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A B S T R A C T

To maintain stable power system operation, damping control systems are used in conventional power plants,
known as Power System Stabilizers (PSS). However, to derive suitable controller parameters, the current
methods require dynamic models that are difficult to maintain and update, and in some cases, might not be
available. This makes it challenging for grid operators to maintain system stability when the system is under
stringent operating conditions or undergoes the loss of major transmission corridors, which would require a
new stabilizer design to provide adequate damping.

Leveraging the availability of real-time measurements and ‘‘probing’’ technologies, this paper provides
a complementary approach that does not require power system simulation models, but is based on system
identification techniques that allow to derive simple and accurate models based on data collected on the
system. The proposed method allows to monitor the performance of damping controllers and even to perform
redesign based on the models derived with system identification. The resulting redesign could be used to
update PSS parameters and improve damping without the need of removing existing damping control systems
from service.
1. Introduction

Power System Stabilizers (PSS) are a well established technology
used to provide damping for electro-mechanical oscillations via a syn-
chronous machine excitation control system (ECS) by placing the PSS
in cascade with an Automatic Voltage Regulator (AVR) [1]. It is to be
noted that similar damping controllers are used in Flexible Alternating
Current Transmission Systems (FACTS) [2] and High-Voltage Direct
Current (HVDC) links [3]. It is also to be noted that, with the increasing
adoption and maturity of new measurement technologies, new damping
control schemes leveraging real-time data have been proposed (see,
e.g., [4]). While these new controllers might be suitable for new in-
stallations, in this paper, we will focus on conventional PSS controllers
that are deployed in existing plants.

In the case of conventional PSS, to perform their damping function
satisfactorily, their control parameters need to be adequately designed
to provide damping over a range of different conditions and for dif-
ferent oscillatory modes (if required). This is typically carried out
during a power plant commissioning, during scheduled maintenance

∗ Corresponding author at: Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon, Ecully, France.
E-mail address: xavier.bombois@ec-lyon.fr (X. Bombois).

1 A notable exception is the US Western Interconnection, which establishes performance criteria for PSS via standard VAR-501-WECC-3.1 and enforces
requirements, see: https://www.nerc.com/pa/Stand/Pages/VAR501WECC3.1RI.aspx.

or required tests [5], and involves an off-line design process using
simulation models and an on-line re-calibration [6]. Such process is
obviously laborious, time consuming and requires specialized knowl-
edge, and therefore, it is not carried out as regularly as needed.1
Even with careful design and regular update of PSS parameters, under
stringent operating conditions and the loss of important transmission
corridors [7], the performance of the PSS may still degrade, without a
possibility of quickly updating the design of each generator controller
or other devices contributing to damping control [8,9], which weakens
the system stability margins. This has led, for example, to major recent
oscillatory incidents in Europe (such as the ones observed in 2016 [10],
in 2017 [11] and in 2021 [12]) and will continue to challenge its
operation with additional expansions [13], with a 2021 report from
an European Expert Panel highlighting the importance of better assess-
ment in operational planning and real-time operations for the critical
transmission system corridors w.r.t. dynamic stability [12].

One of the major challenges with the physics-based model approach
for PSS design is the dynamic model itself [14]. Adequate models are
required for control design, and maintaining these models updated
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regularly is challenging even only at the plant level [15], let alone for
the entire power grid. A continental European model only first become
available in 2015 [16] and it is not currently used in operational
planning, let alone for PSS design. Meanwhile, the use of new mea-
surement technologies has become advantageous in the development
and application of real-time monitoring of system dynamics [17] and to
perform root-cause analysis of oscillatory issues at the local level [18].

These new measurement technologies enable system identification
techniques [19] to derive simple and accurate models of power systems
by injecting small ‘‘probing’’ signals at well chosen locations of the
power system. As shown in, e.g., [20], system identification has already
been proven useful for the monitoring of the damping ability of the
power system i.e., to verify whether this damping ability remains
satisfactory at a given moment in time. The measurement-based model
used to perform this monitoring is a model of the closed-loop system,
i.e., the system with the dynamics of the PSS controller. In this paper,
the main contribution is to show that, if the probing signal is injected
at the output of the PSS controller, we can not only identify a
model of the closed-loop system (allowing the monitoring of the
damping ability of the current PSS controller), but also derive, from
this closed-loop model, a simple and accurate model of the open-
loop system i.e., the system as seen by the PSS controller. This
property is crucial. Indeed, if the monitoring algorithm (which is based
on the closed-loop model) detects a drop in the damping ability of the
current PSS controller, it is necessary to redesign the PSS controller in
order to increase its damping performance. This can only be done if
an open-loop model is available. Note furthermore that, because the
open-loop system may be unstable, identifying a model of this open-
loop system is generally a difficult task that can be tackled elegantly
using the approach proposed in this paper.

If the performance of the current PSS controller has dropped, the
PSS controller can thus be redesigned based on the open-loop model
derived from the identified closed-loop model. For this purpose, we
can make use of the numerous model-based control design techniques
existing in the literature2 The current field practice for PSS design and
tuning is based on classical control methods [22]. Several sophisticated
control design techniques have been discussed in the literature, some
summarized in [1,6]. All these techniques could be used to redesign the
PSS controller based on the open-loop model. In this paper, inspired
by [23], we formulate the PSS redesign problem as an optimization
problem. The advantage of this formulation is that it allows to maxi-
mize the damping while limiting the control effort. Even though other
techniques may also achieve the compromise between sufficient damp-
ing and acceptable control efforts (e.g., the one in [23]), to the author’s
knowledge, very little attention has been devoted in the literature to the
importance of taking into account the control efforts (and its limits) in
the design of a PSS controller.

To sum up, this paper presents an integrated procedure, based on
system identification techniques, to monitor the damping ability of a
PSS controller and to redesign this PSS controller when its performance
has dropped. In a power system, there may be several PSS controllers
and retuning all of them may lead to coordination issues. To avoid
this problem, we will here focus on the monitoring and the potential
redesign of the PSS controller in one particular machine using measure-
ments obtained at this machine (i.e., the other PSS controllers will not
be re-tuned).

The reminder of this paper is organized as follows. In Section 2 the
problem statement is delineated and notation is described. In Section 3
the methodology for data-driven PSS damping performance monitoring
is outlined while in Section 4 the methodology for PSS redesign is
described. Section 5 presents a proof-of-concept example illustrating
the proposed methodology. Finally, conclusions and future works are
outlined in Section 6.

2 It is to be noted that, as opposed to model-based techniques, the literature
lso proposes a number of fully data-driven techniques (see, e.g., [21]).
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2. Problem statement and notations

2.1. Problem statement

In this paper, we consider a power plant equipped with a PSS
damping controller and that is interconnected with a power grid. The
PSS damping controller uses a measurement of the speed 𝑤 of the
rotor shaft of the power plant to compute a correction signal that
is applied to the AVR control loop and that aims at increasing the
damping of eventual electro-mechanical oscillations that could arise
due to disturbances in the power network (see Fig. 1). It is clear
that such a controller is crucial to help maintain the stability of a
power system. As already mentioned in the introduction, if we can
assume that the PSS controller will achieve sufficient performance at
its commissioning, it is not guaranteed that this performance can be
maintained over time due to possible changes of the dynamics of the
power plant and/or of the power network. Because these changes are
nowadays more and more frequent, it is crucial, on the one hand, to
have a methodology allowing a close monitoring of the PSS perfor-
mance and, on the other hand, to have also a methodology allowing to
redesign the PSS controller if the monitoring algorithm detects a drop
in the PSS performance. In this paper, we propose a procedure that
integrates two of such methodologies, and show that both objectives
can be achieved using measurement data collected on the power system
and with mathematical models derived/identified based on these data.

If we have a high-fidelity simulator of the power system (i.e., the
power plant equipped with the PSS controller and the power grid to
which this power plant is connected), the performance of the PSS
controller can be evaluated by determining the damping of the poles
of a linearized version of this power system and by checking that
these dampings are all above a certain threshold. If such high-fidelity
simulator is not available or no longer accurate due to changes in the
power system, an alternative approach is to identify a linear model
(i.e., a transfer function model) of the power system around its current
operating condition and to subsequently compute the dampings of the
poles of that model (which are estimates of the actual dampings).
In order to identify this model, we can inject a small probing signal
at a given location, measure its effect on a measured variable of
the power system and subsequently identify the closed-loop transfer
function 𝑇0 between the probing signal and this measured variable.
Note that, in this approach, the obtained model will be an accurate
representation of the current situation of the power system. This is an
important advantage with respect to the approach based on an high-
fidelity simulator whose accuracy can be deteriorated due to changes
in either the power plant or the power grid. Consequently, this data-
driven approach is particularly interesting for the monitoring of the
PSS performance. Indeed, if we perform this identification at a regular
basis, we can monitor this performance by verifying that the minimal
damping of the poles of the identified model �̂� of 𝑇0 remain above a
certain threshold.

