𝜋𝑘 ], and E[𝑧𝑘𝑞], E[𝑠𝑘𝑞] for all

𝑞;
15: 𝐾 = 𝐾 − 1;
16: end if
17: �̄� = 𝑫 (𝑺 ⊙ 𝒁 );
18: [ =

∥�̄�−�̄�pre ∥𝐹
∥�̄�pre ∥𝐹

;

19: �̄�pre = �̄� ;
20: 𝑡 = 𝑡 + 1;
21: end while
22: Estimate the predictive mean E[𝑌𝑖, 𝑗 ] and variance Var[𝑌𝑖, 𝑗 ] by

(45) and (46) for all (𝑖, 𝑗).
23: return The predictive mean E[𝑌𝑖, 𝑗 ] and predictive variance

Var[𝑌𝑖, 𝑗 ] for each entry.

The details of our proposed approach are summarized in Algorithm
1. Algorithm 1 can be simplified if only missing data presents. One
can skip lines 10-11 in Algorithm 1 about updating E[𝐸𝑖, 𝑗 ] and
E[𝛽𝑖, 𝑗 ], and all the other updating rules remain unchanged.
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The KL divergence in (19) is difficult to compute because comput-
ing 𝑃 (𝒀𝑜Ω) is intractable. To see this,

KL(𝑞(𝚯) | |𝑃 (𝚯, 𝒀 |𝒀𝑜Ω))

= −
∫

𝑞(𝚯)ln
𝑃 (𝚯, 𝒀 |𝒀𝑜Ω)
𝑞(𝚯) 𝑑𝚯

= E[ln𝑞(𝚯)] − E[ln 𝑃 (𝚯, 𝒀 |𝒀𝑜Ω)]
= E[ln𝑞(𝚯)] − E[ln 𝑃 (𝚯, 𝒀 , 𝒀𝑜Ω)] + ln(𝑃 (𝒀𝑜Ω))
= −(E[ln 𝑃 (𝚯, 𝒀 , 𝒀𝑜Ω)] − E[ln𝑞(𝚯)]) + ln(𝑃 (𝒀𝑜Ω))
= −ELBO(𝑞(𝚯)) + ln (𝑃 (𝒀𝑜Ω)).

(56)

ELBO is evidence lower bound. ln (𝑃 (𝒀𝑜Ω) denotes the natural
logarithm of 𝑃 (𝒀𝑜Ω). The expectations in (56) are taken with respect
to 𝑞(𝚯). Because ln(𝑃 (𝒀𝑜Ω)) is not related to 𝑞(𝚯), minimizing the
KL divergence is equivalent to maximizing the ELBO. The goal of
variational inference is changed to maximizing the ELBO.

The joint probability of observed data and all the parameters is
characterized by (57).

𝑃 (𝚯, 𝒀 , 𝒀𝑜Ω)
=𝑝 (𝒀𝑜Ω |𝑫, 𝑺,𝒁 , 𝑬 , 𝛾𝜖 ), 𝑝 (𝑫 |_𝑑 )𝑝 (𝑺 |𝛾𝑠 )𝑝 (𝒁 |𝝅)𝑝 (𝝅)
𝑝 (𝑬 |𝜷)𝑝 (𝜷)𝑝 (𝛾𝑠 )𝑝 (𝛾𝜖 )

=
∏

(𝑖, 𝑗) ∈Ω
N(𝑌𝑜𝑖,𝑗 | (H

†𝑿 )𝑖, 𝑗 + 𝐸𝑖, 𝑗 ,
1
𝛾𝜖

)Γ(𝛽𝑖, 𝑗 |𝑔0, ℎ0)

𝑛1∏
𝑞=1

N(𝒔.𝑞 |0,
1
𝛾𝑠

𝑰𝐾 )

𝑚𝑛2∏
𝑝=1

N(𝒅𝑝. |0,
1
_𝑑

𝑰𝐾 )
𝐾∏
𝑘=1

Beta(𝜋𝑘 |𝑎0, 𝑏0)

𝑛1∏
𝑞=1

𝐾∏
𝑘=1

Bernoulli(𝑧𝑘𝑞 |𝜋𝑘 )

Γ(𝛾𝑠 |𝑐0, 𝑑0)Γ(𝛾𝜖 |𝑒0, 𝑓0) .

(57)

N(𝑌𝑜
𝑖,𝑗
| (H†𝑿 )𝑖, 𝑗 + 𝐸𝑖, 𝑗 , 1

𝛾𝜖
) denotes that 𝑌𝑜

𝑖,𝑗
follows a Gaussian dis-

tribution with mean (H†𝑿 )𝑖, 𝑗 + 𝐸𝑖, 𝑗 and variance 1
𝛾𝜖

when 𝑫, 𝒁 , 𝑺,
𝑬 and 𝛾𝜖 are given.

The derivation details of updating rules of variational inference
are shown below.
(I) The approximate posterior distribution of 𝒅𝑝. is a Gaussian distri-
bution (for all 𝑝 = 1, ...,𝑚𝑛2).
To see this, note that∏

(𝑖, 𝑗) ∈Ω
N(𝑌𝑜𝑖,𝑗 | (H

†𝑿 )𝑖, 𝑗 + 𝐸𝑖, 𝑗 ,
1
𝛾𝜖

)

∝
∏

(𝑖, 𝑗) ∈Ω
exp( −𝛾𝜖

2
(𝑌𝑜𝑖,𝑗 − 𝐸𝑖, 𝑗 − (H†𝑿 )𝑖, 𝑗 )2)

∝
∏

(𝑖, 𝑗) ∈Ω
exp( −𝛾𝜖

2
(𝑌𝑜𝑖,𝑗 − 𝐸𝑖, 𝑗 −

1
^ 𝑗

∑
(𝑢,𝑣) ∈Ψ𝑖,𝑗

[𝒅𝑢. (𝒔.𝑣 ⊙ 𝒛.𝑣)])2)

∝∼
∏

(𝑖, 𝑗) ∈Ω exp( −𝛾𝜖2 (𝑌𝑜
𝑖,𝑗

− 𝐸𝑖, 𝑗 − 1
^ 𝑗
^ 𝑗 [𝒅𝑝. (𝒔.𝑞 ⊙ 𝒛.𝑞)] (𝑝,𝑞) ∈Ψ𝑖,𝑗 )2)

∝
∏

(𝑖, 𝑗) ∈Ω
exp( −1

2
[𝒅𝑝.𝛾𝜖 (𝒔.𝑞 ⊙ 𝒛.𝑞) (𝒔.𝑞 ⊙ 𝒛.𝑞)𝑇 𝒅𝑇𝑝.] (𝑝,𝑞) ∈Ψ𝑖,𝑗

+ 𝛾𝜖 (𝑌𝑜𝑖,𝑗 − 𝐸𝑖, 𝑗 ) [(𝒔.𝑞 ⊙ 𝒛.𝑞)𝑇 𝒅𝑇𝑝.] (𝑝,𝑞) ∈Ψ𝑖,𝑗 −
𝛾𝜖

2
(𝑌𝑜𝑖,𝑗 − 𝐸𝑖, 𝑗 )

2)

∝ exp(𝒅𝑝.
−𝛾𝜖

2

∑
𝑞:(𝑝,𝑞) ∈ΨΩ

(𝒔.𝑞 ⊙ 𝒛.𝑞) (𝒔.𝑞 ⊙ 𝒛.𝑞)𝑇 𝒅𝑇𝑝.

