
1

Fast Small Signal Stability Assessment using Deep
Convolutional Neural Networks

Tetiana Bogodorova, Member, IEEE, Denis Osipov, Member, IEEE, and Luigi Vanfretti, Senior Member, IEEE

Abstract—The paper proposes an approach for fast small
signal stability assessment on a short data window using deep
learning algorithms. This paper shows that the proposed deep
convolutional neural networks (CNNs) are faster than traditional
methods (i.e. Prony’s method). The evaluated CNNs are fully
convolutional network (FCN), CNN with sub-sampling steps
performed through max pooling (Time LeNet), time CNN, fully
convolutional network with attention mechanism (Encoder), and
CNN with a shortcut residual connection (ResNet). The proposed
approach is validated on different synthetic measurement data
sets generated from the IEEE 9-bus system that is used as a
reference, and further applied to a 769-bus system representing
a region in the U. S. Eastern Interconnection. We show that
precision and recall are more informative metrics than accuracy
for the reliability of the stability assessment process using the
proposed methodology. In addition, the method is compared
to classical Prony method, training time and the classification
performance time is evaluated.

Index Terms—Convolutional neural networks, deep learning,
small signal stability assessment, time-series classification.

I. INTRODUCTION

APPLICATIONS of Deep Learning (DL), a special class
of Machine Learning (ML) techniques that employ multi-

layered neural networks (NNs) to extract information from raw
data, have recently emerged in power systems analysis. The
typical applications of DL are classification of events from
Phasor Measurement Unit (PMU) data [1], voltage stability
[2], [3], and dynamic security assessment [4], among others.

To maintain the small signal stability (SSS) of a power
system, the authors in [5] address the problem of param-
eter optimization for power system stabilizers (PSSs). The
proposed approach employs a NN with Levenberg-Marquardt
optimization, showing good performance. Another example of
the successful applications of NNs is presented in [6], where
optimal PSS parameters are determined for PSSs that do not
provide enough damping for the system. Meanwhile, the work
of [7] explores optimal and robust power system stabilizer
design for multi-machine power systems. An heuristic search
optimization that is known as a cuckoo search optimization
is proposed to obtain PSS parameters that ensure SSS of a
particular power system. Since heuristic algorithms empiri-
cally showed a convergence close to the global optimum, the
work of [8] proposed to use such algorithms for coordinated
tuning of PSS parameters too. In [9] the authors propose to
employ the decision trees at each generation bus to evaluate
the interarea oscillations damping. The method is of low
computational burden and robust to loss of information.

As it can be noticed, most of the methods in the literature
are concerned with the improvement of the SSS of a system

after such instability has been detected. However, limited
attention [10] has been paid to the automation of fast instability
detection using a time window shorter than classical methods
(i.e. Prony method [11], [12]). In contrast to the approach
proposed in this work, other methods require meticulous and
cumbersome data preparation for training to ensure good
performance of the proposed machine learning algorithms.
In this paper the deep convolutional neural networks with
different architectures are studied to solve the small signal
stability assessment (SSSA) task. These algorithms allow for
extremely fast decision making after being adequately trained
[13]. In addition, the proposed approach demonstrates good
performance under relatively short input data lengths and can
perform classification online.

Because deep learning is a novel research area, the applica-
tions for power system problems are limited, but are expected
to grow [14]. Another reason for the limited application is
the requirement of careful data generation for training, which
is a challenging task in the case of working with large
power systems [15], [16]. First, this task demands considerable
computational power. Second, substantial effort is needed to
design of numerical experiments together with simulation data
cleaning and curating before training of the deep learning
algorithms takes place. If irrelevant or invalid data is preserved
in the training data set, the trained deep learning model may
learn inappropriate rules and patterns in the data, that corrupt
the performance of the algorithm.

In this paper we propose an approach for SSSA using
novel deep convolutional neural network architectures adapted
for time series data classification, employing data preparation
techniques for training, and validating the approach on the
large 769-bus system. In this approach, the classes are the
system conditions, i.e. stable or unstable. Thus, the main
contributions of this paper are:

1) To propose a novel fast approach employing FCN [17],
Time LeNet [18], Time CNN [19], Encoder [20], ResNet
[17] for SSSA. The proposed system extracts patterns in
power system data that include both spatial and temporal
dependencies that are used for SSSA, which is a novel
approach for SSS analysis. We show that CNN is capable
to perform faster than traditional Prony.