For monitoring purposes, the measured variable mentioned in the
previous paragraph and the location at which the probing signal is
injected can be chosen in a rather arbitrary way. In this paper, we will
inject the probing signal at the output of the PSS controller and choose
the rotor shaft speed 𝑤 as the measured variable (see Fig. 1). These
choices have indeed the advantage that the identified model �̂� between
this probing signal and 𝑤 can be used to derive a model �̂� of the open-
loop system between the output of the PSS controller and the rotor shaft
speed 𝑤 (i.e. the open-loop system that the PSS controller regulates).
This model �̂� is indeed crucial to be able to redesign the PSS controller
whenever the performance of the current PSS controller will be deemed
too low by the monitoring algorithm. Since �̂� will be deduced from
the identified model �̂� , the whole procedure for PSS monitoring and
redesign can be implemented using solely measurement data collected
on the power system and the probing signal.
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Fig. 1. PSS control strategy in a power plant. The signal 𝑣(𝑡) represents the influence of the random load changes on 𝑤(𝑡). The probing signal 𝑟(𝑡) is equal to zero except during
an identification experiment (see Section 3).
2.2. Notations

We will denote continuous-time signals as 𝑥(𝑡) with 𝑡 ∈ 𝐑 and
continuous-time transfer functions as 𝐻(𝑠) with 𝑠 the Laplace variable.
Discrete-time signals will be denoted as 𝑥[𝑛] with 𝑛 an integer. If 𝑥[𝑛]
is the sampled version of 𝑥(𝑡), we have that 𝑥[𝑛]

𝛥
= 𝑥(𝑡 = 𝑛𝑇𝑠) with 𝑇𝑠

the sampling time. Discrete-time transfer functions will be denoted as
𝐻(𝑧) with 𝑧 the 𝑍-transform variable.

In order to denote the filtering operation, inspired by [19], we
introduce the differentiation operator 𝑝 and the shift operator 𝑞. In the
continuous-time case, we can then denote the continuous-time signal
𝑦(𝑡) obtained by filtering the continuous-time signal 𝑢(𝑡) through the
transfer function 𝐻(𝑠) as 𝑦(𝑡) = 𝐻(𝑠 ↔ 𝑝)𝑢(𝑡) where 𝐻(𝑠 ↔ 𝑝) is the
operator obtained by replacing, in 𝐻(𝑠), the Laplace variable 𝑠 by the
differentiation operator 𝑝. As an example, let us suppose that 𝐻(𝑠) =
1

𝑠+1 . We have thus 𝐻(𝑠 ↔ 𝑝) = 1
𝑝+1 . The equation 𝑦(𝑡) = 𝐻(𝑠 ↔ 𝑝)𝑢(𝑡)

is thus equivalent to (𝑝 + 1)𝑦(𝑡) = 𝑢(𝑡). Using now the fact that 𝑝 is
the differentiation operator, the previous equation can be rewritten as
𝑑𝑦(𝑡)
𝑑𝑡 +𝑦(𝑡) = 𝑢(𝑡) which is the differential equation corresponding to the

transfer function 𝐻(𝑠) = 1
𝑠+1 .

In the discrete-time case, we can denote the discrete-time signal 𝑦[𝑛]
obtained by filtering the discrete-time signal 𝑢[𝑛] through the transfer
function 𝐻(𝑧) as 𝑦[𝑛] = 𝐻(𝑧 ↔ 𝑞)𝑢[𝑛] where 𝐻(𝑧 ↔ 𝑞) is the operator
obtained by replacing, in 𝐻(𝑧), the 𝑍-transform variable 𝑧 by the shift
operator 𝑞. As an example, let us suppose that 𝐻(𝑧) = 1

𝑧+0.5 . We have
thus 𝐻(𝑧 ↔ 𝑞) = 1

𝑞+0.5 . The equation 𝑦[𝑛] = 𝐻(𝑧 ↔ 𝑞)𝑢[𝑛] is thus
equivalent to (𝑞 + 0.5)𝑦[𝑛] = 𝑢[𝑛]. Using now the fact that 𝑞 is the shift
operator, the previous equation can be rewritten as 𝑦[𝑛+ 1] + 0.5𝑦[𝑛] =
𝑢[𝑛] which is the difference equation corresponding to the transfer
function 𝐻(𝑧) = 1

𝑧+0.5 .

3. PSS performance monitoring: a data-driven monitoring algo-
rithm exploiting probing

In this section, we present the data-driven approach to evaluate the
performance of the current PSS controller. Because the dynamics of the
power system may change over time, the procedure described in this
section must thus be repeated at regular basis.

Let us first say a few words about how we can model the power
system based on data. From the point-of-view of the PSS controller and
assuming that the power system is operating around an equilibrium,
we can use the following linear representation of the power system:

𝑤(𝑡) = 𝐺0(𝑠 ↔ 𝑝) 𝑢(𝑡) + 𝑣(𝑡) (1)

𝑢(𝑡) = −𝐾(𝑠 ↔ 𝑝) 𝑤(𝑡) (2)

with the notations introduced in Section 2.2 and where 𝐾(𝑠) is the
continuous-time transfer function of the PSS controller, 𝑤(𝑡) is the rotor
shaft speed, 𝑢(𝑡) is the output of the PSS controller and 𝑣(𝑡) represents
the stochastic disturbance acting on the system due to random load
3

changes.3 In (1), 𝐺0(𝑠) represents the dynamics of the power system
between 𝑢(𝑡) and 𝑤(𝑡) and therefore embeds the dynamics of the AVR,
of the generator and of the power grid to which the generator is
connected. Since we assume that the power system is operating around
an equilibrium, we can therefore assume that these dynamics can be
represented by a linear transfer function 𝐺0(𝑠).

The system (1)–(2) is a so-called closed-loop system for which we
will use the shorthand notation [𝐾(𝑠) 𝐺0(𝑠)]. The performance of the
PSS controller 𝐾(𝑠) is generally deemed satisfactory if the dampings
of the poles of this closed-loop system are all larger than a certain
threshold 𝛽 (say 𝛽 = 12%). The poles of the closed-loop system (1)–(2)
can be determined by computing the poles of any4 of the four so-called
closed-loop transfer functions:

1
1 +𝐾(𝑠)𝐺0(𝑠)

,
𝐾(𝑠)

1 +𝐾(𝑠)𝐺0(𝑠)
,

𝐺0(𝑠)
1 +𝐾(𝑠)𝐺0(𝑠)

and
𝐾(𝑠)𝐺0(𝑠)

1 +𝐾(𝑠)𝐺0(𝑠)
. (3)

Let us introduce some notations for further reference. For any given
𝐾 and 𝐺, the minimal damping of the poles of the closed-loop system
[𝐾 𝐺] will be denoted by 𝜉𝑚𝑖𝑛(𝐾,𝐺). If 𝑇 denotes one of the four closed-
loop transfer functions of [𝐾 𝐺], we will also use the notation 𝜉𝑚𝑖𝑛(𝑇 ) for
the same quantity i.e., 𝜉𝑚𝑖𝑛(𝑇 ) = 𝜉𝑚𝑖𝑛(𝐾,𝐺). We will use these notations
for continuous-time and for discrete-time transfer functions 𝐾, 𝐺 and
𝑇 , assuming that the sampling time 𝑇𝑠 has been chosen appropriately so
that, e.g., 𝜉𝑚𝑖𝑛(𝑇 (𝑧)) = 𝜉𝑚𝑖𝑛(𝑇 (𝑠)) when 𝑇 (𝑧) is the discrete-time version
of 𝑇 (𝑠).

Using these notations, the performance of the PSS controller 𝐾(𝑠)
will be deemed satisfactory whenever the following condition holds:

𝜉𝑚𝑖𝑛(𝐾(𝑠), 𝐺0(𝑠)) > 𝛽 (4)

If the controller 𝐾(𝑠) can be assumed fully known, the open-loop
system 𝐺0(𝑠) is of course unknown.5 Consequently, to be able to eval-
uate the PSS performance, we will need to identify a model of 𝐺0 or a
model of one of the four closed-loop transfer functions (3) in order to
be able to check (4). Since 𝐺0 may be unstable in some cases and since
the identification of stable transfer functions are easier in practice, we
have here decided to identify a model of one of the stable closed-loop
transfer functions (3), in particular:

𝑇0(𝑠) =
𝐺0(𝑠)

1 +𝐾(𝑠)𝐺0(𝑠)
(5)

Let us describe the experiment we will devise to collect the data
that are required for the identification of a model of 𝑇0: we will excite
the closed-loop system (1)–(2) with a small probing sign 𝑟(𝑡) at the

3 Since (1)–(2) is a representation of the power system around an equilib-
rium, these signals in fact represent the deviations of the signals with respect
to the setpoint.

4 If we assume that the product 𝐾(𝑠)𝐺0(𝑠) happens without pole-zero
cancellation, these four closed-loop transfer functions have indeed the same
poles.

