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Abstract— This paper introduces the Sliding 

Innovation Lattice Filter (SILF), a robust extension of the 

Lattice Kalman Filter (LKF) that leverages sliding mode 

theory. SILF incorporates a sliding boundary layer in the 

measurement update formulation, enabling the filter 

innovation to slide within predefined upper and lower 

bounds. This enhances the robustness of SILF, making it 

resilient to model uncertainties and noise. Additionally, a 

derivative-free formulation of SILF is developed using 

statistical linear regression, eliminating the need for 

Jacobian calculations. To further improve accuracy, 

robustness, and convergence behavior in the presence of 

abrupt changes in system model/parameters, SILF is 

reinforced with the Iterated Sigma Point Filtering and 

Strong Tracking Filtering strategies, resulting in the 

Reinforced Lattice Kalman Filter (RLKF). The 

experimental findings for the estimation of distorted power 

waveforms illustrate the superior performance of SILF and 

RLKF over competing methods, especially when operating 

in scenarios characterized by model uncertainties and noisy 

environments. 

 
Index Terms—Lattice Kalman filter, Variable structure filter, 

Adaptive fading factor, iterated filtering method, Robust 

estimators.  

I. INTRODUCTION 

stimation algorithms play an essential role in the smooth 

and efficient operation and control of the system in many 

science and engineering fields. In recent decades, many 

research works have focused on the development of accurate 

and robust estimators based on the best-known Kalman filter 

(KF) algorithm [1] in the presence of model nonlinearity and 

uncertainty. KF is formulated as a predictor-corrector estimator, 

in the framework of linear Bayesian filtering with Gaussian 

assumption based on the derivation of the optimal solution for 

Kalman gain (used in the correction stage) that minimizes the 

trace of the posterior (updated) state error covariance matrix. 

However, the real-world systems most often present model 
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nonlinearity that requires an efficient extension of KF in terms 

of accuracy and complexity. The nonlinear extensions of KF 

utilize either the derivative-based linearization method (based 

on Jacobian matrix calculation) as per extended KF (EKF) [2], 

[3] or the derivative-free methods (based on statistical linear 

regression or numerical integration) as per the sigma point KF 

(UKF) [4], [5], cubature KF (CKF) [6], Lattice KF (KF) [7], 

etc. Other than model nonlinearity, in most practical 

applications, the system is exposed to uncertainties originating 

in model changes (under different operating conditions) and/or 

noise behavior, which directly yields a declined performance or 

failure (divergence) of the KF-based algorithms. To address this 

issue, a couple of strategies have been proposed in the literature 

for improving the filter’s robustness in the context of both linear 

and nonlinear Kalman filtering. A robust version of KF is 

proposed in [8] by introducing an adaptive fading factor that 

puts more weight on the most recent observations in the 

presence of modeling mismatch. Being inspired by the strategy 

proposed in [8], authors in [9], [10] propose the strong tracking 

filtering method to increase the robustness of nonlinear filtering 

algorithms including UKF and CKF. As another robust 

extension of KF algorithms, the H-infinity filter [11] and its 

hybrid nonlinear variants [12]–[14] are proposed in the 

framework of the minimax estimation method in which the 

worst-case estimation error is minimized (as opposed to 

minimization of mean squared error (MSE) by KF). Although 

the H-infinity filter improves the estimation results in an 

uncertain environment, the level of improvement is highly 

sensitive to how its parameters are tuned and it adds some 

computational complexity to the original KF [11]. Inspired by 

the concept of sliding mode control theory and sliding mode 

observer, the Variable structure filter (VSF) was formulated to 

improve the robustness of the KF [15], whose extension for 

nonlinear systems under Gaussian assumption, including 

smooth variable structure filter (SVSF) and time-varying SVSF 

[16], were later developed to maintain states within a bounded 

tube in the presence of uncertainty resources.  Comparative 

results indicate that SVSF outperforms the well-known EKF, 

UKF, and CKF algorithms under uncertain and noisy 
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environments [17]–[19]. Moreover, to further improve the 