2) To show the importance of using precision and recall
metrics (illustrated through case studies), how to contrast
these metrics and to explain how they influence the
trained model’s evaluation.

3) To provide a comparison of the performance of trained
models that use different signal types such as voltage
phasor magnitude, voltage phasor angle, with and without



2

Fig. 1. Overview of the proposed method.

Gaussian noise.
4) To evaluate how the length of the input signal influences

model performance for each deep neural network studied,
and compare it with the classical Prony method.

The reminder of the paper is organized as follows. Section II
introduces the proposed method. Section III elaborates each of
five algorithms applied for the small signal assessment task.
Section IV presents the assessment of the proposed method.
Finally, Section V concludes this work.

II. PROPOSED METHOD

A. Overview of the framework
The proposed method consists of two major processes: off-

line learning and online assessment. The former consists of
three phases: training, validation and testing, shown in Figure
1. In the training phase, the ML model learns from labeled data
by tuning its parameters. The model training process involves
iterations where the output of the algorithm and the true label
are compared using a performance metric, e.g. accuracy. The
validation phase includes tuning the hyperparameters of the
classifier (internal parameters of the chosen CNN architecture).
The testing phase involves exposing the trained CNN to unseen
sets of data to verify if it has been trained and validated
correctly. Once the model is trained, the online assessment
process exploits the trained CNN model for SSS assessment.
This process includes the deployment of the trained model at
the control center with the online collection of the measure-
ments and evaluation of CNN’s output.

B. Data Preprocessing
The following data preprocessing steps are performed for

the voltage angle signal at each generator bus: a) subtraction
of the center of angle that is defined as the inertia weighted
average of all rotor angles [21]; b) unwrapping; c) subtracting
the initial value to obtain a deviation signal; d) detrending. Let
us present the input data as x = [x1, x2, ..., xT ], where T is
the number of time-series signals. For the voltage magnitude
of positive sequence data, the deviations of the voltage signals
are presented as follows:

xt = [V1,t − Vi,0, V2,t − Vi,0, ..., Vi,t − Vi,0, VN,t − VN,0] (1)

where N is the total no. of buses, Vi,t is the voltage magnitude
at bus i of length t, and Vi,0 the initial value of voltage for

each bus i. In addition, to test the ability of the deep learning
algorithms to learn from noisy data, 1% Gaussian noise has
been added to the simulated signals that are used as pseudo-
measurements in this work.

In the case of the voltage angle, the data is presented as
a set of vectors of x = [∠θ1,t,∠θ2,t, ...,∠θN,t]. Then, then
angle unwraping is performed by computing:

∠θj,i = ∠θj,i + (2πk) if (∠θj,i − ∠θj,i−1) ≥ π (2)

where j is the sample number in the dataset, i the identifier
of a measurement at a particular moment in time, and k is
updated after every large jump in the phase value [22].

It is assumed that measurements are made at key system
locations where PMU are installed or simulated using the
equivalent system model: generator terminal buses at major
power plants, major transmission level substations and bound-
ary buses of tie-lines between the study and neighbouring
systems.

C. Offline Training
For the proposed deep learning classifier to successfully

perform online, it has to be trained offline.
The collected data is divided into 3 parcels: (1) training,

validation and testing data (see Section II). The split is usually
done with 2

3 of data used for training, and 1
3 of data used for

testing. In case when there is a lack of data, k-fold cross
validation is employed to generate a validation set of data,
where k defines a number of groups the data is divided into,
meaning that k-th part of the data will be left for validation of
the trained model. Thus, the model is trained on k − 1 folds
of data, and evaluated on the k-th subset of data.

If the training set is presented as a collection of values
{x(n), y(n)}Nn=1, the objective of the training is to find the
parameters of a model (e.g. W, b in equations (7)) when
minimizing the categorical cross entropy error function LCE ,
i.e.,

LCE = min

N∑
n=1

C∑
c=1

yc,(n)log(ŷc,(n)) (3)

where ŷ(n) is the classification result of the input values x(n)
for the trained model, C the number of classes, and N the
number of training cases.

The classification is performed according to:

y(n) =

{
0 (Stable), if ∀ζi > 3%

1 (Unstable), if ∃ζi ≤ 3%
(4)

where ζi is the damping ratio of the i-th oscillatory mode,
with i = 1 . . .m for a power system with m modes.