+𝛾𝜖
∑
𝑞:(𝑝,𝑞) ∈ΨΩ

H (𝒀𝑜 − 𝑬)𝑝,𝑞 (𝒔.𝑞 ⊙ 𝒛.𝑞)𝑇 𝒅𝑇𝑝. −
𝛾𝜖
2
∑
𝑞:(𝑝,𝑞) ∈ΨΩ

H (𝒀𝑜 − 𝑬)2
𝑝,𝑞).
(58)

where H (𝒀𝑜 − 𝑬)𝑝,𝑞 represents entry (𝑝, 𝑞) of the Hankel matrix
H(𝒀𝑜 − 𝑬).
Also note that

N(𝒅𝑝. |0,
1
_𝑑

𝑰𝐾 ) ∝ exp(−_𝑑
2
𝒅𝑝.𝒅

𝑇
𝑝.) . (59)

Therefore,∏
(𝑖, 𝑗) ∈Ω

N(𝑌𝑜𝑖,𝑗 | (H
†𝑿 )𝑖, 𝑗 + 𝐸𝑖, 𝑗 ,

1
𝛾𝜖

)N (𝒅𝑝. |0,
1
_𝑑

𝑰𝐾 )

∝ exp(−1
2
𝒅𝑝. (𝛾𝜖

∑
𝑞:(𝑝,𝑞) ∈ΨΩ

(𝒔.𝑞 ⊙ 𝒛.𝑞) (𝒔.𝑞 ⊙ 𝒛.𝑞)𝑇 + _𝑑 𝑰𝐾 )𝒅𝑇𝑝.

+𝛾𝜖
∑
𝑞:(𝑝,𝑞) ∈ΨΩ

H (𝒀𝑜 − 𝑬)𝑝,𝑞 (𝒔.𝑞 ⊙ 𝒛.𝑞)𝑇 𝒅𝑇𝑝. −
𝛾𝜖
2
∑
𝑞:(𝑝,𝑞) ∈ΨΩ

H (𝒀𝑜 − 𝑬)2
𝑝,𝑞).
(60)

Now it is safe to write that

ln( 𝑞(𝒅𝑝.))
= E

𝚯\𝒅𝑝. [ln 𝑝 (𝚯, 𝒀 , 𝒀
𝑜
Ω)] + const.

= E
𝚯\𝒅𝑝. [ln 𝑝 (𝒀

𝑜
Ω |𝑫, 𝑺,𝒁 , 𝑬 , 𝛾𝜖 )𝑃 (𝑫 |_𝑑 )] + const.

= E[ln
∏

(𝑖, 𝑗) ∈Ω N(𝑌𝑜
𝑖,𝑗
| (H†𝑿 )𝑖, 𝑗 + 𝐸𝑖, 𝑗 , 1

𝛾𝜖
)N (𝒅𝑝. |0, 1

_𝑑
𝑰𝐾 )] + const.

= E[−1
2
𝒅𝑝. (𝛾𝜖

∑
𝑞:(𝑝,𝑞) ∈ΨΩ

(𝒔.𝑞 ⊙ 𝒛.𝑞) (𝒔.𝑞 ⊙ 𝒛.𝑞)𝑇 + _𝑑 𝑰𝐾 )𝒅𝑇𝑝.

+𝛾𝜖
∑
𝑞:(𝑝,𝑞) ∈ΨΩ

H (𝒀𝑜 − 𝑬)𝑝,𝑞 (𝒔.𝑞 ⊙ 𝒛.𝑞)𝑇 𝒅𝑇𝑝. −
𝛾𝜖
2
∑
𝑞:(𝑝,𝑞) ∈ΨΩ

H (𝒀𝑜 − 𝑬)2
𝑝,𝑞] + const.

= −1
2
𝒅𝑝. (E[𝛾𝜖 ]

∑
𝑞:(𝑝,𝑞) ∈ΨΩ

E[(𝒔.𝑞 ⊙ 𝒛.𝑞) (𝒔.𝑞 ⊙ 𝒛.𝑞)𝑇 ] + _𝑑 𝑰𝐾 )𝒅𝑇𝑝.

+ E[𝛾𝜖 ]
∑

𝑞:(𝑝,𝑞) ∈ΨΩ

H(𝒀𝑜 − E[𝑬])𝑝,𝑞 (E[𝒔.𝑞] ⊙ E[𝒛.𝑞])𝑇 𝒅𝑇𝑝.

− E[𝛾𝜖 ]
2

∑
𝑞:(𝑝,𝑞) ∈ΨΩ

H(𝒀𝑜 − E[𝑬])2
𝑝,𝑞 + const..

(61)
The above derivation reveals that 𝑞(𝒅𝑝.) is a Gaussian distribution

with mean E[𝒅𝑝.] and covariance 𝚺𝒅𝑝. , i.e.,

𝑞(𝒅𝑝.) ∼ N (E[𝒅𝑝.], 𝚺𝒅𝑝. ), (62)

where
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𝚺𝒅𝑝. = [E[𝛾𝜖 ]
∑

𝑞:(𝑝,𝑞) ∈ΨΩ

E[(𝒔.𝑞 ⊙ 𝒛.𝑞) (𝒔.𝑞 ⊙ 𝒛.𝑞)𝑇 ] + _𝑑 𝑰𝐾 ]−1, (63)

E[𝒅𝑝.] = E[𝛾𝜖 ]
∑
𝑞:(𝑝,𝑞) ∈ΨΩ

H(𝒀𝑜 − 𝑬)𝑝,𝑞 (E[𝒔.𝑞]𝑇 ⊙ E[𝒛.𝑞]𝑇 )𝚺𝒅𝑝. .
(64)

The required expectation is

E[(𝒔.𝑞 ⊙ 𝒛.𝑞) (𝒔.𝑞 ⊙ 𝒛.𝑞)𝑇 ] = E[𝒔.𝑞𝒔𝑇.𝑞] ⊙ E[𝒛.𝑞𝒛𝑇.𝑞]

= (E[𝒔.𝑞]E[𝒔.𝑞]𝑇 + 𝚺𝒔.𝑞 ) ⊙ (E[𝒛.𝑞]E[𝒛.𝑞]𝑇 + 𝚺𝒛.𝑞 ),
(65)

where 𝚺𝒛.𝑞 is

𝚺𝒛.𝑞 = diag[E[𝑧1𝑞] (1 − E[𝑧1𝑞]), ...,E[𝑧𝐾𝑞] (1 − E[𝑧𝐾𝑞])] . (66)

(II) The approximate posterior distribution of 𝒔.𝑞 (𝑞 = 1, ..., 𝑛1) is a
Gaussian distribution.
To see this, note that

∏
(𝑖, 𝑗) ∈Ω

N(𝑌𝑜𝑖,𝑗 | (H
†𝑿 )𝑖, 𝑗 ,

1
𝛾𝜖

)

∝
∏

(𝑖, 𝑗) ∈Ω
exp( −𝛾𝜖

2
(𝑌𝑜𝑖,𝑗 − 𝐸𝑖, 𝑗 − (H†𝑿 )𝑖, 𝑗 )2)

∝
∏

(𝑖, 𝑗) ∈Ω
exp( −𝛾𝜖

2
(𝑌𝑜𝑖,𝑗 − 𝐸𝑖, 𝑗 −

1
^ 𝑗

∑
(𝑢,𝑣) ∈Ψ𝑖,𝑗

[𝒅𝑢. (𝒔.𝑣 ⊙ 𝒛.𝑣)])2)

∝∼
∏

(𝑖, 𝑗) ∈Ω
exp( −𝛾𝜖

2
(𝑌𝑜𝑖,𝑗 − 𝐸𝑖, 𝑗 −

1
^ 𝑗
^ 𝑗 [𝒅𝑝. (𝒔.𝑞 ⊙ 𝒛.𝑞)] (𝑝,𝑞) ∈Ψ𝑖,𝑗 )

2)

∝
∏

(𝑖, 𝑗) ∈Ω
exp( −𝛾𝜖

2
( [𝒔𝑇.𝑞 (𝒛.𝑞 ⊙ 𝒅𝑇𝑝.) (𝒅𝑝. ⊙ 𝒛𝑇.𝑞)𝒔.𝑞] (𝑝,𝑞) ∈Ψ𝑖,𝑗

− 2(𝑌𝑜𝑖,𝑗 − 𝐸𝑖, 𝑗 ) [(𝒅𝑝. ⊙ 𝒛𝑇.𝑞)𝒔.𝑞] (𝑝,𝑞) ∈Ψ𝑖,𝑗 + (𝑌𝑜𝑖,𝑗 − 𝐸𝑖, 𝑗 )
2))