performance of SVSF, authors in [19] develops some 

hybridization of SVSF with nonlinear KF such as UKF and 

CKF among the others, and the obtained results show the better 

performance of CKF-SVSF. In order to reduce the 

computational burden of SVFS and improve its accuracy as 

well, a new variant of VSF called the sliding innovation filter 

(SIF) along with its derivative-based nonlinear extension, 

namely as extended SIF (ESIF) have been formulated for 

Gaussian linear and nonlinear systems under uncertainties, 

respectively [20], [21]. To improve the performance of 

SIF/ESIF against higher level of uncertainty and nonlinearity, a 

hybridized version of SIF combined with particle filter (PFSIF) 

and CKF (SICF) have been formulated in [22] and [23], 

respectively. An adaptive formulation of Particle Filter (PF) 

which carries out sampling based on randomized Quasi-Monte 

Carlo (QMC) technique has been presented in [24]. A robust 

and adaptive formulation of H-infinity filter utilizing adaptive 

fading factor strategy has been proposed in [25]. 

In our previous work [7], we have proposed a new nonlinear 

filtering strategy based on a class of QMC integration methods, 

called lattice rules, to approximate Gaussian-weighted multi-

dimensional integrals in the nonlinear KF framework using low 

discrepancy lattice points. This nonlinear filtering approach 

established is based on the Korobov type rank-1 lattice rule is 

referred to as lattice Kalman filter (LKF) [26]. The main 

superiority of the LKF over other sigma point filtering methods 

has been recognised to be its relatively low computational 

complexity (due to a reduced number of sampling points) while 

maintaining accuracy at an asymptotically same level. 

However, the accuracy and robustness of the LKF, particularly 

with a low number of sampling points, diminish when 

confronted with highly nonlinear and uncertain systems. To 

address these challenges, this paper proposes a novel and robust 

formulation of the LKF specifically designed for nonlinear 

systems operating under high levels of uncertainties and 

nonlinearity. The main contributions of the proposed algorithm 

can be listed as follows:  

1) Exploitation of the sliding innovation strategy presented 

in [21], combined with lattice-based generated sampling points 

with an adjustable number of points. This integration gives rise 

to the sliding innovation lattice filter (SILF), which 

significantly improves the robustness of the original LKF.  

2) Development of a derivative-free formulation of SILF 

based on the statistical linearization approach. This formulation 

enables SILF to effectively handle highly nonlinear systems 

without the need for computationally expensive Jacobian 

matrix calculations.  

3) Integration of the iterated filtering algorithm [27]–[29] to 

enhance the accuracy of SILF. The iterative nature of this 

algorithm refines the estimation results and improves their 

overall accuracy. 

4) Incorporation of the adaptive fading factor introduced by 

the strong tracking filter theory. This inclusion leads to a 

reformulation of the measurement update equations, resulting 

in improved convergence behavior and performance of SILF, 

particularly in scenarios involving abrupt changes in the system 

model/parameters. 

The combination of iterated strategy and strong tracking 

filter applied to the derivative-free SILF method is called 

reinforced lattice Kalman filter (RLKF). The proposed SILF 

and RLKF are then employed to estimate the distorted electrical 

waveforms of the power grids in four different scenarios 

including static, dynamic, transient operation of the system, and 

real-time application as well. Simulation and experimental 

results demonstrate the superiority of the proposed methods in 

terms of estimation accuracy and robustness against uncertain 

system models and noise disturbances, with RLKF presenting 

better results, especially for estimation under uncertainty, but at 

a higher computational time. This complexity, however, can be 

addressed by reducing the number of sampling points (inherited 

by the lattice rule) of RLKF to some extent.  