D. Online Assessment
For small signal assessment, the online assessment is per-

formed when the trained model is employed to classify the
state of the system using measurements as input (e.g., PMU
data) that contains pre-fault measurements, the measurements
during the contingency itself, and post-contingency measure-
ments. The set of measurements - voltage magnitude or voltage
angle of the length T , the output h is evaluated and passed
through the softmax function to make a decision on the



3

Fig. 2. Fully convolutional neural network architecture

ŷ ∈ (0, 1) for each class. The parameter of the softmax
function δ = 0.5 defines the boundary between the classes.
Thus, the prediction of the class is made in favour of the
ŷ > δ.

E. Evaluation Metrics
The training of the CNNs has been performed using ac-

curacy metric, while precision and recall were measured on
testing data.

Accuracy. This metric defines the general performance of
the algorithm over all classes.

accuracy =
NTP +NTN

NTP +NFP +NTN +NFN
(5)

where NTP is the total of unstable cases (positive class cor-
responds to unstable labeling) correctly classified as unstable;
NTN is the total of stable cases (negative class by choice of
the authors) correctly classified; NFP is the number of stable
cases misclassified as unstable; and NFN is the number of
unstable cases misclassified as stable.

Precision and Recall. Precision relates accuracy of the
model in classifying the data as positive sample. Recall
evaluates the number of correct positive predictions over all
positive predictions that are relevant.

precision =
NTP

NTP +NFP
; recall =

NTP

NTP +NFN
(6)

III. DEEP CONVOLUTIONAL NEURAL NETWORKS

In this section, the Deep CNN architectures that are used
for time-series data classification are presented.

A. Fully convolutional neural network (FCN)
The architecture of FCN [17] is presented in Fig. 2. The

basic convolution block can be described by equations (7):

y = W⊗ x + b
s = BN(y)

h = ReLU(s)

(7)

where ⊗ - the convolution operator, BN is the batch normal-
ization function, ReLU is the rectified linear unit function.

Meanwhile, the objective function is a categorical cross
entropy to be minimized. The Adam optimizer is a stochastic
gradient descent method.

B. Time LeNet
Time-LeNet architecture [19] (Fig. 3) includes two convo-

lutional hidden layers that are followed by a pooling layer,

Fig. 3. Time-LeNet architecture

Fig. 4. Time CNN neural network architecture

a feature layer, and an output layer. The Time-LeNet NN is
described by

yr(t) = ReLU(Wr ⊗ x(t) + br)

sr(t) =MP (yr((t− 1)l + 1), yr((t− 1)l + 2), ..., yr(tl))

h = ReLU(Z ∗ s + b)
(8)

where ∗ denotes dot product, MP denotes max pooling
operation, r is the number of filters (feature maps), l is the
length of a convolution window.

The objective function is a loss function that is defined as
categorical cross entropy to be minimized. The optimizer is
Adam (see Section III-A) with learning rate equal to 0.01,
and decay equal to 0.005.

C. Time-CNN
Time-CNN [19] shown in Fig. 4 is a traditional deep CNN,

but with the output consisting of a fully convolutional layer
and using a local average pooling operation instead of max
pooling operation in the Time-LeNet architecture (Fig. 8). The
Time-CNN can be described by

yr(t) = S(Wr ⊗ x(t) + br)

sr(t) = AP (yr((t− 1)l + 1), yr((t− 1)l + 2), ..., yr(tl))
(9)

where S is the sigmoid activation function, AP is the average
pooling operation. The objective function is a mean squared
error to be minimized. The optimizer is Adam with learning
rate equal to 0.001.

D. Encoder
The Encoder (Fig. 5) [20] is a hybrid deep CNN architecture

that is similar to FCN with the difference in one layer: the GAP
layer is replaced with an attention layer. This architecture is
larger in number of feature maps in each convolutional layer
than Time-LeNet or Time-CNN. The operations within the
hidden layers are presented in the set of the equations (10).

h1 = Convk1(x); h2 = Convk2(h1)

x = Convk3(h2)

y = ATN(x[:, :, : 256] ∗ S(x[:, :, 256 :]))

z = W⊗ y + b; s = IN(z); u = S(s)

(10)

where IN is an instance normalization operation, k1, k2, k3
are the number of output filters equal to 128, 256, and 512,



4

Fig. 5. Encoder neural network architecture

respectively; ATN is the attention mechanism, and S is the
softmax function.

The attention ATN(·), is implemented by splitting the data
in equal parcels. Softmax function is applied to one parcel,
and then two parcels are multiplied. Thus, each element of
the softmax-treated parcel serves as a weight for another one.
This mechanism enables the model to learn which parts of the
time series are important for classification.