∝
∏

(𝑖, 𝑗) ∈Ω
exp( −𝛾𝜖

2
( [𝒔𝑇.𝑞𝝓𝑇𝑝,𝑞𝝓𝑝,𝑞𝒔.𝑞] (𝑝,𝑞) ∈Ψ𝑖,𝑗

− 2(𝑌𝑜𝑖,𝑗 − 𝐸𝑖, 𝑗 ) [𝝓𝑝,𝑞𝒔.𝑞] (𝑝,𝑞) ∈Ψ𝑖,𝑗 + (𝑌𝑜𝑖,𝑗 − 𝐸𝑖, 𝑗 )
2))

∝ exp( −𝛾𝜖
2

(𝒔𝑇.𝑞
∑

𝑝 :(𝑝,𝑞) ∈ΨΩ

𝝓𝑇𝑝,𝑞𝝓𝑝,𝑞𝒔.𝑞)

+𝛾𝜖
∑
𝑝 :(𝑝,𝑞) ∈ΨΩ

H(𝒀𝑜 − 𝑬)𝑝,𝑞 [𝝓𝑝,𝑞𝒔.𝑞] − 𝛾𝜖
2
∑
𝑝 :(𝑝,𝑞) ∈ΨΩ

H(𝒀𝑜 − 𝑬)2
𝑝,𝑞),
(67)

where we define 𝝓𝑝,𝑞 = 𝒅𝑝. ⊙ 𝒛𝑇.𝑞 .
Also note that

N(𝒔.𝑞 |0,
1
𝛾𝑠

𝑰𝐾 ) ∝ exp( −𝛾𝑠
2

(𝒔𝑇.𝑞𝒔.𝑞)) . (68)

Therefore,

∏
(𝑖, 𝑗) ∈Ω

N(𝑌𝑜𝑖,𝑗 | (H
†𝑿 )𝑖, 𝑗 + 𝐸𝑖, 𝑗 ,

1
𝛾𝜖

)N (𝒔.𝑞 |0,
1
𝛾𝑠

𝑰𝐾 )

∝ exp( −𝛾𝜖
2

(𝒔𝑇.𝑞
∑

𝑝 :(𝑝,𝑞) ∈ΨΩ

𝝓𝑇𝑝,𝑞𝝓𝑝,𝑞𝒔.𝑞)

+ 𝛾𝜖H(𝒀𝑜 − 𝑬)𝑝,𝑞 [𝝓𝑝,𝑞𝒔.𝑞] (𝑝,𝑞) ∈Ψ𝑖,𝑗 −
𝛾𝜖

2
H(𝒀𝑜 − 𝑬)2

𝑝,𝑞)

exp( −𝛾𝑠
2

(𝒔𝑇.𝑞𝒔.𝑞))

∝ exp( −1
2
(𝒔𝑇.𝑞 [

∑
𝑝 :(𝑝,𝑞) ∈ΨΩ

𝛾𝜖𝝓
𝑇
𝑝,𝑞𝝓𝑝,𝑞 + 𝛾𝑠 𝑰𝐾 ]𝒔.𝑞)

+𝛾𝜖
∑
𝑝 :(𝑝,𝑞) ∈ΨΩ

H(𝒀𝑜 − 𝑬)𝑝,𝑞𝝓𝑝,𝑞𝒔.𝑞 − 𝛾𝜖
2
∑
𝑝 :(𝑝,𝑞) ∈ΨΩ

H(𝒀𝑜 − 𝑬)2
𝑝,𝑞).
(69)

Thus,

ln(𝑞(𝒔.𝑞))
= E

𝚯\𝑠.𝑞 [ln 𝑝 (𝚯, 𝒀 , 𝒀
𝑜
Ω)] + const.

= E
𝚯\𝒔.𝑞 [ln 𝑝 (𝒀

𝑜
Ω |𝑫, 𝑺,𝒁 , 𝑬 , 𝛾𝜖 )𝑝 (𝑺 |𝛾𝑠 )] + const.

= E[( −1
2
(𝒔𝑇.𝑞 [

∑
𝑝 :(𝑝,𝑞) ∈ΨΩ

𝛾𝜖𝝓
𝑇
𝑝,𝑞𝝓𝑝,𝑞 + 𝛾𝑠 𝑰𝐾 ]𝒔.𝑞)

+𝛾𝜖
∑
𝑝 :(𝑝,𝑞) ∈ΨΩ

H(𝒀𝑜 − 𝑬)𝑝,𝑞𝝓𝑝,𝑞𝒔.𝑞 − 𝛾𝜖
2
∑
𝑝 :(𝑝,𝑞) ∈ΨΩ

H(𝒀𝑜 − 𝑬)2
𝑝,𝑞)] + const.

=
−1
2
(𝒔𝑇.𝑞 [

∑
𝑝 :(𝑝,𝑞) ∈ΨΩ

E[𝛾𝜖 ]E[𝝓𝑇𝑝,𝑞𝝓𝑝,𝑞] + E[𝛾𝑠 ]𝑰𝐾 ]𝒔.𝑞)

+ E[𝛾𝜖 ]
∑

𝑝 :(𝑝,𝑞) ∈ΨΩ

H(𝒀𝑜 − E[𝑬])𝑝,𝑞E[𝝓𝑝,𝑞]𝒔.𝑞

− E[𝛾𝜖 ]
2
E[

∑
𝑝 :(𝑝,𝑞) ∈ΨΩ

H(𝒀𝑜 − 𝑬)2
𝑝,𝑞] + const..

(70)

The above derivation reveals that 𝑞(𝒔.𝑞) is a Gaussian distribution
with mean E[𝒔.𝑞] and covariance 𝚺𝒔.𝑞 , i.e.,

𝑞(𝒔.𝑞) ∼ N (E[𝒔.𝑞], 𝚺𝒔.𝑞 ), (71)

where

𝚺𝒔.𝑞 = [E[𝛾𝜖 ]
∑

𝑝 :(𝑝,𝑞) ∈ΨΩ

E[𝝓𝑇𝑝,𝑞𝝓𝑝,𝑞] + E[𝛾𝑠 ]𝑰𝐾 ]−1, (72)

E[𝒔.𝑞] = E[𝛾𝜖 ]𝚺𝒔.𝑞
∑

𝑝 :(𝑝,𝑞) ∈ΨΩ

E[𝝓𝑝,𝑞]𝑇H(𝒀𝑜 − 𝑬)𝑝,𝑞 . (73)

The required expectation is E[𝝓𝑝,𝑞] = E[𝒅𝑝.] ⊙ E[𝒛.𝑞]𝑇 and

E[𝝓𝑇𝑝,𝑞𝝓𝑝,𝑞] = (E[𝒅𝑇𝑝.𝒅𝑝.]) ⊙ (E[𝒛𝑇.𝑞𝒛.𝑞])

= (E[𝒅𝑝.]𝑇E[𝒅𝑝.] + 𝚺𝒅𝑝. ) ⊙ (E[𝒛.𝑞]E[𝒛.𝑞]𝑇 + 𝚺𝒛.𝑞 )) .
(74)

(III) The approximate posterior distribution of 𝑧𝑘𝑞 (for all 𝑞 =

1, ..., 𝑛1, and 𝑘 = 1, ..., 𝐾) is a Bernoulli distribution.
Note that
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ln(𝑞(𝑧𝑘𝑞))
= E

𝚯\𝑧𝑘𝑞 [ln 𝑝 (𝚯, 𝒀 , 𝒀
𝑜
Ω)] + const.