5 As mentioned in Section 2, the system 𝐺0(𝑠) can also change over time. We
will however suppose that 𝐺0(𝑠) will remain constant during the identification
experiment described in this section.
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output of the PSS controller (see Fig. 1). This small probing signal can
be chosen as a white noise or as a sum of sinusoids at different frequen-
cies (i.e., a multisine). During the identification experiment, (1)–(2)
therefore becomes:

𝑤(𝑡) = 𝐺0(𝑠 ↔ 𝑝) 𝑢(𝑡) + 𝑣(𝑡) (6)

𝑢(𝑡) = −𝐾(𝑠 ↔ 𝑝) 𝑤(𝑡) + 𝑟(𝑡) (7)

Note that (6)–(7) can be rewritten in the following closed-loop form:

𝑤(𝑡) = 𝑇0(𝑠 ↔ 𝑝) 𝑟(𝑡) + 1
1 +𝐾(𝑠 ↔ 𝑝)𝐺0(𝑠 ↔ 𝑝)

𝑣(𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑣𝑐𝑙 (𝑡)

(8)

where the signal 𝑣𝑐𝑙(𝑡) (which is a function of 𝑣(𝑡) as shown in (8))
s also a stochastic disturbance that can be assumed to be statistically
ndependent from the probing signal 𝑟(𝑡). Using (8), we observe that, if

we identify the transfer function between the known excitation signal
𝑟(𝑡) and the measurable signal 𝑤(𝑡), we will obtain a model of the
closed-loop transfer function 𝑇0(𝑠) (from which we will be able to assess
the damping ability of the PSS controller).

For this purpose, we can use the so-called prediction-error identifi-
cation methodology [19] that uses discrete-time data collected on the
system (6)–(7) with a sampling time 𝑇𝑠:

𝑍𝑁 = {𝑤[𝑛], 𝑟[𝑛] | 𝑛 = 1,… , 𝑁} (9)

where 𝑁 represents the number of collected data (𝑁𝑇𝑠 is the duration
of experiment). Due to (8), the input–output data in 𝑍𝑁 can be related
as follows:

𝑤[𝑛] = 𝑇0(𝑧 ↔ 𝑞) 𝑟[𝑛] +𝐻0(𝑧 ↔ 𝑞) 𝑒[𝑛] (10)

with the notations introduced in Section 2.2 and with 𝑇0(𝑧) the discrete-
time version of 𝑇0(𝑠), 𝑒[𝑛] a zero-mean white noise, and 𝐻0(𝑧) a monic
transfer function guaranteeing that the time-series 𝐻0(𝑧 ↔ 𝑞)𝑒[𝑛] has
the same power spectrum as the discrete-time version of 𝑣𝑐𝑙(𝑡).

In the prediction error identification framework, we also need to
define a so-called model structure  = {𝑇 (𝑧, 𝜃), 𝐻(𝑧, 𝜃) | 𝜃 ∈ 𝐑𝑘} i.e., a
parametrization for the to-be identified models of 𝑇0(𝑧) and 𝐻0(𝑧) (𝜃 is
the parameter vector gathering the 𝑘 coefficients of the numerators and
denominators of 𝑇 (𝑧, 𝜃) and 𝐻(𝑧, 𝜃)). Based on the data set 𝑍𝑁 and the
chosen model structure , the optimal parameter vector �̂�𝑁 can be
deduced as follows [19]:

�̂�𝑁 = argmin
𝜃

1
𝑁

𝑁
∑

𝑛=1
𝜖2[𝑛, 𝜃] (11)

𝜖[𝑛, 𝜃] = 𝐻−1(𝑧 ↔ 𝑞, 𝜃) (𝑤[𝑛] − 𝑇 (𝑧 ↔ 𝑞, 𝜃) 𝑟[𝑛]) . (12)

In general, the order of the parametrized transfer functions 𝑇 (𝑧, 𝜃) and
(𝑧, 𝜃) in  are chosen in such a way that the prediction error 𝜖[𝑛, �̂�𝑁 ]

s close enough to a white noise [19]. If that is the case, we can say
hat the model structure  is full-order and that �̂�𝑁 is a consistent
stimate of the so-called unknown true parameter vector 𝜃0 i.e., the
arameter vector such that 𝑇 (𝑧, 𝜃0) = 𝑇0(𝑧) and 𝐻(𝑧, 𝜃0) = 𝐻0(𝑧). In
his case, we can also assess the modeling error �̂�𝑁 − 𝜃0. Indeed, it is
hown in [19] that �̂�𝑁 is (asymptotically) normally distributed around
he true parameter vector 𝜃0 and with a covariance matrix 𝑃𝜃 that can
e estimated using �̂�𝑁 and 𝑍𝑁 [19]. Using this statistical property,
e can derive an ellipsoid 𝑈�̂�𝑁

centered at �̂�𝑁 and containing, at a
ertain probability level, the true parameter vector 𝜃0. The size of this
ncertainty ellipsoid 𝑈�̂�𝑁

is directly related to the covariance matrix
𝜃 and will decrease if the number of data 𝑁 increases (𝑃𝜃 indeed
onverges to zero when 𝑁 → ∞) [19].

Let us now come back to our problem of evaluating the PSS per-
ormance, which boils down to verifying that (4) holds. Note also
hat 𝜉𝑚𝑖𝑛(𝐾(𝑠), 𝐺0(𝑠)) is by definition equal to 𝜉𝑚𝑖𝑛(𝑇0(𝑠)) = 𝜉𝑚𝑖𝑛(𝑇0(𝑧)).
ow, recall that, using the data 𝑍𝑁 and the criterion (11), we obtain
4

H

model 𝑇 (𝑧, �̂�𝑁 ) for the unknown closed-loop transfer function 𝑇0.
onsequently, we have that 𝜉𝑚𝑖𝑛(𝑇 (𝑧, �̂�𝑁 )) is an estimate for 𝜉𝑚𝑖𝑛(𝑇0(𝑧))
nd we can verify whether the PSS performance is satisfactory by
hecking whether:

𝑚𝑖𝑛(𝑇 (𝑧, �̂�𝑁 )) > 𝛽. (13)

A finer condition to check the PSS performance can be deduced
y making use of the parametric uncertainty ellipsoid 𝑈�̂�𝑁

. Let us for
his purpose derive, based on 𝑈�̂�𝑁

, an uncertainty interval  for the
nknown 𝜉𝑚𝑖𝑛(𝑇0(𝑧)) = 𝜉𝑚𝑖𝑛(𝑇0(𝑠)):

= {𝜉𝑚𝑖𝑛(𝑇 (𝑧, 𝜃)) | 𝜃 ∈ 𝑈�̂�𝑁
}. (14)

t is clear that, if 𝜃0 lies in 𝑈�̂�𝑁
, 𝜉𝑚𝑖𝑛(𝑇0(𝑧)) = 𝜉𝑚𝑖𝑛(𝑇 (𝑧, 𝜃0)) also lies in

. Assuming that this is the case, (4) holds if all elements 𝜉 of  are
arger than 𝛽 i.e.,

> 𝛽 ∀𝜉 ∈ . (15)

f the latter condition is verified, we have then a strong indication
hat the PSS performance remains satisfactory and no action will be
ndertaken. In the opposite case, we will need to update the PSS
ontroller to restore the performance. The procedure for this purpose
ill be detailed in the next section.

emark. In order to verify (15), we need an explicit expression of the
nterval  (the definition (14) for  is indeed implicit). Due to nonlinear
elation between 𝜃 and 𝜉𝑚𝑖𝑛(𝑇 (𝑧, 𝜃)), an exact explicit description for
his interval is not available. However,  can be easily approximated
sing a gridding approach (i.e., by generating a number of grid points
𝑖 in 𝑈�̂�𝑁

and by computing 𝜉𝑚𝑖𝑛(𝑇 (𝑧, 𝜃𝑖)) for all these grid points 𝜃𝑖).
nother approach based on a linearization of the relation between 𝜃
nd 𝜉𝑚𝑖𝑛(𝑇 (𝑧, 𝜃)) is given in [20,24].

. Redesign: PSS controller update in case when its performance
s deemed unsatisfactory

As mentioned above, if (15) is not verified, the damping 𝜉𝑚𝑖𝑛(𝑇0) =
𝑚𝑖𝑛(𝐾,𝐺0) is likely to be too low to guarantee sufficient damping of
he power system when major disturbances arise. Consequently, the
SS controller 𝐾(𝑠) needs to be updated in order to restore the desired
amping performance. This will be achieved by replacing the original
ontroller 𝐾(𝑠) in (1)–(2) by a new controller 𝐾𝑛𝑒𝑤(𝑠).

Because of the complex dynamics of the open-loop system 𝐺0(𝑠)
e.g., it may be unstable in some cases), we will require a model of 𝐺0(𝑠)
n order to redesign the PSS controller. This model of 𝐺0 will be derived
rom the model 𝑇 (𝑧, �̂�𝑁 ) of the closed-loop transfer function 𝑇0(𝑠) that
as been identified in the monitoring procedure. For this purpose, let
s observe that:

0(𝑠) =
𝐺0(𝑠)

1 +𝐾(𝑠)𝐺0(𝑠)
⟹ 𝐺0(𝑠) =

𝑇0(𝑠)
1 −𝐾(𝑠)𝑇0(𝑠)

(16)

sing this relation and the fact that 𝑇 (𝑧, �̂�𝑁 ) is a model of 𝑇0(𝑠), we
an derive the following discrete-time model 𝐺(𝑧, �̂�𝑁 ) of the unknown
ontinuous-time system 𝐺0(𝑠):

(𝑧, �̂�𝑁 ) =
𝑇 (𝑧, �̂�𝑁 )

1 −𝐾(𝑧)𝑇 (𝑧, �̂�𝑁 )
(17)

here 𝐾(𝑧) is the discrete-time version of the original controller 𝐾(𝑠).
ote that we use the expression of the original controller 𝐾 in (16) and

n (17) since 𝑇 (𝑧, �̂�𝑁 ) has been identified based on data collected on the
ower system operated with this original controller (see (6)–(7)).