The objective function is a loss function that is defined as
categorical cross entropy to be minimized. The optimizer is
Adam with the learning rate equal to 1× 10−6.

E. Residual Neural Network (ResNet)
Finally, the last NN architecture used in this work is the

Residual Neural Network (ResNet) [17], which is a deep NN
with 11 layers among each 9 layers that are convolutional
(see Fig. 6). The main characteristic of this type of network
is the shortcut residual connection between consecutive con-
volutional layers. Thus, each colvolutional layer characterized
by the number of filters k, as shown by

h1 = Convk1
(x); h2 = Convk2

(h1); h3 = Convk3
(h2)

y = h3 + x

ĥ = ReLU(y)
(11)

where k1 = 64, k2 = 128, k3 = 128 is the number of filters
in each layer. The final layer includes both global average
pooling and softmax operations.

IV. CASE STUDIES AND ANALYSIS

The following case studies were conducted to employ the
proposed CNNs of different architectures and show their
superiority on shorter data window than required for Prony
algorithm. To determine if the deep CNNs are capable to
perform well, several approaches to prepare training and
testing data were used. In order to limit the possible space of
states that define the dynamics to be learnt and, therefore, to
verify the capability of each deep CNNs architecture for SSSA,
the IEEE 9-bus system is chosen for proof-of-concept. Using
the IEEE 9-bus system, seven case studies were developed as
shown in Table I.

The labeling of the data is done using modal analysis of
the power system (see Section II-C). The simulation data
was obtained using the approach for realistic contingency
scenario generation in [16]. In addition, the shifting of the
measurements window to include the pre-contingency interval
is performed to observe if the data during steady state opera-
tion influences the deep neural networks’ training.

TABLE I
CASE STUDY SETUP. IEEE 9-BUS SYSTEM

Case Study Data Preprocessing Noise Prefault interval
1 ∠θ Yes No 1 sec
2 ∠θ Yes 1% Gaussian 1 sec
3 V No No No
4 V No No 0.5 sec
5 V No No 1 sec
6 V Yes No 1 sec
7 V Yes 1% Gaussian 1 sec

where ∠θ - voltage angle, V - voltage magnitude. For all the cases the data
are generated using [16],the data length is 10 sec.

The number of cases of stable and unstable scenarios were
balanced to allow the deep CNNs to learn both classes with
the same importance. The evaluation metrics are accuracy,
precision, and recall. The two latter metrics are not typical
for the evaluation, however, we show that in some cases they
are decisive while accuracy give incomplete information.

After analyzing the performance achieved by the CNNs for
the IEEE 9-bus system, the measurements of the particular
type that correspond to the best performance are selected
for the further training and tuning using a large-scale power
system model, i.e. a 769-bus system of a region in the U.S.
Eastern Interconnection. For this system the time-series data
was labeled by performing mode estimation using Prony
method [11] to replicate scenarios when the model of the
system is not available. However, the data window for the
proposed CNNs approach for SSSA is much shorter than for
Prony analysis.

A. Proof of Concept: Training on voltage angle data from the
IEEE 9-bus system

The data reporting rate is 60 times per second. The training
is done on input data of size 4,498 data parcels (corresponding
to the same number of different nonlinear simulations, i.e.
4,498), each of a 10 sec length. The experiment settings are
presented in Table I, the results of the training for each case
study are summarized in Table II.

1) Case Study 1: Voltage angle data without noise, with a
pre-contingency interval

In this case study the generated data does not contain
noise, but includes a steady state interval of 1 sec before the
contingency occurs. The results of training the algorithms are
marked as Case study 1 in Table II.

For all the CNN models recall is lower than accuracy or
precision. Lower recall than precision means that the number
of false negative examples (unstable cases misclassified as
stable) is bigger than the number of false positives (stable
cases misclassified as unstable). Thus, we consider that the
better CNN model is the one with higher recall, meaning
less misclassified unstable cases. For the system operator the