The rest of the paper is organized as follows: In section II, 

we briefly overview the main concept and formulation of the 

LKF method followed by the proposed robust formulation of 

LKF in section III. The sliding innovation lattice filter (SILF), 

iterated version of SILF augmented with a strong tracking filter 

method is presented in section III, where at the end, the 

proposed reinforced LKF (RLKF) is formulated. Different 

simulations and experiments, which are designed in the 

framework of harmonic estimation problems in power systems, 

to evaluate the performance of the proposed filter along with 

the corresponding results are discussed in section IV. Finally, 

section V concludes the main outcomes of the paper and 

discusses future works.  

II. LATTICE KALMAN FILTER 

In [7], we employed the rank-1 lattice rule [30] to generate 

low-discrepancy points to approximate multivariate integrals in 

the nonlinear Kalman filtering framework to propose the lattice 

Kalman filter (LKF) whose main concept and formulation are 

briefly overviewed in this section.  

LKF is formulated in the Gaussian filtering framework 

for a system with noisy nonlinear dynamics whose 

process and measurement model are defined as follows: 

𝑥𝑘 = 𝑓 (𝑥𝑘−1, 𝑢𝑘−1) + 𝑤𝑘 (1) 

𝑧𝑘 = ℎ (𝑥𝑘) + 𝑣𝑘 (2) 

 

where 𝑤𝑘 and 𝑣𝑘 represents the process and measurement 

noises, respectively, and assumed to be independent and have 

Gaussian distributions with zero mean and covariance matrices 

𝑄 and 𝑅, respectively. The main concept behind LKF 

formulation is to approximate the multivariate Gaussian 

weighted integrals, associated with the recursive calculation of 

mean and covariance of conditional density at the current time 

step, using lattice rule-based generated sampling points [31], 

[32]. Consequently, LKF, as a predictor-corrector estimator is 

formulated as per the following stages: 

A. Prediction Stage: 

The prior state estimate 𝑥𝑘|𝑘−1 and state error covariance 

matrix 𝑃𝑘|𝑘−1 at the 𝑘th recursion step can be calculated as per 

the following equations, respectively:  
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𝑥𝑘|𝑘−1 ≈
1

𝑁
∑  𝑓(𝑋𝑗,𝑘−1|𝑘−1

𝑄𝐺𝐿
, 𝑢𝑘−1)

𝑁−1

𝑗=0

 (3) 

𝑃𝑥𝑥,𝑘|𝑘−1 ≈
1

𝑁
∑  

𝑁−1

𝑗=0

[𝑓(𝑋𝑗,𝑘−1|𝑘−1
𝑄𝐺𝐿

, 𝑢𝑘−1) − 𝑥𝑘|𝑘−1]

∗ [𝑓(𝑋𝑗,𝑘−1|𝑘−1
𝑄𝐺𝐿

, 𝑢𝑘−1) − 𝑥𝑘|𝑘−1]
𝑇

+ 𝑄𝑘−1 (4)

 

 

where 𝑁 is the number of sampling points, and 𝑋𝑗,𝑘−1|𝑘−1
𝑄𝐺𝐿

 ; 𝑗 =

0,1, … , 𝑁 − 1 denotes quasi-Gaussian lattice points that are 

generated using the procedure presented in (5): 

 

𝑃𝑥𝑥,𝑘−1|𝑘−1 = 𝑆𝑘−1|𝑘−1
𝑇 𝑆𝑘−1|𝑘−1

𝑋𝑗
𝑆𝑁,𝑄𝐿

= 𝜙−1 (𝑥𝑗,𝑑∗
𝐿,𝑆ℎ𝑖𝑓𝑡𝑒𝑑) ;   𝑗 = 0, 1, 2, … , 𝑁 − 1 

𝑋𝑗,𝑘−1|𝑘−1
𝑄𝐺𝐿

= 𝑥𝑘−1|𝑘−1 + 𝑆𝑘−1|𝑘−1𝑋𝑗
𝑆𝑁,𝑄𝐿

; 𝑗 = 0, … , 𝑁 − 1 (5)

  