As usual in the model-based control design paradigm, the controller
𝑛𝑒𝑤 will be synthetized in such a way that 𝐾𝑛𝑒𝑤 achieves the desired

ontrol objective when applied to the model 𝐺(𝑧, �̂�𝑁 ) of 𝐺0. Denoting
𝑛𝑒𝑤(𝑧) the discrete-time version of 𝐾𝑛𝑒𝑤(𝑠), the main control objective

s of course to have the largest possible value for 𝜉𝑚𝑖𝑛(𝐾𝑛𝑒𝑤(𝑧), 𝐺(𝑧, �̂�𝑁 )).

owever, if considered alone, this objective may lead to overly large
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control signals 𝑢[𝑛] = −𝐾𝑛𝑒𝑤(𝑧)𝑤[𝑛]. Consequently, the objective of
maximizing 𝜉𝑚𝑖𝑛(𝐾𝑛𝑒𝑤(𝑧), 𝐺(𝑧, �̂�𝑁 )) must be balanced by the objective of
aving a control action that remains limited. In the 𝐻∞ control design

framework [25], this can be achieved by constraining the 𝐻∞-norm
of the closed-loop transfer function 𝐾𝑛𝑒𝑤(𝑧)

1+𝐾𝑛𝑒𝑤(𝑧)𝐺(𝑧,�̂�𝑁 )
. In the same 𝐻∞

control framework, a good practice (in order to ensure the robustness
of the controller with respect to the uncertainty of the model) is also to
limit the 𝐻∞-norm of the closed-loop transfer function 1

1+𝐾𝑛𝑒𝑤(𝑧)𝐺(𝑧,�̂�𝑁 )
the so-called sensitivity function) to be less6 than 2 [25].

This leads to the following model-based control design problem
hose solution is the controller 𝐾𝑛𝑒𝑤(𝑧):

rg max
�̃�

𝜉𝑚𝑖𝑛(�̃�(𝑧), 𝐺(𝑧, �̂�𝑁 )) (18)

ubject to
‖

‖

‖

‖

‖

‖

‖

⎛

⎜

⎜

⎝

0.5
1+�̃�(𝑧) 𝐺(𝑧,�̂�)

𝛾 �̃�(𝑧)
1+�̃�(𝑧) 𝐺(𝑧,�̂�)

⎞

⎟

⎟

⎠

‖

‖

‖

‖

‖

‖

‖∞

< 1 (19)

here �̃�(𝑧) is the decision variable of the optimization problem (18)–
19) and 𝛾 is a tuning parameter that is chosen in order to limit the
ontrol action in a satisfactory manner. Note that (19) implies that7

he solution 𝐾𝑛𝑒𝑤 of (18)–(19) satisfies:

1
1 +𝐾𝑛𝑒𝑤(𝑧) 𝐺(𝑧, �̂�)

‖

‖

‖

‖

‖∞
< 2 and

‖

‖

‖

‖

‖

𝐾𝑛𝑒𝑤(𝑧)
1 +𝐾𝑛𝑒𝑤(𝑧) 𝐺(𝑧, �̂�)

‖

‖

‖

‖

‖∞
< 1

𝛾
(20)

From this expression, it is clear that the larger 𝛾, the less aggressive
the control action will be. The optimization problem (18)–(19) can be
solved for different values of 𝛾 to see how large 𝛾 can be chosen while
guaranteeing a sufficient value of the damping.

Such control design formulation is relatively classical in 𝐻∞ con-
trol [23,26]. In practice, if the structure of the PSS controller was not a
priori fixed (see below), the optimization problem (18)–(19) could have
been solved elegantly using LMI optimization. However, in many cases,
the structure of the PSS controller (𝐾(𝑠) and 𝐾𝑛𝑒𝑤(𝑠)) is constrained
to be a washout filter or a washout filter followed by two lead–lag
filters.8 In other words, the decision variable �̃�(𝑠) in the optimization
problem (18)–(19) is constrained to have one of the following two
structures:

�̃�(𝑠) = 𝑘𝑤
𝑡𝑤 𝑠

1 + 𝑡𝑤 𝑠
(21)

�̃�(𝑠) = 𝑘𝑤
𝑡𝑤 𝑠

1 + 𝑡𝑤 𝑠
1 + 𝑡1 𝑠
1 + 𝑡2 𝑠

1 + 𝑡3 𝑠
1 + 𝑡4 𝑠

(22)

Due to this fixed structure, redesigning the PSS controller (i.e., deter-
mining 𝐾𝑛𝑒𝑤(𝑠)) boils down to retuning the values of the coefficients
in the considered structure i.e., retuning 𝑘𝑤 and 𝑡𝑤 for (21) or 𝑘𝑤, 𝑡𝑤,
𝑡1, 𝑡2, 𝑡3 and 𝑡4 for (22). In the numerical illustration (see Section 5),
we will see that a washout filter structure (21) can be sufficient to
achieve sufficient damping performance.9 An important consequence of
the fixed controller structure is that the optimization problem (18)–(19)
becomes non-linear. There are different ways to tackle this non-linear
optimization problem. Here, since the number of controller parameters
to be determined in 𝐾𝑛𝑒𝑤 is limited, we will use Bayesian optimization
which implements a smart gridding process by modeling both the ob-
jective function and the constraint of (18)–(19) as a so-called Gaussian
process (see [27]).

6 Other weightings can also be considered to further shape the sensitivity
unction [25].

7 In the 𝐻∞ framework, the constraint (19) is generally more complex.
owever, finer weighting is not necessary in this case because sufficient

haping of 1∕(1 + 𝐾𝑛𝑒𝑤(𝑧) 𝐺(𝑧, �̂�)) is indirectly imposed by the objective of
maximal damping.

8 Note that other fixed controller structures could also be similarly
considered.

9 If the controller structure is (22), a washout filter can be obtained by
putting 𝑡 = 𝑡 = 𝑡 = 𝑡 = 0.
5

1 2 3 4
The (fixed structure) controller 𝐾𝑛𝑒𝑤 is thus the solution of the
optimization problem (18)–(19). The minimal damping of the closed
loop [𝐾𝑛𝑒𝑤(𝑧) 𝐺(𝑧, �̂�𝑁 )] is by definition equal to 𝜉𝑚𝑖𝑛(𝐾𝑛𝑒𝑤(𝑧), 𝐺(𝑧, �̂�𝑁 )).

efore applying the updated controller 𝐾𝑛𝑒𝑤 to the power system (and
orms in this way the closed-loop system [𝐾𝑛𝑒𝑤 𝐺0] having a minimal
amping 𝜉𝑚𝑖𝑛(𝐾𝑛𝑒𝑤, 𝐺0)), a first verification consists in checking that
𝑚𝑖𝑛(𝐾𝑛𝑒𝑤(𝑧), 𝐺(𝑧, �̂�𝑁 )) > 𝛽. Similarly as in Section 3, it is also good
ractice to determine an uncertainty interval 𝑛𝑒𝑤 for 𝜉𝑚𝑖𝑛(𝐾𝑛𝑒𝑤, 𝐺0):

𝑛𝑒𝑤 =
{

𝜉𝑚𝑖𝑛(𝐾𝑛𝑒𝑤(𝑧), 𝐺(𝑧, 𝜃)) | 𝐺(𝑧, 𝜃) =
𝑇 (𝑧, 𝜃)

1 −𝐾(𝑧)𝑇 (𝑧, 𝜃)
and 𝜃 ∈ 𝑈�̂�𝑁

}

(23)

and by checking that all elements of 𝑛𝑒𝑤 are larger than 𝛽. This un-
certainty interval 𝑛𝑒𝑤 can here also be approximated using a gridding
approach.

When the above verifications are completed, the new PSS controller
can be implemented and we can return to the monitoring mode. An ad-
ditional verification can be carried out by performing the identification
procedure of the previous section on the updated closed-loop system to
verify that the PSS performance has indeed be restored.

5. Case study

5.1. Scenario

5.1.1. Considered power system model
In order to provide a proof-of-concept of the integrated monitoring

and redesign procedure, we have developed a power system simulation
model that we will use as true real-life system. More precisely, we
consider the power system represented in Fig. 2. Recall that, by power
system, we here mean the interconnection of the power grid and of
the power plant whose PSS controller has to be monitored. In Fig. 2,
the power plant is represented by 𝐺1 and the power grid to which it
is connected consists in four buses (𝐵1, 𝐵2, 𝐵3 and 𝐵4), four lines
𝐿1, 𝐿2, 𝐿3, and 𝐿4), a load (𝐿𝑜𝑎𝑑 in Fig. 2) and a block 𝐺𝑟𝑖𝑑 that
epresents the remainder of the power grid and that is here modeled
sing an Infinite Bus [28]. The power plant 𝐺1 is here chosen as a
ynchronous generator controlled as shown in Fig. 1 with an AVR
ontroller and a PSS controller. The modeling details will be given in
he next subsection.