5

Fig. 6. ResNet neural network architecture

TABLE II
PERFORMANCE EVALUATION OF DEEP CONVOLUTIONAL NNS. IEEE 9-BUS SYSTEM

Case Study Metrics FCN Time-LeNet Time-CNN Encoder ResNet
1

Accuracy/ Precision/ Recall

0.993 / 0.991 / 0.977 0.993 / 0.991 / 0.977 0.989 / 0.992 / 0.971 0.990 / 0.992 / 0.973 0.992 / 0.994 / 0.978
2 0.992 / 0.994 / 0.978 0.992 / 0.994 / 0.978 0.990 / 0.992 / 0.975 0.990 / 0.991 / 0.973 0.990 / 0.988 / 0.977
3 0.778 / 0.781 / 0.815 0.989 / 0.992 / 0.971 0.986 / 0.989 / 0.963 0.989 / 0.992 / 0.972 0.991 / 0.991 / 0.979
4 0.989 / 0.992 / 0.971 0.989 / 0.992 / 0.971 0.986 / 0.989 / 0.963 0.989 / 0.992 / 0.972 0.450 / 0.390 / 0.576
5 0.989 / 0.992 / 0.971 0.427 / 0.142 / 0.333 0.986 / 0.989 / 0.963 0.989 / 0.992 / 0.972 0.988 / 0.991 / 0.970
6 0.989 / 0.992 / 0.971 0.989 / 0.992 / 0.972 0.987 / 0.989 / 0.963 0.989 / 0.991 / 0.972 0.989 / 0.992 / 0.971
7 0.985 / 0.984 / 0.965 0.987 / 0.986 / 0.970 0.985 / 0.989 / 0.963 0.989 / 0.992 / 0.972 0.986 / 0.986 / 0.967

minimization (preferably zero) of the misclassified unstable
cases is crucial to trust the classifier’s output.To summarize,
the best training results considering all applied metrics are
achieved utilizing FCN, ResNet NNs, and Time-LeNet.

2) Case Study 2: Voltage angle data with 1% Gaussian
noise, and with a pre-contingency interval

A typical value of 1% Gaussian noise has been added to
the voltage angle signal. The results of this case study, shown
in Table II, suggest that the best performing deep NNs among
tested are FCN and Time Le-Net. The difference between
FCN and Time Le-Net is that FCN has a GAP layer with
average pooling, while Time Le-Net has max pooling after
each convolutional layer. Nevertheless, both networks showed
good performance in this case study.

B. Training on voltage magnitude data from the IEEE 9-bus
system

In this case study the aim is to compare the CNNs trained
using voltage magnitudes measured at the generator buses in
IEEE 9-bus system.

1) Case Study 3: Voltage magnitude data without noise,
after the contingency

In this case study the data has been collected right after
the contingency starts, for a duration of 10 sec. Following
the results in Table II the performance of the convolutional
architectures, especially of FCN, has decreased in comparison
to the results of Case Study 1 and 2. ResNet showed the best
performance.

TABLE III
CASE STUDY 7: TRAINING ON VOLTAGE AMPLITUDE DATA WITH 1%

GAUSSIAN NOISE

Algorithm Train loss Valid. loss Train accuracy/ N. of
valid. accuracy epoch

FCN 0.000 1.496 1/0.985 1999
Time-LeNet 0.064 0.075 0.987/0.985 5
Time-CNN 0.007 0.010 0.987/0.985 1987

Encoder 0.000 0.134 1/0.989 85
ResNet 0.000 0.208 1/0.986 1477

2) Case Study 4: Voltage magnitude data without noise,
with pre-contingency interval

In this case study the data of steady state operation (0.5sec)
before a contingency with the data (9.5sec) after the contin-

gency is used for training. In Table II Case 4 results show
performance improvements for the FCN with respect to Case
3, while Time-CNN, Time Le-Net and Encoder demonstrated
better robustness towards the data change. ResNet showed
the worse performance. This can be explained by the special
architecture of ResNet that allows the NN to remember longer
the past patterns in the data. In this case this memory did not
allow convergence to a better solution. To conclude, the results
of Table II suggest that Encoder is the best choice for training
on the data in this case study. To verify these conclusions,
additional data corresponding to the steady state regime has
been added to the data sets. Thus, the simulations start 1 sec.
before the contingency is applied.

3) Case Study 5: Voltage magnitude data without noise,
with enlarged pre-contingency interval

In this case (see Tables II) the Encoder shows the best
performance. In addition, ResNet and FCN showed good
performance as well. ResNet has improved its performance
with respect to the previous case study. In contrast, Time Le-
Net demonstrates the worst performance among all the CNNs.

The results showed that the best performance of all deep
NNs is achieved when using data from the preprocessed angles
deviations (see Section II-B for data preprocessing details).
Therefore, considering the effectiveness of the data prepro-
cessing, the next case study is designed using the voltage
magnitude deviations measured on the generator buses in the
IEEE 9-bus system.