= E
𝚯\𝑧𝑘𝑞 [ln 𝑝 (𝒀

𝑜
Ω |𝑫, 𝑺,𝒁 , 𝑬 , 𝛾𝜖 )𝑝 (𝑧𝑘𝑞 |𝜋𝑘 )] + const.

= E[ln
∏

(𝑖, 𝑗) ∈Ω
N(𝑌𝑜𝑖,𝑗 | (H

†𝑿 )𝑖, 𝑗 + 𝐸𝑖, 𝑗 ,
1
𝛾𝜖

)

Bernoulli(𝑧𝑘𝑞 |𝜋𝑘 )] + const..

(75)

Because 𝑧𝑘𝑞 is binary, ln(𝑞(𝑧𝑘𝑞 = 1)) can be written as

ln(𝑞(𝑧𝑘𝑞 = 1))

= E
𝚯\𝑧𝑘𝑞 [ln

∏
(𝑖, 𝑗) ∈Ω

N(𝑌𝑜𝑖,𝑗 | (H
†𝑿 )𝑖, 𝑗 + 𝐸𝑖, 𝑗 ,

1
𝛾𝜖

)𝜋𝑘 ] + const.

= E[ln
∏

(𝑖, 𝑗) ∈Ω
N(𝑌𝑜𝑖,𝑗 | (H

†𝑿 )𝑖, 𝑗 + 𝐸𝑖, 𝑗 ,
1
𝛾𝜖

)] + E[ln(𝜋𝑘 )] + const.

= E[ −𝛾𝜖
2

∑
𝑝 :(𝑝,𝑞) ∈ΨΩ

[𝒅𝑝. (𝒔.𝑞 ⊙ �̂�.𝑞) (𝒔.𝑞 ⊙ �̂�.𝑞)𝑇 𝒅𝑇𝑝.]

+ 𝛾𝜖
∑

𝑝 :(𝑝,𝑞) ∈ΨΩ

H(𝒀𝑜 − 𝑬)𝑝,𝑞 [(𝒔.𝑞 ⊙ �̂�.𝑞)𝑇 𝒅𝑇𝑝.] + E[ln(𝜋𝑘 )] + const.

= E[ −𝛾𝜖
2

∑
𝑝 :(𝑝,𝑞) ∈ΨΩ

[trace(𝒅𝑝. (𝒔.𝑞 ⊙ �̂�.𝑞) (𝒔.𝑞 ⊙ �̂�.𝑞)𝑇 𝒅𝑇𝑝.)]

+ 𝛾𝜖
∑

𝑝 :(𝑝,𝑞) ∈ΨΩ

H(𝒀𝑜 − 𝑬)𝑝,𝑞 [(𝒔.𝑞 ⊙ �̂�.𝑞)𝑇 𝒅𝑇𝑝.] + E[ln(𝜋𝑘 )] + const.

= E[ −𝛾𝜖
2

∑
𝑝 :(𝑝,𝑞) ∈ΨΩ

[trace(𝒅𝑇𝑝.𝒅𝑝. (𝒔.𝑞 ⊙ �̂�.𝑞) (𝒔.𝑞 ⊙ �̂�.𝑞)𝑇 )]

+ 𝛾𝜖
∑

𝑝 :(𝑝,𝑞) ∈ΨΩ

H(𝒀𝑜 − 𝑬)𝑝,𝑞 [(𝒔.𝑞 ⊙ �̂�.𝑞)𝑇 𝒅𝑇𝑝.] + E[ln(𝜋𝑘 )] + const.

=
−E[𝛾𝜖 ]

2

∑
𝑝 :(𝑝,𝑞) ∈ΨΩ

[trace(E[𝒅𝑇𝑝.𝒅𝑝.] (E[𝒔.𝑞𝒔𝑇.𝑞] ⊙ E[�̂�.𝑞 �̂�𝑇.𝑞]))]

+ E[𝛾𝜖 ]
∑

𝑝 :(𝑝,𝑞) ∈ΨΩ

H(𝒀𝑜 − 𝑬)𝑝,𝑞 [(E[𝒔.𝑞] ⊙ E[�̂�.𝑞])𝑇E[𝒅𝑝.]𝑇 ]

+ E[ln(𝜋𝑘 )] + const.,
(76)

where 𝑧𝑘𝑞 = 1, other entries in 𝑧.𝑞 equal to the corresponding entries
in 𝑧.𝑞 . The required expectations are

E[𝒅𝑇𝑝.𝒅𝑝.] = E[𝒅𝑝.]𝑇E[𝒅𝑝.] + 𝚺𝒅𝑝. , (77)

E[𝒔.𝑞𝒔𝑇.𝑞] = E[𝒔.𝑞]E[𝒔.𝑞]𝑇 + 𝚺𝒔.𝑞 , (78)

E[�̂�.𝑞 �̂�𝑇.𝑞] = E[�̂�.𝑞]E[�̂�.𝑞]𝑇 + �̂�𝑞, (79)

where �̂�𝑞 = diag[E[𝑧1𝑞] (1−E[𝑧1𝑞]), ...,E[𝑧𝐾𝑞] (1−E[𝑧𝐾𝑞])], �̂�𝑘𝑞 =

E[𝑧𝑘𝑞] (1 − E[𝑧𝑘𝑞]) = 0.
ln(𝑞(𝑧𝑘𝑞 = 0)) can be expressed as

ln(𝑞(𝑧𝑘𝑞 = 0))

= E
𝚯\𝑧𝑘𝑞 [ln N(𝑌𝑜𝑖,𝑗 | (H

†𝑿 )𝑖, 𝑗 + 𝐸𝑖, 𝑗 ,
1
𝛾𝜖

) (1 − 𝜋𝑘 )] + const.

=
−E[𝛾𝜖 ]

2

∑
𝑝 :(𝑝,𝑞) ∈ΨΩ

[trace(E[𝒅𝑇𝑝.𝒅𝑝.] (E[𝒔.𝑞𝒔𝑇.𝑞] ⊙ E[�̂�.𝑞 �̂�𝑇.𝑞]))]

+ E[𝛾𝜖 ]
∑

𝑝 :(𝑝,𝑞) ∈ΨΩ

H(𝒀𝑜 − 𝑬)𝑝,𝑞 [(E[𝒔.𝑞] ⊙ E[�̂�.𝑞])𝑇E[𝒅𝑝.]𝑇 ]

+ E[ln(1 − 𝜋𝑘 )] + const.,
(80)

where 𝑧𝑘𝑞 = 0, other entries in 𝑧.𝑞 equal to the corresponding entries
in 𝑧.𝑞 .
Thus, 𝑧𝑘𝑞 follows a Bernoulli distribution

𝑞(𝑧𝑘𝑞) ∼ Bernoulli(
𝑞(𝑧𝑘𝑞 = 1)

𝑞(𝑧𝑘𝑞 = 1) + 𝑞(𝑧𝑘𝑞 = 0) ), (81)

with mean and variance

E[𝑧𝑘𝑞] =
𝑞(𝑧𝑘𝑞 = 1)

𝑞(𝑧𝑘𝑞 = 1) + 𝑞(𝑧𝑘𝑞 = 0) , (82)

𝚺𝑧𝑘𝑞 = E[𝑧𝑘𝑞] (1 − E[𝑧𝑘𝑞]), (83)

where

ln(𝑞(𝑧𝑘𝑞 = 1)) ∝
−E[𝛾𝜖 ]

2

∑
𝑝 :(𝑝,𝑞) ∈ΨΩ

[trace(E[𝒅𝑇𝑝.𝒅𝑝.] (E[𝒔.𝑞𝒔𝑇.𝑞] ⊙ E[�̂�.𝑞 �̂�𝑇.𝑞]))]

+ E[𝛾𝜖 ]
∑

𝑝 :(𝑝,𝑞) ∈ΨΩ

H(𝒀𝑜 − 𝑬)𝑝,𝑞 [(E[𝒔.𝑞] ⊙ E[�̂�.𝑞])𝑇E[𝒅𝑝.]𝑇 ]