In normal operation (i.e., when there is no identification experiment
eing conducted), this power system will be entirely driven by the so-
alled random load changes i.e., the variation of the load 𝐿𝑜𝑎𝑑 with
espect to its steady state value. Similarly as in [29], these random load
hanges will be here modeled as a zero-mean Gaussian white noise 𝑒𝑙𝑜𝑎𝑑
ith standard deviation 0.0577 (see Fig. 2). Note that this white noise

s the phenomenon causing the stochastic disturbance 𝑣 in (1).
In order to assess the damping ability of the PSS controller from

he large-signal perspective, we will need to be able to subject the
ower system to a large disturbance. In order to simulate such a large
isturbance, inspired by [30], we will suppose that the variation of the
oad with respect to its steady state value is the sum of the Gaussian
hite noise 𝑒𝑙𝑜𝑎𝑑 (of relatively small amplitude) and of a large pulse

ignal 𝑝𝑙𝑜𝑎𝑑 (see block Pulse in Fig. 2). Finally, when an identification
xperiment is performed (see Section 3), a probing signal 𝑟 must be
dded at the output of the PSS controller (see Fig. 1). This probing
ignal 𝑟 and the load changes 𝑒𝑙𝑜𝑎𝑑 and 𝑝𝑙𝑜𝑎𝑑 will be the sole exogenous
nputs of the power system simulation model considered in this case
tudy; they are therefore represented at the bottom of Fig. 2 (see the
atched red box).

In the considered power system simulator, the to-be-monitored PSS
ontroller has the form of a washout filter and has been pre-designed
s:

(𝑠) = 𝑘𝑤
𝑡𝑤 𝑠

with 𝑘𝑤 = 9.5 and 𝑡𝑤 = 1.41 (24)

𝑡𝑤 𝑠 + 1
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Fig. 2. Power system simulation model developed using Modelica and the OpenIPSL library with exogenous inputs 𝑒𝑙𝑜𝑎𝑑 , 𝑝𝑙𝑜𝑎𝑑 and 𝑟.
Fig. 3. Power plant model inside of 𝐺1 in Fig. 2 developed using Modelica and components from the OpenIPSL library. The probing input 𝑟(𝑡) is indicated with a red arrow and
the signals 𝑉𝑡(𝑡) and 𝑤(𝑡) used in the two control loops of Fig. 1 are represented with a blue and a green arrow, respectively (the signals 𝑟 and 𝑤 will also be used to identify the
model 𝑇 (𝑧, �̂�𝑁 ) of 𝑇0). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
By linearizing10 between 𝑟 and 𝑤 the power plant simulation model
with the PSS controller (24), we determine the closed-loop transfer
function 𝑇0 and we observe that 𝜉𝑚𝑖𝑛(𝑇0) = 16.84%. Note that this
minimal damping of 16.84% corresponds to a complex pole at a fre-
quency of 10.6 rad/s (≈ 1.69 Hz). Since 𝜉𝑚𝑖𝑛(𝑇0) = 16.84% is larger than
𝛽 = 12%, the PSS controller achieves satisfactory performance in this
initial situation.

A dynamical change is introduced to this power system by removing
Line 𝐿4 (i.e., this line is tripped). By linearizing the power plant simu-
lation model between 𝑟 and 𝑤 in this new situation, we obtain a new
closed-loop transfer function 𝑇0 and we observe that the critical mode
has now a much lower damping of 𝜉𝑚𝑖𝑛(𝑇0) = 7.08% at a frequency of 6.5
rad/s (≈ 1 Hz). This damping 𝜉𝑚𝑖𝑛(𝑇0) = 7.08% is now (much) smaller
than 𝛽 = 12% i.e., the PSS performance is no longer satisfactory. We will
see that this performance drop can be detected using our identification-
based monitoring procedure (see Section 3) and a new PSS controller
can be designed using the procedure presented in Section 4.

10 This linearization is performed according to the approach described
in [31].
6

For the identification of the model 𝑇 (𝑧, �̂�𝑁 ) of 𝑇0 in the monitoring
procedure (see Section 3), we will apply, for a duration of twenty
minutes, a multisine probing signal 𝑟(𝑡) given by:

𝑟(𝑡) = 𝐴
50
∑

𝑘=1
𝑠𝑖𝑛(𝜔𝑘𝑡 + 𝜙𝑘) (25)

with 𝐴 = 1.1 × 10−3, random phase shifts 𝜙𝑘 (𝑘 = 1,… , 50) and 𝜔𝑘 = 𝑘
2

rad/s (𝑘 = 1,… , 50) (the frequencies 𝜔𝑘 thus range from 0.5 rad/s till
25 rad/s). For the chosen random phase shifts 𝜙𝑘 (𝑘 = 1,… , 50), the
maximal amplitude of this multisine 𝑟(𝑡) is 0.016. As we will see in the
next subsection, the perturbation induced by this probing signal will be
completely acceptable.

5.1.2. Modeling details
Following well established approaches [32], the power system sim-

ulator described in the previous subsection is developed with the Mod-
elica language https://modelica.org/, the Modelica Standard Library
(MSL) https://doc.modelica.org/, the Open-Instance Power Systems Li-
brary (OpenIPSL) [33], and assembled using the Dymola software http:
//dymola.com/. All OpenIPSL models used to develop the system mod-
els in this paper are open-source software and can be found online
at https://openipsl.org. In the sequel, when referring to the model

https://modelica.org/
https://doc.modelica.org/
http://dymola.com/
http://dymola.com/
http://dymola.com/
https://openipsl.org
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Fig. 4. Inside the PSS PST.PSSTypeII component model.
Fig. 5. Inside the Multisine component model.
components in these figures, we will use the typewriter font and
the Modelica dot notation.

Let us first describe the power plant (denoted 𝐺1 in Fig. 2) in more
details. The power plant model 𝐺1 is given in Fig. 3 and contains
the two control loops depicted in Fig. 1. As shown in Fig. 3, 𝐺1
contains a synchronous machine represented using a 6-th order model
(PSAT.Order6 from OpenIPSL), an excitation control system (that
includes the AVR) represented with the PST.AVRtypeIII model, and
a single-input PSS controller modeled with the PSAT.PSSTypeII.
Note that both the excitation control system and the PSS controller have
limiters enabled. Note also that the PSS model PSAT.PSSTypeII
includes three transfer functions in cascade: a washout filter with gain
𝑘𝑤 × 𝑡𝑤 and time constant 𝑡𝑤, and two lead–lag compensators, with
gains 𝐾, 𝑇1 and 𝑇2, each (see Fig. 4). Note that by setting 𝑇1 = 𝑇2 = 0
and 𝐾 = 1, the PSS controller has the form (24).

The complete simulation models can be found online at https://
github.com/ALSETLab/PSSMonitoringAndRedesign.

We can run simulations on that simulation model by applying the
exogenous inputs described in the previous subsection. Note that the
simulations will all be performed with a variable integration step, but
all the signals will nevertheless be re-sampled to have a fixed sampling
time of 1∕60 s.

Let us say a few words on how the exogenous inputs are applied
to the simulation model. As mentioned in the previous subsection, the
random load changes are modeled by a zero-mean Gaussian white noise
𝑒𝑙𝑜𝑎𝑑 with standard deviation 0.0577. This white noise is generated by
the block whiteNoise in Fig. 2 with a sample time of 1∕60 s. The
component, globalSeed in the same figure specifies a fixed number
for initialization of a pseudo random number generator. The value is
constant to keep the same noise for all simulations, as recommended
in [34].

As already mentioned in the previous subsection, the large pulse
disturbance 𝑝𝑙𝑜𝑎𝑑 will be generated via the block Pulse in Fig. 2. In
this block, we can specify the amplitude and the duration of 𝑝𝑙𝑜𝑎𝑑 .

The probing signal 𝑟(𝑡) defined in (25) is applied to the output of
the PSS controller via the component Multisine (see Fig. 3). Within
this component, as shown in Fig. 5, the signal 𝑟 is in fact represented
by a time vs. data table (see the MultisineData component, which
is a CombiTimeTable block from the MSL). This allows to keep the
definition of the probing signal generic. Observe that, in Fig. 5, there
are also other blocks that help to define when 𝑟 is applied and when it
is set to zero.

Before illustrating the methodologies introduced in Sections 3 and
7

4 on this power system simulation model, let us present an example of
possible simulations. In this example, the simulation scenario follows a
sequence of actions:

A. at 𝑡 = 0 s, initialization and start of the simulation,
B. at 𝑡 = 0.1 s, the Gaussian withe noise 𝑒𝑙𝑜𝑎𝑑 (i.e., the stochastic

load) starts driving the system and stays present throughout the
simulation until 𝑡 = 1245 s,

C. at 𝑡 = 0.5 s, Line 4 is removed/tripped (the dynamics of the power
system change),

D. at 𝑡 = 15 s, the probing noise 𝑟(𝑡) (see (25)) is applied until
𝑡 = 1215 s, corresponding to 20 min of probing,

E. at 𝑡 = 1215 s, 𝑟(𝑡) = 0 until 𝑡 = 1245 s,

Note that 𝑝𝑙𝑜𝑎𝑑 is set to zero throughout this simulation. In the left
column of Fig. 6, we represent, from 𝑡 = 0 to 𝑡 = 1245 s, the signals
𝑉𝑡 (plot (a)) and 𝑤 (plot (b)) obtained via this simulation as well
as the exogenous inputs 𝑟 (plot (c)) and 𝑒𝑙𝑜𝑎𝑑 (plot (d)) (a zoom on
the particular time interval [0 45] s is given in the right column). As
mentioned in Section 5.1.1, we observe in plot (c) that the maximal
amplitude of the probing signal 𝑟 is indeed equal to 0.016.