C. Case Study 6. Voltage magnitude deviation data

Results for this case study are shown in Table II, were an
improvement (w.r.t. Case 5) of performance of all the NNs
can be observed. We can conclude that the deviations allow
the models to focus more on the system dynamics, which
are masked when evaluating the raw magnitude values. FCN
and ResNet performed equally good. To consider training on
data that is closer to “real-world” measurements, 1% Gaussian
noise is added to the voltage magnitude deviations in the next
case study.



6

D. Case Study 7. Voltage magnitude deviations data with 1%
Gaussian noise

In this study, when the 1% Gaussian noise has been added to
the measurements, one can observe an example of overfitting
of the trained NNs. If we judge on the results in Table
II, we can draw a conclusion that the best NN architecture
for this case is the Encoder. However, as Table III clearly
shows, the FCN, Encoder and ResNet experience overfitting
when exposed to noisy data. In other words, the trained NNs
remembered noise as useful dynamics, which is unwanted be-
haviour. In contrast, using the results of Table III together with
Table II, it can be observed that Time Le-Net and Time-CNN
show good performance and did not overfit. Therefore, one of
these architectures has to be chosen for implementation when
considering noisy data. Otherwise, the extra tuning of NN is
required to avoid overfiting. In addition, comparing Time Le-
Net and Time-CNN using the computational efficiency metric,
Time Le-Net is superior in the training time showing the fastest
convergence (in 5 epochs) to the best model.

E. Training on voltage angle deviations data of the 769-bus
system

This case study has been developed to ensure that the
proposed methodology is valid for a large-scale power system.

1) Voltage angle deviations data preparation
Considering the results from Case Studies 1-7, the best

performance of the deep CNN algorithms has been achieved
on preprocessed voltage angle deviations data. Therefore, this
case study has been designed using the same kind of data as
in Section IV-A. These synthetic measurements are collected
locally at the terminal bus of the largest generator in the 769-
bus system. As mentioned earlier, the data has been generated
using the realistic contingency generation algorithm [16]. The
labeling of the generated data was performed using Prony’s
algorithm starting from the 2 seconds mark of the simulation
until 10 seconds, having a 8-second window. Since Prony
is a simple estimation algorithm, the estimation problem is
constrained to fit the pole that is closest to 0.8 Hz which is a
frequency of a typical inter-area mode in the 769-bus system
[23]. Within the generated simulations, there is a lack of cases
with negative damping. Consequently, for this case study, we
consider two classes: stable and unstable (when the damping is
less than 3%). The data contains 7, 878 time-series trajectories
in total. The data reporting rate is 60 samples per second. It
has been divided to 2

3 of data for training, and 1
3 of data for

testing. The validation procedure has been performed using a
k-fold cross validation algorithm.

2) Voltage angle deviations data with and without 1%
Gaussian noise

The dependency of the performance metrics on presence
of noise in the data is more prominent in precision and recall
change, when accuracy remains very close to the value trained
without noise. The significant difference between the accuracy
of training with and without noise data is observed in Encoder
(around 5%) without dependency on the batch size in Fig. 7
and Fig. 8, and ResNet when the batch size is 128 in Fig. 7,
less prominent (range of 2 − 4%) for every CNN when the
data length is 6.67 sec. in Fig. 9.

Fig. 7. Dependency on the batch size. Length=200 samples (3.33 sec)

When recall drops significantly for FCN (around 14%) the
batch size increased to 128, for ResNet (around 26%), and
it improves for the Encoder (up to 10%) with the presence
of noise. This improvement is interpreted as the decrease in
misclassification of unstable scenarios with respect to truly
unstable cases. Therefore, the architecture of Encoder with
the attention mechanism allows to classify unstable scenarios
better in the presence of noise when the data interval is short.
The best performance on the short data length is received using
the Encoder and Time-LeNet architectures. The latter uses max
pooling (propagating maximum out of the region where the
operation is applied) after each convolutional layer.

3) Batch size tuning
The batch size defines how often the NNs parameters will

be updated during the training. Larger batch size speeds up
the training, but the accuracy of the trained NN may suffer
due to rare updates. According to the results in Fig. 7, 8,
and 9 the optimal batch size is 64 when considering the
improvement of the performance metrics. The Encoder has
shown good robustness of the precision towards the noise.
However, when the training data length is shorter, the precision
of the Encoder and Time-LeNet drops with the increase of the
batch size. Thus, if the goal is to utilize shorter input data
(decreasing the data collection window), and therefore, the
total processing time for the whole method when performing
the online assessment, the batch size has to be limited to 64.