+ E[ln(𝜋𝑘 )],
(84)

where 𝑧𝑘𝑞 = 1, other entries in 𝑧.𝑞 equal to the corresponding entries
in 𝑧.𝑞 .

ln(𝑞(𝑧𝑘𝑞 = 0)) ∝
−E[𝛾𝜖 ]

2

∑
𝑝 :(𝑝,𝑞) ∈ΨΩ

[trace(E[𝒅𝑇𝑝.𝒅𝑝.] (E[𝒔.𝑞𝒔𝑇.𝑞] ⊙ E[�̂�.𝑞 �̂�𝑇.𝑞]))]

+ E[𝛾𝜖 ]
∑

𝑝 :(𝑝,𝑞) ∈ΨΩ

H(𝒀𝑜 − 𝑬)𝑝,𝑞 [(E[𝒔.𝑞] ⊙ E[�̂�.𝑞])𝑇E[𝒅𝑝.]𝑇 ]

+ E[ln(1 − 𝜋𝑘 )],
(85)

where 𝑧𝑘𝑞 = 0, other entries in 𝑧.𝑞 equal to the corresponding entries
in 𝑧.𝑞 .
(IV) The approximate posterior distribution of 𝜋𝑘 ( 𝑘 = 1, ..., 𝐾) is
from a Beta distribution.
Because the prior distribution of 𝜋𝑘 is a Beta distribution

Beta(𝜋𝑘 |
𝑎0
𝐾
,
𝑏0 (𝐾 − 1)

𝐾
) ∝ (𝜋𝑘 )

𝑎0
𝐾
−1 (1 − 𝜋𝑘 )

𝑏0 (𝐾−1)
𝐾

−1 . (86)
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Given 𝜋𝑘 , the likelihood of 𝑧𝑘𝑞 is a Bernoulli distribution

Bernoulli(𝑧𝑘𝑞 |𝜋𝑘 ) = (𝜋𝑘 )𝑧𝑘𝑞 (1 − 𝜋𝑘 )1−𝒛𝑘𝑞 . (87)

Combine (86) and (87) together, we can get

𝑛1∏
𝑞=1

Bernoulli(𝑧𝑘𝑞 |𝜋𝑘 )Beta(𝜋𝑘 |
𝑎0
𝐾
,
𝑏0 (𝐾 − 1)

𝐾
)

∝ (𝜋𝑘 )
𝑎0
𝐾
+∑𝑛1

𝑞=1 𝑧𝑘𝑞−1 (1 − 𝜋𝑘 )
𝑏0 (𝐾−1)

𝐾
+𝑛1−

∑𝑛1
𝑞=1 𝑧𝑘𝑞−1

.

(88)

Therefore,

ln(𝑞(𝜋𝑘 ))
= E

𝚯\𝜋𝑘 [ln 𝑝 (𝚯, 𝒀 , 𝒀
𝑜
Ω)] + const.

= E
𝚯\𝜋𝑘 [ln 𝑝 (𝒁 |𝜋𝑘 )𝑝 (𝜋𝑘 )] + const.

= E [ln
∏𝑛1
𝑞=1 Bernoulli(𝑧𝑘𝑞 |𝜋𝑘 )Beta(𝜋𝑘 | 𝑎0

𝐾
,
𝑏0 (𝐾−1)

𝐾
)] + const.

= E [ln (𝜋𝑘 )
𝑎0
𝐾
+∑𝑛1

𝑞=1 𝑧𝑘𝑞−1 (1 − 𝜋𝑘 )
𝑏0 (𝐾−1)

𝐾
+𝑛1−

∑𝑛1
𝑞=1 𝑧𝑘𝑞−1] + const.

= E[(𝑎0
𝐾

+
𝑛1∑
𝑞=1

𝑧𝑘𝑞 − 1)ln(𝜋𝑘 ) + (𝑏0 (𝐾 − 1)
𝐾

+ 𝑛1 −
𝑛1∑
𝑞=1

𝑧𝑘𝑞 − 1)

ln(1 − 𝜋𝑘 )] + const.

= (𝑎0
𝐾

+
𝑛1∑
𝑞=1
E[𝑧𝑘𝑞] − 1)ln(𝜋𝑘 ) + (𝑏0 (𝐾 − 1)

𝐾
+ 𝑛1

−
𝑛1∑
𝑞=1
E[𝑧𝑘𝑞] − 1)ln(1 − 𝜋𝑘 ) + const..

(89)

So 𝑞(𝜋𝑘 ) satisfies a Beta distribution

𝑞(𝜋𝑘 ) ∼

Beta(𝑎0
𝐾

+
𝑛1∑
𝑞=1
E[𝑧𝑘𝑞],

𝑏0 (𝐾 − 1)
𝐾

+ 𝑛1 −
𝑛1∑
𝑞=1
E[𝑧𝑘𝑞]).

(90)

The expectation of ln(𝜋𝑘 ) is

E[ln(𝜋𝑘 )] = 𝜓 (
𝑎0
𝐾

+
𝑛1∑
𝑞=1
E[𝑧𝑘𝑞]) −𝜓 (

𝑎0 + 𝑏0 (𝐾 − 1)
𝐾

+ 𝑛1). (91)

The expectation of ln(1 − 𝜋𝑘 ) is

E[ln(1 − 𝜋𝑘 )] =

𝜓 (𝑏0 (𝐾 − 1)
𝐾

+ 𝑛1 −
𝑛1∑
𝑞=1
E[𝑧𝑘𝑞]) −𝜓 (

𝑎0 + 𝑏0 (𝐾 − 1)
𝐾

+ 𝑛1).
(92)

Note that the equations (91) and (92) are derived based on one prop-
erty of logarithm Beta function, i.e., if 𝜋𝑘 satisfies a Beta distribu-
tion Beta(𝛼1, 𝛽1) with parameters (𝛼1, 𝛽1), then the expectations of
ln(𝜋𝑘 ) and ln(1 − 𝜋𝑘 ) are
E[ln(𝜋𝑘 )] = 𝜓 (𝛼1) −𝜓 (𝛼1 + 𝛽1)
and
E[ln(1 − 𝜋𝑘 )] = 𝜓 (𝛽1) −𝜓 (𝛼1 + 𝛽1),
respectively.𝜓 (.) is the diagamma function and𝜓 (𝛼1) = Γ

′ (𝛼1)
Γ (𝛼1) .

(V) The approximate posterior distribution of 𝛾𝑠 is a Gamma distri-
bution.
Given

Γ(𝛾𝑠 |𝑐0, 𝑑0) ∝ (𝛾𝑠 )𝑐0−1𝑒−𝑑0𝛾𝑠 , (93)

and

𝑛1∏
𝑞=1

N(𝒔.𝑞 |0,
1
𝛾𝑠

𝑰𝐾 ) ∝ (𝛾𝑠 )
𝑛1𝐾

2 exp(−
∑𝑛1
𝑞=1 | |𝒔.𝑞 | |

2
2

2
𝛾𝑠 ) . (94)

Therefore,

ln(𝑞(𝛾𝑠 ))
= E

𝚯\𝛾𝑠 [ln 𝑝 (𝚯, 𝒀 , 𝒀
𝑜
Ω)] + const.

= E
𝚯\𝛾𝑠 [ln 𝑝 (𝑺 |𝛾𝑠 )𝑝 (𝛾𝑠 )] + const.

= E[ln
𝑛1∏
𝑞=1

N(𝒔.𝑞 |0,
1
𝛾𝑠
𝐼𝐾 )Γ(𝛾𝑠 |𝑐0, 𝑑0)] + const.

= E[ln(𝛾𝑠 )
𝑛1𝐾

2 +𝑐0−1exp[−𝛾𝑠 (
1
2

𝑛1∑
𝑞=1

| |𝒔.𝑞 | |22 + 𝑑0)]]

+ const.