The combined effect of 𝑟 and 𝑒𝑙𝑜𝑎𝑑 on the internal variables 𝑉𝑡 and
𝑤 can be observed in plots (a) and (b) in the time interval [15 1215] s
while the effect of only 𝑒𝑙𝑜𝑎𝑑 can be observed in the same plots in
the time interval [1215 1245] s. In these plots, we observe that the
perturbation induced by the probing signal is, as indicated at the end of
the previous subsection, completely acceptable: the maximal excursions
of the signals 𝑉𝑡 and 𝑤 around their steady state are indeed respectively
equal to 0.02 p.u. and 0.002 rad/s, which are very small values. Note
that the control signals 𝑢 and 𝐸𝑓𝑑 also never hit their limits when the
probing signal is added.

In plots (e) and (f) of Fig. 6, we can observe the long transient of
the system dynamics after the tripping of line 𝐿4 (occurring at 𝑡 = 0.5
s). This long transient of about 10 s is consistent with the fact that the
PSS controller 𝐾 given in (24) only achieves a very small damping of
7.08% in this new situation (see Section 5.1.1) and also confirms that,
in this new situation, the damping ability of the PSS controller (24) is
no longer satisfactory.

Note finally that the transient mentioned above has disappeared
before the application of the probing signal (i.e., at 𝑡 = 15 s). Con-
sequently, if the data set 𝑍𝑁 (see (9)) is collected from 𝑡 = 15 s till
𝑡 = 1215 s, these data will be representative of the power system with

line 𝐿4 removed.

https://github.com/ALSETLab/PSSMonitoringAndRedesign
https://github.com/ALSETLab/PSSMonitoringAndRedesign
https://github.com/ALSETLab/PSSMonitoringAndRedesign
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Fig. 6. Nonlinear simulation results. Left column, time period 𝑡 = [0−1245] s, right column 𝑡 = [0−45] s. Vertical red lines indicate a specific actions from the list in Section 5.1.2.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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5.2. Monitoring

In Section 5.1.1, via linearization between 𝑟 and 𝑤 of the power
system simulation model with line 𝐿4 removed, we have obtained the
closed-loop transfer function 𝑇0. The modulus of the frequency response
of this transfer function is represented in Fig. 7 (dashed blue curve).
This transfer function 𝑇0 is characterized by 𝜉𝑚𝑖𝑛(𝑇0) = 7.08% (the small
damping of 𝑇0 is also evidenced by the sharp peak around 6.5 rad/s
(≈ 1 Hz) in Fig. 7). Since 𝜉𝑚𝑖𝑛(𝑇0) = 7.08% is smaller than 𝛽 = 12%, (4)
does not hold.

Let us see whether we can detect this problem using the identifica-
tion procedure of Section 3. For this purpose, we will use prediction
error identification to obtain a (discrete-time) model 𝑇 (𝑧, �̂�𝑁 ) of 𝑇0. In
order to identify the model 𝑇 (𝑧, �̂�𝑁 ), we need to collect the data set (9).
For this purpose, we will apply the probing signal 𝑟 defined in (25)
during twenty minutes11 on the power system simulation model with
the tripped line 𝐿4 and we will collect the corresponding output signal
𝑤. As mentioned at the end of Section 5.1.2, these data can e.g. be
the data collected between 𝑡 = 15 s and 𝑡 = 1215 s in the simulation
of Fig. 6. In this simulation, the data are collected with a sampling
rate of 60 samples per second. In order to avoid the numerical errors
inherent to discrete-time transfer functions with a sampling rate that is
too large with respect to their main dynamics, we decimate these data
with a factor 3 yielding a sampling rate of 20 samples per second (or
𝑇𝑠 = 0.05 s). This corresponds to a Nyquist frequency of 10 Hz (or 63
rad/s) which is approximately one decade above the main dynamics of
𝑇0 (see Fig. 7).

11 We will analyze the impact of a smaller probing duration at the end of
his section.
8
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The obtained data set 𝑍𝑁 (see (9)) is thus characterized by 𝑁 =
4000. Using an ARMAX model structure  of order 4, the data set 𝑍𝑁

nd the criterion (11), we determine an optimal parameter vector �̂�𝑁
hat yields a nearly12 white prediction error 𝜖[𝑛, �̂�𝑁 ]. This identification
rocedure thus yields a fourth order model 𝑇 (𝑧, �̂�):

(𝑧, �̂�𝑁 ) = 0.001353 + 0.000571 𝑧−1 + 0.003511 𝑧−2 − 0.005439 𝑧−3

1 − 2.3 𝑧−1 + 1.964 𝑧−2 − 0.7605 𝑧−3 + 0.1719 𝑧−4

nd, since 𝜖[𝑛, �̂�𝑁 ] is almost white, we can also determine the paramet-
ic uncertainty ellipsoid 𝑈�̂�𝑁

.
In Fig. 7, we compare the modulus of the frequency response of

(𝑧, �̂�) with the one of 𝑇0(𝑠) and we observe that 𝑇 (𝑧, �̂�) is a close
stimate13 of 𝑇0. In this figure, we also represent with the shaded
rea the uncertainty of the identified model in the frequency domain
obtained by projecting the parametric uncertainty ellipsoid 𝑈�̂�𝑁

in the
requency domain) and we see that the uncertainty is very small in the
requency band of interest.

Let us now use 𝑇 (𝑧, �̂�𝑁 ) to compute the estimate 𝜉𝑚𝑖𝑛(𝑇 (𝑧, �̂�𝑁 )) of
𝑚𝑖𝑛(𝐾,𝐺0) = 7.08% as well as the uncertainty interval14  (see (14)).
e obtain 𝜉𝑚𝑖𝑛(𝑇 (𝑧, �̂�𝑁 )) = 6.97% and the uncertainty interval  is given

y [6.41 7.53]% (using the approach in [20,24]) and by [6.54 7.41]%

12 Even though one of the residual tests on 𝜖[𝑛, �̂�𝑁 ] [19, page 511] is not fully
satisfied, this fourth order ARMAX model structure seems acceptable. Indeed,
increasing the order or using a Box–Jenkins model structure do not improve
this residual test.

13 Note that the transfer function 𝑇0(𝑠) obtained via linearization of the
power system simulation model is a transfer function of order 12, but, as
hown in Fig. 7, this transfer function can relatively be well approximated
y the fourth order transfer function 𝑇 (𝑧, �̂�𝑁 ).
14 Using the insights in [35], we here determine the size of 𝑈�̂�𝑁 to guarantee
hat  is a 99%-confidence interval.
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Fig. 7. Magnitude plot of 𝑇0(𝑠) (blue dashed) and of 𝑇 (𝑧, �̂�) (red solid). The shaded area around |𝑇 (𝑒𝑗𝜔𝑇𝑠 , �̂�𝑁 )| is the projection in the frequency domain of the parametric uncertainty
region 𝑈�̂�𝑁 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Magnitude plot of 𝐾(𝑠) (black solid), of 𝐾𝑛𝑒𝑤,1(𝑠) (red dashed) and of 𝐾𝑛𝑒𝑤,2(𝑠) (blue dash-dotted). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
Fig. 9. Magnitude plot of 𝑇0(𝑠) (blue dashed) of 𝑇0,𝑛𝑒𝑤,1(𝑠) (red dashdotted) and of 𝑇0,𝑛𝑒𝑤,2(𝑠) (black solid). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
(using the gridding approach with 1000 randomly chosen grid points
in 𝑈�̂�𝑁

). We observe that 𝜉𝑚𝑖𝑛(𝑇 (𝑧, �̂�𝑁 )) = 6.97% is a close estimate of
𝜉𝑚𝑖𝑛(𝐾,𝐺0) = 7.08% and that 𝜉𝑚𝑖𝑛(𝐾,𝐺0) = 7.08% lies in the uncertainty
intervals obtained using both approaches. It is also clear that (15) is
not satisfied and thus the identification procedure allows to detect that
the PSS performance has been degraded due to the loss of the line. We
therefore decide to redesign the PSS controller.
9

Before redesigning the PSS, let us first analyze the influence of the
experiment duration on the above result. If we reduce the experiment
duration to 10 min (resp. 5 min), we obtain as expected a larger
uncertainty interval  = [6.20 7.81]% (resp.  = [6.07 8.44]%). Both
intervals are computed using the approach in [20,24]. However, the
alteration of PSS performance can be still detected since (15) remains
not satisfied in both situations.
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Fig. 10. Performance of 𝐾(𝑠) (blue), 𝐾𝑛𝑒𝑤,1(𝑠) (orange) and 𝐾𝑛𝑒𝑤,2(𝑠) (yellow) under a large load disturbance 𝑝𝑙𝑜𝑎𝑑 of amplitude 1.25 p.u. and with a duration of 8 cycles. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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5.3. PSS controller redesign