4) Dependency of performance metrics on the data length.
Comparison with Prony method

Considering the conclusion on the optimal batch size value,
in Fig. 10 the dependency of the metrics on the training data
length for the fixed batch size is shown. The best performance



7

Fig. 8. Dependency on the batch size. Length=300 samples (5 sec)

is shown by the Encoder and Time-LeNet, while there is a
decrease in metrics for the data length of 200 samples, the
difference is metrics is negligible for the length of 300 and
400 samples. In addition, the classic SSSA approach - Prony
method - is 10% less accurate than the proposed methodology.
The ability of the CNN perform fast and accurate classification
is explained by the meticulous training phase.

5) Performance Time. Training and Online Assessment

In Fig.11 the benefit of Time-LeNet is that of offering
the fastest online assessment time performance, however, this
comes at the cost of requiring substantial offline training time
to be allocated. The opposite case is shown by the Encoder,
the online assessment time is larger but still small (less than
1.8×10−3 sec.), while the training time is the smallest among
the considered CNNs.

6) Analysis of acceptable level of missclassification

In Fig.12 the input data for qualitative analysis is shown.
These help to understand the difference in misclassified unsta-
ble cases that were overlooked by the Encoder, but correctly
classified by Time-LeNet. It worth noticing that among the
cases that where misclassified by the Encoder, only one is
obviously unstable. The potential explanation for this misclas-
sification can be the lack of similar cases in the training set,
as the majority of cases are marginally stable. The case with
indx=2570 in Fig. 12 has prominent unstable upper envelope
of the voltage angle signal and marginally stable behaviour
for the lower envelope of the signal.

Fig. 9. Dependency on the batch size. Length=400 samples (6.67 sec)

Fig. 10. Dependency of metrics on the length of data. Batch size=64.
Accuracy of Prony method: for 200 samples - 80.54%, 300 samples - 88.99%,
400 samples - 92.69%



8

Encoder
FCN

Time-CNN
ResNet

Time-LeNet
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
C

la
ss

ifi
ca

tio
n 

Pe
rf

or
m

an
ce

 T
im

e,
 se

c

#10-3

0

1000

2000

3000

4000

5000

6000

T
ra

in
in

g 
T

im
e,

 se
c

Fig. 11. Performance time. Online assessment and training

Fig. 12. Difference between missclassified data by Encoder and Time-LeNet.
Batch = 64

V. CONCLUSION

In this paper we propose a novel method to perform small
signal stability assessment of a power system using deep
convolutional neural networks to learn the oscillatory pattern
of power system dynamics by capturing time and spacial
decencies in the measurements. The main advantage of the
proposed approach is the ability of performing substantially
faster than classical algorithms on the shorter data window
with substationally higher accuracy (10%) with online ex-
ecution times as low as 1.8×10−3 sec. by exploiting the
trained CNNs. To validate the method, the synthetic realistic
measurements were generated using the IEEE 9-bus system
and the 769-bus system. Among all data types used for the
validation of the CNNs performance, the best performance
was achieved for the preprocessed voltage angle differences.
Time-LeNet and Encoder have shown the best performance in
terms of performance metrics such as accuracy, precision, and
recall. While accuracy is less susceptible to the changes made
in each study, precision and recall shown how sensitive the
method is towards unstable or marginally stable conditions.

REFERENCES

[1] R. Huang and Y. Li, “False phasor data detection under time synchro-
nization attacks: A neural network approach,” IEEE Transactions on

Smart Grid, vol. 13, no. 6, pp. 4828–4836, 2022.
[2] W. Huang, W. Zheng, and D. J. Hill, “Distribution network reconfig-

uration for short-term voltage stability enhancement: An efficient deep
learning approach,” IEEE Transactions on Smart Grid, vol. 12, no. 6,
pp. 5385–5395, 2021.

[3] M. Zhang, J. Li, Y. Li, and R. Xu, “Deep learning for short-term voltage
stability assessment of power systems,” IEEE Access, vol. 9, pp. 29 711–
29 718, 2021.

[4] J. James et al., “Intelligent time-adaptive transient stability assessment
system,” IEEE Trans. Power Syst., vol. 33, no. 1, pp. 1049–1058, 2017.