= E[(𝑛1𝐾

2
+ 𝑐0 − 1)ln(𝛾𝑠 ) − 𝛾𝑠 (

1
2

𝑛1∑
𝑞=1

| |𝒔.𝑞 | |22 + 𝑑0)]

+ const.

= (𝑛1𝐾

2
+ 𝑐0 − 1)ln(𝛾𝑠 ) − 𝛾𝑠 (

1
2

𝑛1∑
𝑞=1
E[𝒔𝑇.𝑞𝒔.𝑞] + 𝑑0)

+ const..

(95)

The 𝑞(𝛾𝑠 ) satisfies a Gamma distribution

𝑞(𝛾𝑠 ) ∼ Γ(𝑛1𝐾

2
+ 𝑐0,

1
2

𝑛1∑
𝑞=1
E[𝒔𝑇.𝑞𝒔.𝑞] + 𝑑0), (96)

with mean

E[𝛾𝑠 ] =
𝑛1𝐾

2 + 𝑐0
1
2
∑𝑛1
𝑞=1 E[𝒔

𝑇
.𝑞𝒔.𝑞] + 𝑑0)

, (97)

where E[𝒔𝑇.𝑞𝒔.𝑞] = E[𝒔𝑇.𝑞]E[𝒔.𝑞] + trace(𝚺𝒔.𝑞 ).
(VI) The approximate posterior distribution of 𝐸𝑖, 𝑗 (for (𝑖, 𝑗) ∈ 𝛀) is
a Gaussian distribution.
Because

N(𝑌𝑜𝑖,𝑗 | (H
†𝑿 )𝑖, 𝑗 + 𝐸𝑖, 𝑗 ,

1
𝛾𝜖

)N (𝐸𝑖, 𝑗 |0,
1
𝛽𝑖, 𝑗

)

∝ exp( −𝛾𝜖
2

(𝐸2
𝑖, 𝑗 − 2𝐸𝑖, 𝑗 (𝑌𝑜𝑖,𝑗 − (H†𝑿 )𝑖, 𝑗 )

+ (𝑌𝑜𝑖,𝑗 − (H†𝑿 )𝑖, 𝑗 )2))exp(
−𝛽𝑖, 𝑗

2
𝐸2
𝑖, 𝑗 )

∝ exp(
−(𝛾𝜖 + 𝛽𝑖, 𝑗 )

2
𝐸2
𝑖, 𝑗 + 𝛾𝜖𝐸𝑖, 𝑗 (𝑌

𝑜
𝑖,𝑗 − (H†𝑿 )𝑖, 𝑗 )−

𝛾𝜖

2
(𝑌𝑜𝑖,𝑗 − (H†𝑿 )𝑖, 𝑗 )2),

(98)
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then we can derive
ln( 𝑞(𝐸𝑖, 𝑗 ))
= E

𝚯\𝐸𝑖,𝑗 [ln 𝑝 (𝚯, 𝒀 , 𝒀
𝑜
Ω)] + const.

= E
𝚯\𝐸𝑖,𝑗 [ln 𝑝 (𝒀

𝑜
Ω |𝑫, 𝑺,𝒁 , 𝑬 , 𝛾𝜖 )𝑝 (𝐸𝑖, 𝑗 )] + const.

= E[ln N(𝑌𝑜𝑖,𝑗 | (H
†𝑿 )𝑖, 𝑗 + 𝐸𝑖, 𝑗 ,

1
𝛾𝜖

)N (𝐸𝑖, 𝑗 |0,
1
𝛽𝑖, 𝑗

)] + const.

= E[
−(𝛾𝜖 + 𝛽𝑖, 𝑗 )

2
𝐸2
𝑖, 𝑗 + 𝛾𝜖𝐸𝑖, 𝑗 (𝑌

𝑜
𝑖,𝑗 − (H†𝑋 )𝑖, 𝑗 )

− 𝛾𝜖

2
(𝑌𝑜𝑖,𝑗 − (H†𝑿 )𝑖, 𝑗 )2] + const.

=
−(E[𝛾𝜖 ] + E[𝛽𝑖, 𝑗 ])

2
𝐸2
𝑖, 𝑗 + E[𝛾𝜖 ]𝐸𝑖, 𝑗 (𝑌

𝑜
𝑖,𝑗 − E[(H

†𝑿 )𝑖, 𝑗 ])

− E[𝛾𝜖
2
(𝑌𝑜𝑖,𝑗 − (H†𝑿 )𝑖, 𝑗 )2] + const..

(99)

The above derivation reveals that 𝑞(𝐸𝑖, 𝑗 ) is a Gaussian distribution
with mean E[𝐸𝑖, 𝑗 ] and covariance 𝚺𝐸𝑖,𝑗 , i.e.,

𝑞(𝐸𝑖, 𝑗 ) ∼ N (E[𝐸𝑖, 𝑗 ], 𝚺𝐸𝑖,𝑗 ), (100)

where
E[𝐸𝑖, 𝑗 ] = E[𝛾𝜖 ]Σ𝐸𝑖,𝑗 (𝑌

𝑜
𝑖,𝑗 − E[(H

†𝑿 )𝑖, 𝑗 ]), (101)

𝚺𝐸𝑖,𝑗 =
1

E[𝛾𝜖 ] + E[𝛽𝑖, 𝑗 ]
. (102)

The required expectation is

E[(H†𝑿 )𝑖, 𝑗 ] =
1
^ 𝑗

∑
(𝑢,𝑣) ∈Ψ𝑖,𝑗

[E[𝒅𝑢.] (E[𝒔.𝑣] ⊙ E[𝒛.𝑣])] . (103)

(VII) The approximate posterior distribution of 𝛽𝑖, 𝑗 (for (𝑖, 𝑗) ∈ 𝛀)
is a Gamma distribution.
Because

Γ(𝛽𝑖, 𝑗 |𝑔0, ℎ0) ∝ (𝛽𝑖, 𝑗 )𝑔0−1𝑒−ℎ0𝛽𝑖,𝑗 , (104)

and

N(𝐸𝑖, 𝑗 |0,
1
𝛽𝑖, 𝑗

) ∝ (𝛽𝑖, 𝑗 )
1
2 exp(

−𝛽𝑖, 𝑗
2

𝐸2
𝑖, 𝑗 ). (105)

Combine (104) and (105) together,

N(𝐸𝑖, 𝑗 |0,
1
𝛽𝑖, 𝑗

)Γ(𝛽𝑖, 𝑗 |𝑔0, ℎ0)

∝ (𝛽𝑖, 𝑗 )
1
2+𝑔0−1exp(−𝛽𝑖, 𝑗 (

1
2
𝐸2
𝑖, 𝑗 + ℎ0)) .

(106)

Therefore,

ln(𝑞(𝛽𝑖, 𝑗 ))
= E

𝚯\𝛽𝑖,𝑗 [ln 𝑝 (𝚯, 𝒀 , 𝒀
𝑜
Ω)] + const.

= E
𝚯\𝛽𝑖,𝑗 [ln 𝑝 (𝐸𝑖, 𝑗 |𝛽𝑖, 𝑗 )𝑝 (𝛽𝑖, 𝑗 )] + const.

= E[ln N(𝐸𝑖, 𝑗 |0,
1
𝛽𝑖, 𝑗

)Γ(𝛽𝑖, 𝑗 |𝑔0, ℎ0)] + const.