5.3.1. Redesign
We have thus detected that the original controller 𝐾(𝑠) leads to a

degraded performance with a damping 𝜉𝑚𝑖𝑛(𝐾,𝐺0) = 7.08% which is
much too low. We therefore apply the procedure described in Section 4
to obtain a new PSS controller 𝐾𝑛𝑒𝑤 with an acceptable performance.
We will assume that this new controller has the same structure as the
original controller15:

𝐾𝑛𝑒𝑤(𝑠) = 𝑘𝑤,𝑛𝑒𝑤
𝑡𝑤,𝑛𝑒𝑤 𝑠

𝑡𝑤,𝑛𝑒𝑤 𝑠 + 1
(26)

Following the procedure in Section 4, we first compute 𝐺(𝑧, �̂�𝑁 )
using (17) and the model 𝑇 (𝑧, �̂�𝑁 ) identified using the experiment of

15 This simple structure is here not a limitation. In order to verify that,
e have also solved the (convex) optimization problem (18)–(19) in the case
here no particular controller structure is imposed and we have not observed
better performance than the one obtained with the washout filter structure.
10
20 minutes.16 In order to analyze the effect of the tuning parameter
𝛾, we solve the optimization problem (18)–(19) with 𝛾 = 0.025 and
with 𝛾 = 0.05. The controller 𝐾𝑛𝑒𝑤,1 obtained with 𝛾 = 0.025 is
haracterized by 𝑘𝑤,𝑛𝑒𝑤 = 22.4455 and 𝑡𝑤,𝑛𝑒𝑤 = 0.5217. The (in theory
ess aggressive) controller 𝐾𝑛𝑒𝑤,2 obtained with 𝛾 = 0.05 is characterized

by 𝑘𝑤,𝑛𝑒𝑤 = 12.6924 and 𝑡𝑤,𝑛𝑒𝑤 = 0.5602. In Fig. 8, 𝐾𝑛𝑒𝑤,1(𝑠) and 𝐾𝑛𝑒𝑤,2(𝑠)
are compared to the original controller 𝐾(𝑠).

Since the constraint (19) in the optimization problem yielding
𝐾𝑛𝑒𝑤,1(𝑠) is less stringent, the obtained damping 𝜉𝑚𝑖𝑛(𝐾𝑛𝑒𝑤,1, 𝐺(𝑧, �̂�𝑁 )) =
8.51% is higher than the one obtained with 𝐾𝑛𝑒𝑤,2(𝑠) i.e., 𝜉𝑚𝑖𝑛(𝐾𝑛𝑒𝑤,2,
(𝑧, �̂�𝑁 )) = 13.54%. The uncertainty intervals 𝑛𝑒𝑤 are respectively
𝑛𝑒𝑤 = [36.83 40.05] % for 𝐾𝑛𝑒𝑤,1(𝑠) and 𝑛𝑒𝑤 = [12.95 14.15] % for
𝑛𝑒𝑤,2(𝑠). Since the elements of these two intervals are all above 𝛽 =
2%, those two controllers can be implemented on the power system in
ieu of the original controller 𝐾(𝑠). The above analysis indeed indicates
hat they could strongly improve the PSS performance.

16 In this case, the obtained model 𝐺(𝑧, �̂�) happens to be unstable.
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Fig. 11. Performance of 𝐾(𝑠) (blue), 𝐾𝑛𝑒𝑤,1(𝑠) (orange) and 𝐾𝑛𝑒𝑤,2(𝑠) (yellow) under a large load disturbance 𝑝𝑙𝑜𝑎𝑑 of amplitude 1.3275 p.u. and with a duration of 22 cycles. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
5.3.2. Verification of the performance of 𝐾𝑛𝑒𝑤,1(𝑠) and 𝐾𝑛𝑒𝑤,2(𝑠) using
linear analysis on the power system simulation model

We have thus implemented those two controllers on the power
system simulation model. Let us denote by 𝑇0,𝑛𝑒𝑤,1(𝑠) (resp. 𝑇0,𝑛𝑒𝑤,2(𝑠))
the linearization of the dynamics between 𝑟 and 𝑤 of the power system
simulation model when 𝐾𝑛𝑒𝑤,1(𝑠) (resp. 𝐾𝑛𝑒𝑤,2(𝑠)) is implemented as the
PSS controller. The modulus of the frequency response of these two
closed-loop transfer functions is represented in Fig. 9 and compared
with the modulus of the closed-loop transfer function 𝑇0 corresponding
to the original controller 𝐾(𝑠) (see (24)). We directly observe the less
sharper peak in 𝑇0,𝑛𝑒𝑤,1(𝑠) and 𝑇0,𝑛𝑒𝑤,2(𝑠) indicating a larger damping.
More precisely, with 𝐾𝑛𝑒𝑤,1(𝑠), we obtain 𝜉𝑚𝑖𝑛(𝑇0,𝑛𝑒𝑤,1) = 39.26% while,
with 𝐾𝑛𝑒𝑤,2(𝑠), we obtain 𝜉𝑚𝑖𝑛(𝑇0,𝑛𝑒𝑤,2) = 13.78%. This is entirely in
accordance with the predictions that have been made on the basis of
the model 𝐺(𝑧, �̂�𝑁 ) at the end of the previous subsection and we also
observe that 39.26% (resp. 13.78%) lies in the uncertainty interval 𝑛𝑒𝑤
corresponding to 𝐾𝑛𝑒𝑤,1(𝑠) (resp. 𝐾𝑛𝑒𝑤,2(𝑠)).

An identification experiment on the updated power system simula-
tion model with the same multisine probing signal 𝑟(𝑡) as in Section 5.2
yields a model 𝑇 (𝑧, �̂�𝑁 ) with a minimal damping of 36% when 𝐾𝑛𝑒𝑤,1(𝑠)
is implemented as the PSS controller. A similar experiment yields a
model 𝑇 (𝑧, �̂�𝑁 ) with a minimal damping of 13.52% when 𝐾𝑛𝑒𝑤,2(𝑠)
is implemented. As expected, such identification experiments could
therefore confirm that these two PSS controllers achieve satisfactory
performance.
11
5.3.3. Verification of the performance of 𝐾𝑛𝑒𝑤,1(𝑠) and 𝐾𝑛𝑒𝑤,2(𝑠) for large
load disturbance on the power system simulation model

The linear analysis performed in the previous section seems to
indicate that 𝐾𝑛𝑒𝑤,1(𝑠) and 𝐾𝑛𝑒𝑤,2(𝑠) will show better damping ability
than the original controller 𝐾(𝑠) when the power system is subject to a
large disturbance. We will now verify this in practice on the nonlinear
power system simulation model. We will for this purpose make use of
the block Pulse in Fig. 2. Recall that this block allows to add, to the
random load change 𝑒𝑙𝑜𝑎𝑑 , a pulse signal 𝑝𝑙𝑜𝑎𝑑 . The amplitude and the
duration of 𝑝𝑙𝑜𝑎𝑑 will be here first fixed respectively to 1.25 p.u. (125
MW) and to eight cycles (i.e., 8∕60 s). It is clear that such a 𝑝𝑙𝑜𝑎𝑑 can
be considered as a massive load disturbance.

In order to evaluate the performance of the controllers 𝐾(𝑠),
𝐾𝑛𝑒𝑤,1(𝑠) and 𝐾𝑛𝑒𝑤,2(𝑠) under this massive load disturbance, we have
performed a simulation on the power system simulation model when
each of these three controllers are implemented as the PSS controller.
In this simulation, the probing signal 𝑟 is set to zero, the Gaussian white
noise 𝑒𝑙𝑜𝑎𝑑 is applied during the whole simulation and the large pulse
disturbance 𝑝𝑙𝑜𝑎𝑑 is applied at 𝑡 = 1245 s. The modification of the load
with respect to its set-point is thus given by plot (e) in Fig. 10. In the
same figure, we compare the terminal voltage 𝑉𝑡(𝑡) (plot (a)), the rotor
shaft speed 𝑤(𝑡) (plot (b)), the control action 𝑢(𝑡) (plot (c)) and the
field voltage 𝐸𝑓𝑑 (𝑡) (plot (d)) obtained in the simulations with the three
different controllers 𝐾(𝑠), 𝐾𝑛𝑒𝑤,1(𝑠) and 𝐾𝑛𝑒𝑤,2(𝑠). Note that, in plots (c)

and (d), the horizontal dashed red lines correspond to the min. and
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Fig. 12. Performance of 𝐾𝑛𝑒𝑤,1(𝑠) for a pulse disturbance 𝑝𝑙𝑜𝑎𝑑 of amplitude 1.3275 p.u. and with a duration of 26 cycles (blue) and of 27 cycles (orange). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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max. voltage limits of the PSS controller (generating 𝑢(𝑡)) and of the
AVR controller (generating 𝐸𝑓𝑑 (𝑡)).