[5] M. J. Rana, M. S. Shahriar, and M. Shafiullah, “Levenberg–marquardt
neural network to estimate upfc-coordinated pss parameters to enhance
power system stability,” Neural Computing and Applications, vol. 31,
no. 4, pp. 1237–1248, 2019.

[6] V. S. Perić, A. T. Sarić, and D. I. Grabež, “Coordinated tuning of power
system stabilizers based on fourier transform and neural networks,”
Electric power systems research, vol. 88, pp. 78–88, 2012.

[7] D. Chitara, K. R. Niazi, A. Swarnkar, and N. Gupta, “Cuckoo search
optimization algorithm for designing of a multimachine power system
stabilizer,” IEEE Transactions on Industry Applications, vol. 54, no. 4,
pp. 3056–3065, 2018.

[8] W. Peres, E. J. De Oliveira, J. A. Passos Filho, and I. C. da Silva Junior,
“Coordinated tuning of power system stabilizers using bio-inspired al-
gorithms,” International Journal of Electrical Power & Energy Systems,
vol. 64, pp. 419–428, 2015.

[9] G. L. da Cunha, R. A. Fernandes, and T. C. C. Fernandes, “Small-
signal stability analysis in smart grids: An approach based on distributed
decision trees,” Electric Power Systems Research, vol. 203, p. 107651,
2022.

[10] S. K. Azman, Y. J. Isbeih, M. S. El Moursi, and K. Elbassioni, “A unified
online deep learning prediction model for small signal and transient
stability,” IEEE Trans. on Power Systems, vol. 35, no. 6, p. 4585, 2020.

[11] J. Sanchez-Gasca and J. Chow, “Performance comparison of three
identification methods for the analysis of electromechanical oscillations,”
IEEE Transactions on Power Systems, vol. 14, no. 3, p. 995, 1999.

[12] S. A. Dorado-Rojas, F. Fachini, T. Bogodorova, G. Laera, M. de Cas-
tro Fernandes, and L. Vanfretti, “ModelicaGridData: Massive power
system simulation data generation and labeling tool using Modelica and
Python,” SoftwareX, vol. 21, p. 101258, 2023.

[13] S. A. Dorado-Rojas, T. Bogodorova, and L. Vanfretti, “Time series-
based small-signal stability assessment using deep learning,” in 2021
North American power symposium (NAPS). IEEE, 2021, pp. 1–6.

[14] J. Wang, P. Pinson, S. Chatzivasileiadis, M. Panteli, G. Strbac, and
V. Terzija, “On machine learning-based techniques for future sustainable
and resilient energy systems,” IEEE Trans. on Sustainable Energy, 2022.

[15] T. Zufferey, A. Ulbig, S. Koch, and G. Hug, “Unsupervised learning
methods for power system data analysis,” in Big data application in
power systems. Elsevier, 2018, pp. 107–124.

[16] T. Bogodorova, D. Osipov, and L. Vanfretti, “Automated design of
realistic contingencies for big data generation,” IEEE Transactions on
Power Systems, vol. 35, no. 6, pp. 4968–4971, 2020.

[17] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch
with deep neural networks: A strong baseline,” in 2017 Int. joint conf.
on neural networks (IJCNN). IEEE, 2017, pp. 1578–1585.

[18] A. Le Guennec, S. Malinowski, and R. Tavenard, “Data augmentation
for time series classification using convolutional neural networks,”
in ECML/PKDD workshop on advanced analytics and learning on
temporal data, 2016.

[19] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,
“Deep learning for time series classification: a review,” Data Mining
and Knowledge Discovery, vol. 33, no. 4, pp. 917–963, 2019.

[20] J. Serrà, S. Pascual, and A. Karatzoglou, “Towards a universal neural
network encoder for time series.” in CCIA, 2018, pp. 120–129.

[21] C. J. Tavora and O. J. Smith, “Characterization of equilibrium and
stability in power systems,” IEEE Transactions on Power Apparatus
and Systems, no. 3, pp. 1127–1130, 1972.

[22] V. Venkatasubramanian, “Real-time strategies for unwrapping of syn-
chrophasor phase angles,” IEEE Transactions on Power Systems, vol. 31,
no. 6, pp. 5033–5041, 2016.

[23] J. H. Chow and J. J. Sanchez-Gasca, Power system modeling, computa-
tion, and control. John Wiley & Sons, 2020.