= ( 1
2
+ 𝑔0 − 1)ln(𝛽𝑖, 𝑗 ) − 𝛽𝑖, 𝑗 (

1
2
E[𝐸2

𝑖, 𝑗 ] + ℎ0) + const.,

(107)

where E[𝐸2
𝑖, 𝑗
] = E[𝐸𝑖, 𝑗 ]2 + 𝚺𝐸𝑖,𝑗 . The equation (107) indicates that

𝛽𝑖, 𝑗 follows a Gamma distribution

𝑞(𝛽𝑖, 𝑗 ) ∼ Γ( 1
2
+ 𝑔0,

1
2
E[𝐸2

𝑖, 𝑗 ] + ℎ0), (108)

with mean

E[𝛽𝑖, 𝑗 ] =
1
2 + 𝑔0

1
2E[𝐸2

𝑖, 𝑗
] + ℎ0

, (109)

where E[𝐸2
𝑖, 𝑗
] = E[𝐸𝑖, 𝑗 ]2 + 𝚺𝐸𝑖,𝑗 .

(VI) The approximate posterior distribution of 𝛾𝜖 is a Gamma distri-
bution.
Note that

Γ(𝛾𝜖 |𝑒0, 𝑓0) ∝ (𝛾𝜖 )𝑒0−1𝑒−𝑓0𝛾𝜖 , (110)

and ∏
(𝑖, 𝑗) ∈Ω

N(𝑌𝑜𝑖,𝑗 | (H
†𝑿 )𝑖, 𝑗 + 𝐸𝑖, 𝑗 ,

1
𝛾𝜖

)

∝ (𝛾𝜖 )
|Ω |
2 exp( −𝛾𝜖

2
| |𝒀𝑜 − 𝑃Ω (H†𝑿 + 𝑬) | |2𝐹 ),

(111)

where |𝛀 | is the cadinality of 𝛀.
Therefore,

ln(𝑞(𝛾𝜖 ))
= E

𝚯\𝛾𝜖 [ln 𝑝 (𝚯, 𝒀 , 𝒀
𝑜
Ω)] + const.

= E
𝚯\𝛾𝜖 [ln 𝑝 (𝒀

𝑜
Ω |𝑫, 𝑺,𝒁 , 𝑬 , 𝛾𝜖 )𝑝 (𝛾𝜖 )] + const.

= E[ln
∏

(𝑖, 𝑗) ∈Ω
N(𝑌𝑜𝑖,𝑗 | (H

†𝑿 )𝑖, 𝑗 + 𝐸𝑖, 𝑗 ,
1
𝛾𝜖

)Γ(𝛾𝜖 |𝑒0, 𝑓0)] + const.

= ( |Ω |
2

+ 𝑒0 − 1)ln(𝛾𝜖 ) +
−𝛾𝜖

2
E[| |𝒀𝑜 − 𝑃Ω (H†𝑿 + 𝑬) | |2𝐹 ] − 𝑓0𝛾𝜖 + const.

= ( |Ω |
2

+ 𝑒0 − 1)ln(𝛾𝜖 ) +
−𝛾𝜖

2

∑
(𝑖, 𝑗) ∈Ω

E[(𝑌𝑜𝑖,𝑗 − 𝐸𝑖, 𝑗

− 1
^ 𝑗

∑
(𝑢,𝑣) ∈Ψ𝑖,𝑗

[𝒅𝑢. (𝒔.𝑣 ⊙ 𝒛.𝑣)])2] − 𝑓0𝛾𝜖 + const.,

(112)

where

E[(𝑌𝑜𝑖,𝑗 − 𝐸𝑖, 𝑗 −
1
^ 𝑗

∑
(𝑢,𝑣) ∈Ψ𝑖,𝑗

[𝒅𝑢. (𝒔.𝑣 ⊙ 𝒛.𝑣)])2]

= 𝑌𝑜𝑖,𝑗
2 − 2𝑌𝑜𝑖,𝑗E[𝐸𝑖, 𝑗 ] + E[𝐸

2
𝑖, 𝑗 ] − 2(𝑌𝑜𝑖,𝑗 − E[𝐸𝑖, 𝑗 ])

1
^ 𝑗

∑
(𝑢,𝑣) ∈Ψ𝑖,𝑗

[E[𝒅𝑢.] (E[𝒔.𝑣] ⊙ [E[𝒛.𝑣])] +
1
^2
𝑗

E[(
∑

(𝑢,𝑣) ∈Ψ𝑖,𝑗
𝒅𝑢. (𝒔.𝑣 ⊙ 𝒛.𝑣))2]

(113)
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=
1
^2
𝑗

∑
(𝑝,𝑞) ∈Ψ𝑖,𝑗

trace(E[𝒅𝑝.]𝑇E[𝒅𝑝.] (E[𝒔.𝑞]E[𝒔.𝑞]𝑇 ⊙ 𝚺𝒛.𝑞 ))

+ 1
^2
𝑗

∑
(𝑝,𝑞) ∈Ψ𝑖,𝑗

trace(E[𝒅𝑝.]𝑇E[𝒅𝑝.] (E[𝒛.𝑞]E[𝒛.𝑞]𝑇 ⊙ 𝚺𝒔.𝑞 ))

+ 1
^2
𝑗

∑
(𝑝,𝑞) ∈Ψ𝑖,𝑗

trace(E[𝒅𝑝.]𝑇E[𝒅𝑝.] (𝚺𝒛.𝑞 ⊙ 𝚺𝒔.𝑞 ))

+ 1
^2
𝑗

∑
(𝑝,𝑞) ∈Ψ𝑖,𝑗

trace(𝚺𝒅𝑝. (E[𝒔.𝑞]E[𝒔.𝑞]
𝑇 ⊙ 𝚺𝒛.𝑞 ))

+ 1
^2
𝑗

∑
(𝑝,𝑞) ∈Ψ𝑖,𝑗

trace(𝚺𝒅𝑝. (E[𝒛.𝑞]E[𝒛.𝑞]
𝑇 ⊙ 𝚺𝒔.𝑞 ))

+ 1
^2
𝑗

∑
(𝑝,𝑞) ∈Ψ𝑖,𝑗

trace(𝚺𝒅𝑝. (𝚺𝒛.𝑞 ⊙ 𝚺𝒔.𝑞 )) + Σ𝐸𝑖,𝑗

+ 1
^2
𝑗

∑
(𝑝,𝑞) ∈Ψ𝑖,𝑗

trace(𝚺𝒅𝑝. (E[𝒔.𝑞]E[𝒔.𝑞]
𝑇 ⊙ E[𝒛.𝑞]E[𝒛.𝑞]𝑇 ))

+ (𝑌𝑜𝑖,𝑗 − E[𝐸𝑖, 𝑗 ] −
1
^ 𝑗

∑
(𝑢,𝑣) ∈Ψ𝑖,𝑗

[E[𝒅𝑢.] (E[𝒔.𝑣] ⊙ E[𝒛.𝑣])])2 .

(114)

The equation (112) indicates that 𝛾𝜖 follows a Gamma distribution

𝑞(𝛾𝜖 ) ∼ Γ( |𝛀 |
2

+ 𝑒0,
1
2
E[| |𝒀𝑜 − 𝑃Ω (H†𝑿 + 𝑬) | |2𝐹 ] + 𝑓0), (115)

with mean

E[𝛾𝜖 ] =
|𝛀 |
2 + 𝑒0

1
2E[| |𝒀𝑜 − 𝑃Ω (H†𝑿 + 𝑬) | |2

𝐹
] + 𝑓0

. (116)

A.4 Computational Complexity
The computational complexities for Hankel operation and inverse
Hankel operation are O(𝑚𝑛2𝑛1). The computational complexity for
updating 𝐷 is O(^𝑚𝑛2𝑛1𝐾2 +𝑚𝑛2𝐾3), and the complexity for up-
dating 𝑆 is O(^𝑚𝑛2𝑛1𝐾2 +𝑛1𝐾3). The computational complexity for
updating 𝑍 is O(^𝑚𝑛2𝑛1𝐾4+𝐾𝑛1) and the computational complexity
for updating 𝛾𝜖 is O(^𝑚𝑛2𝑛1𝐾3 +𝑚𝑛2𝑛1𝐾). The computational com-
plexities for 𝜋𝑘 , 𝛾𝑠 , 𝐸, and 𝛽 are O(𝐾𝑛1), O(𝐾2𝑛1), O(𝑚𝑛2𝑛1𝐾)
and O(𝑚𝑛), respectively. The final complexity is O(^𝑚𝑛2𝑛1𝐾4 +
𝑚𝑛2𝐾3 + 𝑛1𝐾3 +𝑚𝑛2𝑛1𝐾). The complexity scales at most linearly
with respective to the dimension of the Hankel matrix.