In these plots, we clearly see that the three controllers lead to a
stable behavior under this massive disturbance. However, as can be
seen in plot (b), the transient behavior is strongly reduced by replacing
the original controller 𝐾(𝑠) by the new controllers. With 𝐾(𝑠), we
indeed observe a transient of about 10 seconds,17 while the transient
only lasts 2 s with 𝐾𝑛𝑒𝑤,1(𝑠) and 4 s with 𝐾𝑛𝑒𝑤,2(𝑠). This confirms the
improved damping performance expected from Section 5.3.1.

It is important to note that the less aggressive new controller
𝐾𝑛𝑒𝑤,2(𝑠) achieves this reduced damping with control efforts that are
similar to (in fact, even slightly smaller than) the one with the original
controller 𝐾(𝑠) (see plots (c) and (d) in Fig. 10). As expected, the
controller 𝐾𝑛𝑒𝑤,1(𝑠) (achieving very high damping) goes hand in hand
with (slightly) larger control efforts. It is however to be noted that these
(slightly) larger control efforts are only observed for approximately one
second after the application of 𝑝𝑙𝑜𝑎𝑑 . After this initial second, the control
efforts with 𝐾𝑛𝑒𝑤,1(𝑠) and 𝐾𝑛𝑒𝑤,2(𝑠) become similar.

From these plots, it also clear that, for 𝐾𝑛𝑒𝑤,1(𝑠) and 𝐾𝑛𝑒𝑤,2(𝑠), the
PSS output 𝑢(𝑡) never reaches its limit, while the limit for 𝐸𝑓𝑑 is only
hit during the on-set of the large disturbance 𝑝𝑙𝑜𝑎𝑑 (i.e., for about 0.5 s).
Note that this seems unavoidable for such a drastic load change 𝑝𝑙𝑜𝑎𝑑
and that this is also the case for the original controller 𝐾.

Let us now perform the same analysis with a pulse of even higher
amplitude (i.e., 1.3275 p.u.) and a (much) larger duration of 22 cycles.

17 A similar transient has also been observed in plot (f) of Fig. 6.
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a

With this even more massive load disturbance, we perform the same
simulation as above (the only difference is that 𝑒𝑙𝑜𝑎𝑑 is set to zero
o make the plots clearer). This leads to Fig. 11 that has the same
tructure as Fig. 10. In this figure, we clearly see that the original
ontroller 𝐾(𝑠) destabilizes the power system. When analyzing the blue
ine in plot (b), it is indeed obvious that the machine loses synchronism
hortly after 𝑡 ≈ 1248 s. This is a direct result of the PSS output
(𝑡) reaching its maximum voltage limit at this moment (as shown
n plot (c)). Meanwhile, in plot (d), it can also be observed how the
VR is fighting to stabilize the machine during the transient but its
esponse is bounded by its limit even before 𝑡 = 1248 s. In contrast,
e observe how 𝐾𝑛𝑒𝑤,1 and 𝐾𝑛𝑒𝑤,2 are able to keep the system stable

see orange and yellow curves in plots (a)–(d)). Similarly as what was
he case in Fig. 10, the transient is shorter with 𝐾𝑛𝑒𝑤,1 (see plot (b))
nd, during the first second after the application of 𝑝𝑙𝑜𝑎𝑑 , 𝐾𝑛𝑒𝑤,1 leads
o a larger 𝑢(𝑡) than 𝐾𝑛𝑒𝑤,2(𝑠) (see plot (c)). However, as shown in plot
d), the field voltage 𝐸𝑓𝑑 with 𝐾𝑛𝑒𝑤,1 makes first its return to a region
ithin the limits. Regardless, both controllers can effectively stabilize

he power system for this disturbance 𝑝𝑙𝑜𝑎𝑑 of amplitude 1.3275 p.u.
nd of duration equal to 22 cycles while it is not the case with the
riginal PSS controller.

Note that the original controller 𝐾(𝑠) still stabilizes the power
ystem when a pulse of amplitude 1.3275 p.u. and of duration equal
o 21 cycles is applied. In other words, for a pulse load disturbance
f amplitude 1.3275 p.u., 21 cycles is the longest duration before
estabilization for the original controller 𝐾(𝑠). With 𝐾𝑛𝑒𝑤,2, we can
o to 24 cycles before destabilization and, with the controller 𝐾𝑛𝑒𝑤,1
chieving the highest damping, we can even go to 26 cycles before
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d

Fig. 13. Performance of 𝐾𝑛𝑒𝑤,2(𝑠) for a pulse disturbance 𝑝𝑙𝑜𝑎𝑑 of amplitude 1.3275 p.u. and with a duration of 24 cycles (blue) and of 25 cycles (orange). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 1
Stability analysis for the PSS controllers 𝐾(𝑠), 𝐾𝑛𝑒𝑤,1(𝑠) and 𝐾𝑛𝑒𝑤,2(𝑠) for a pulse
isturbance 𝑝𝑙𝑜𝑎𝑑 of amplitude 1.3275 p.u.
PSS controller Maximal duration (in cycles) before destabilization

𝐾(𝑠) 21
𝐾𝑛𝑒𝑤,1 26
𝐾𝑛𝑒𝑤,2 24

destabilization. Consequently, 𝐾𝑛𝑒𝑤,1(𝑠) and 𝐾𝑛𝑒𝑤,2(𝑠) can effectively
stabilize the system for a longer period than the original PSS design,
which implies that the stability region for the system has been ex-
panded with 𝐾𝑛𝑒𝑤,1(𝑠) and 𝐾𝑛𝑒𝑤,2(𝑠). The stability analysis discussed
above is summarized in Table 1 and is illustrated in Figs. 12 and 13
where we see the performance of the controllers 𝐾𝑛𝑒𝑤,1(𝑠) and 𝐾𝑛𝑒𝑤,2(𝑠)
for pulses having the duration given in Table 1 and a duration just
slightly larger. Figs. 12 and 13 have the same structure as Fig. 11 and
are obtained using a similar simulation (i.e., 𝑒𝑙𝑜𝑎𝑑 is set to zero and the
pulse 𝑝𝑙𝑜𝑎𝑑 is applied at 𝑡 = 1245 s).

From the analysis in this subsection, we can thus conclude that the
controllers 𝐾𝑛𝑒𝑤,1(𝑠) and 𝐾𝑛𝑒𝑤,2(𝑠) strongly improve the performance
with respect to the controller 𝐾(𝑠), validating in this way the procedure
proposed in Sections 3 and 4 for the monitoring and the redesign of the
PSS controller.
13
6. Conclusions

Even though the application of Power System Stabilizers for damp-
ing power system oscillations is a well established practice in the
power industry, keeping these damping controller parameters ade-
quately tuned is still a major challenge as shown in recent major
oscillatory incidents in Europe [10,11]. Unfortunately, these types of
events indicate that damping performance, while regularly monitored
for entire networks, is not assessed continuously at specific plants, until
it is too late, i.e. major incidents occur. While there are well established
methods for PSS design based on physics-based power grid simulation
models, issues with access, maintenance and update of such models
makes the entire PSS tuning process complex and infrequent.

In this paper, an alternative approach based entirely on measure-
ments and system identification techniques is proposed, with the aim
of complementing the existing real-time performance monitoring and
PSS redesign methods. In the proposed integrated procedure, damping
performance monitoring is applied regularly or is triggered after a
major disturbance (e.g. such as a line loss) and injects a low-amplitude
probing signal into the machine’s AVR that can help to get damping
estimates directly related to a specific generator. These estimates are
accompanied with a confidence interval, which can help in operator
decision making.
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One of such decisions would be to improve the controller perfor-
mance if the monitored damping is too low. To this end, we include in
the integrated procedure a method that can help to redesign the PSS pa-
rameters such that a better damping performance is achieved. Together
with the new parameters, a prediction of the potential damping along
with confidence intervals is provided. In other words, before applying
the new design, the operator would have a good idea of what damping
to expect, within a (potentially small) range. These confidence interval
can help the operator decide to apply the new design (or not), e.g. if
the uncertainty is low, the new design is safe to apply.

To illustrate the proposed methods, nonlinear simulations were
conducted using a nonlinear power system simulation model driven
with stochastic load changes and a probing signal. Using this model,
we illustrate how the PSS damping performance can be monitored
using the application of the probing signal. Note that the amplitude of
this probing signal can be made as small as desired by increasing the
duration of the probing experiment. Such an approach can be used to
minimize the excitation of the system dynamics and to avoid reaching
the excitation system limits while at the same time providing the
necessary accuracy for the damping estimate. As for the PSS redesign,
we illustrate how new PSS designs can be obtained based on the model
identified during the probing experiment. Finally, we illustrate how
these new control designs perform under large disturbances after being
implemented, effectively providing adequate damping when they are
needed the most.

Future work will expand this study to address other types of oscil-
latory phenomena, such as intra-plant oscillations [32] and inter-area
oscillations [36] over multiple operating conditions. The approach also
needs to be extended to consider coordinated probing for enhanced
damping performance monitoring and PSS redesign of both genera-
tors [22] and power electronic-based damping control systems [8].
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