A.5 Predictive mean and predictive variance
We can derive the predictive mean as follows:

E[𝑌𝑖, 𝑗 ] =
∫

𝑝 (𝑌𝑖, 𝑗 |𝒀𝑜Ω)𝑌𝑖, 𝑗𝑑𝑌𝑖, 𝑗

=

∫
(
∫

𝑝 (𝑌𝑖, 𝑗 |𝜽 )𝑝 (𝜽 |𝒀𝑜Ω)𝑑𝜽 )𝑌𝑖, 𝑗𝑑𝑌𝑖, 𝑗

=

∫
(
∫

𝑝 (𝑌𝑖, 𝑗 |𝜽 )𝑌𝑖, 𝑗𝑑𝑌𝑖, 𝑗 )𝑝 (𝜽 |𝒀𝑜Ω)𝑑𝜽

=

∫
E𝑝 (𝑌𝑖,𝑗 |𝜽 ) [𝑌𝑖, 𝑗 ]𝑝 (𝜽 |𝒀

𝑜
Ω)𝑑𝜽

=

∫
𝑓 𝜽 (𝑌𝑖, 𝑗 )𝑝 (𝜽 |𝒀𝑜Ω)𝑑𝜽

≈ 1
𝐿

𝑙=𝐿∑
𝑙=1

𝑓 𝜽𝑙 (𝑌𝑖, 𝑗 ) 𝜽𝑙 ∼ 𝑞(𝜽 |𝒀𝑜Ω) .

(117)

The predictive mean for 𝑌𝑖, 𝑗 is derived by taking the expectation
over the probability 𝑝 (𝑌𝑖, 𝑗 |𝒀𝑜Ω). 𝜽 = {𝑫,𝒁 , 𝑺, 𝛾𝜖 }. E𝑝 (𝑌𝑖,𝑗 |𝜽 ) [𝑌𝑖, 𝑗 ] is
the expectation of 𝑌𝑖, 𝑗 over 𝑝 (𝑌𝑖, 𝑗 |𝜽 ). The integration in last second
step of equation (117) is difficult to obtain, thus 𝜽𝑙 is sampled from
𝑞(𝜽 |𝒀𝑜Ω) and Monte Carlo integration is employed to approximately
compute it.

To derive the predictive variance, we compute E[𝑌 2
𝑖, 𝑗
] as follows:

E𝑝 (𝑌𝑖,𝑗 |𝒀𝑜Ω ) [𝑌
2
𝑖, 𝑗 ]

=

∫
𝑝 (𝑌𝑖, 𝑗 |𝒀𝑜Ω)𝑌

2
𝑖, 𝑗𝑑𝑌𝑖, 𝑗

=

∫
(
∫

𝑝 (𝑌𝑖, 𝑗 |𝜽 )𝑝 (𝜽 |𝒀𝑜Ω)𝑑𝜽 )𝑌
2
𝑖, 𝑗𝑑𝑌𝑖, 𝑗

=

∫
(
∫

𝑝 (𝑌𝑖, 𝑗 |𝜽 )𝑌 2
𝑖, 𝑗𝑑𝑌𝑖, 𝑗 )𝑝 (𝜽 |𝒀

𝑜
Ω)𝑑𝜽

=

∫
(E𝑝 (𝑌𝑖,𝑗 |𝜽 ) [𝑌

2
𝑖, 𝑗 ])𝑝 (𝜽 |𝒀

𝑜
Ω)𝑑𝜽

=

∫
(Var𝑝 (𝑌𝑖,𝑗 |𝜽 ) [𝑌𝑖, 𝑗 ] + E

2
𝑝 (𝑌𝑖,𝑗 |𝜽 ) [𝑌𝑖, 𝑗 ]))𝑝 (𝜽 |𝒀

𝑜
Ω)𝑑𝜽

=

∫
( 1
𝛾𝜖

+ 𝑓 𝜽 (𝑌𝑖, 𝑗 )2)𝑝 (𝜽 |𝒀𝑜Ω)𝑑𝜽

≈ 1
𝐿

𝑙=𝐿∑
𝑙=1

1
𝛾𝜖

+ 1
𝐿

𝑙=𝐿∑
𝑙=1

𝑓 𝜽𝑙 (𝑌𝑖, 𝑗 )2 𝜽𝑙 ∼ 𝑞(𝜽 |𝒀𝑜Ω).

(118)

By plugging (117) and (118) into equation (46), the predictive vari-
ance can be derived in (46).

A.6 Additional Experiments
A.6.1 The impact of distributions of bad data and noise. In our
problem setup, the bad data is generated from uniform distribution
and the noise is generated from Gaussian distribution. In this section,
we also study the recovery accuracy when the bad data and noise are
drawn from different distributions. We consider M1 with 10 % B1 to
compare with Fig. 7(d). For the bad data generation, we consider the
Laplace distribution with mean 1.5 and standard deviation 0.5. We
also consider the Gaussian distribution with mean 1.5 and standard
deviation 0.5. For the noise generation, we consider the uniform
distribution in the range from 0 to 0.006. We also consider the Laplace
distribution with mean 0 and standard deviation 0.08. The recovery
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performance is shown in Fig. 11. One can see from Fig. 11 that our
proposed method still performs better than the baseline methods. The
results are comparable to Fig. 7(d).

(a) B1 from Laplace distribution (b) B1 from Gaussian distribution

(c) Noise from uniform distribution (d) Noise from Laplace distribution

Fig. 11. The recovery results with M1 plus 10% B1 with different bad
data or noise distributions. (a)-(b) show the recovery results with bad
data generated from different distributions. (c)-(d) show the recovery
results with noise generated from different distributions.

Fig. 12. The measurements of voltage angle [Hao et al. 2018]

A.6.2 Performance on practical PMU phasor angle dataset.
The corresponding PMU angle data of Fig. 1 is shown in Fig. 12.
Two extra case studies are considered to verify the effectiveness of
our algorithm on the phasor angle dataset. The parameter settings are
the same with Case 1 and 2 except that 𝑛2 = 20 and 𝑓0 = 10−5.

• Case 3: 15% data are removed following Mode M2, and 15%
observations contain Mode B2 bad data. Each bad entry is
randomly selected from (1,1.5).

• Case 4: 15% data are removed following Mode M3, and 10%
observations contain Mode B1 bad data. Each bad entry is
randomly selected from (1,1.5).

Our method can also recover the data accurately in both cases
for the angle data. The NEE and WNEE for Case 3 are 6.5 × 10−4

and 5.3 × 10−4, respectively. The NEE and WNEE for Case 4 are

1.3 × 10−3 and 1.1 × 10−3, respectively. Fig. 13-Fig. 14 show the
recovery performance of Case 3 and 4. Similar to the magnitude data,
at time 2.3 seconds when the event happens, the uncertainty index
increases because the method is less confident about the estimation
at that time instant.
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(a) (b) (c) (d)

Fig. 13. The recovery performance on 15% M2 missing data and 15% B2 bad data on the angle data. (a) the observed data, (b) the estimated
data, (c) the estimated data in one channel with the confidence interval, (d) the corresponding uncertainty index for one channel in (c)

(a) (b) (c) (d)

Fig. 14. The recovery performance on 15% M3 missing data and 10% B1 bad data on the angle data. (a) the observed data, (b) the estimated
data, (c) the estimated data in one channel with the confidence interval, (d) the corresponding uncertainty index for one channel in (c)
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