In which 𝑥𝑘−1|𝑘−1 and 𝑃𝑘−1|𝑘−1 are the previous posterior 

mean and covariance matrix, respectively, and 𝑆𝑘−1|𝑘−1 is 

calculated by applying Cholesky factorization to the posterior 

covariance matrix at the previous time step 𝑃𝑥𝑥,𝑘−1|𝑘−1. Also, 

𝜙−1(. ) represents inverse normal cumulative distribution 

function evaluated at the shifted lattice points with a random 

permutation 𝑥𝑗,𝑑∗
𝐿,𝑆ℎ𝑖𝑓𝑡𝑒𝑑

;  𝑗 = 0, 1, 2, … , 𝑁 − 1  that is generated 

in the unit hypercube using the following procedure. Firstly, 

randomly shifted lattice points are produced as follows: 

 

𝑥𝑗
𝐿,𝑆ℎ𝑖𝑓𝑡𝑒𝑑

= (
𝐺 𝑗 𝑚𝑜𝑑 𝑁

𝑁
+ ∆) 𝑚𝑜𝑑 1 ;      𝑗 = 0, … , 𝑁 − 1 (6) 

 

where ∆ is a random shift vector, generated based on the 

Cranely Patterson shift strategy [33], and is applied to the 

Korobov type rank-1 lattice points; 𝐺 represents the generating 

vector, defined as follows as per the Korobov type lattice rule 

[34]: 

 

𝐺 = [1 𝑐 𝑐2 … 𝑐𝑑−1]𝑇 (7) 

Moreover, 𝑚𝑜𝑑 1 denoted in (6) produces modular 1 of the 

term inside the round brackets and operates element-wise. Note 

that in (7), we have to choose 𝑐 so as to be a coprime integer 

with 𝑁. 

Additionally, in this paper, to prevent the probable bias 

originating in the dependency of a certain state/dimension on 

the outcome of resampling (in different time steps), a random 

permutation of lattice points over the dimensions is applied to 

the points generated in (6) 𝑥𝑗
𝐿,𝑆ℎ𝑖𝑓𝑡𝑒𝑑

 which results in a new 

point set 𝑥𝑑∗
𝐿,𝑆ℎ𝑖𝑓𝑡𝑒𝑑

 where 𝑑∗ denotes the uniform and random 

permutation of  the points over the problem dimension 𝑑 

(random permutation of integers in [1 2 …  𝑑]). This way 

𝑥𝑑∗
𝐿,𝑆ℎ𝑖𝑓𝑡𝑒𝑑

 is generated in each recursion independently. 

 

B. Correction stage 

 

In this stage, the quasi-Gaussian lattice points are updated 

using the prior state estimate 𝑥𝑘|𝑘−1 and covariance matrix 

𝑃𝑥𝑥,𝑘|𝑘−1 using the same procedure defined in (5) reformulated 

as follows: 

 

𝑃𝑥𝑥,𝑘|𝑘−1 = 𝑆𝑘|𝑘−1
𝑇 𝑆𝑘|𝑘−1

𝑋𝑗
𝑆𝑁,𝑄𝐿

= 𝜙−1 (𝑥𝑗,𝑑∗
𝐿,𝑆ℎ𝑖𝑓𝑡𝑒𝑑) ;   𝑗 = 0, 1, 2, … , 𝑁 − 1 

𝑋𝑗,𝑘|𝑘−1
𝑄𝐺𝐿

= 𝑥𝑘|𝑘−1 + 𝑆𝑘|𝑘−1𝑋𝑗
𝑆𝑁,𝑄𝐿

 ; 𝑗 = 0, 1, 2, … , 𝑁 − 1 (8)

 

 

The updated points 𝑋𝑗,𝑘|𝑘−1
𝑄𝐺𝐿

; 𝑗 = 0,1, … , 𝑁 − 1 are then used 

to calculate the predicted measurement vector, and innovation 

and cross-covariance matrices using the equations (9) through 

(11), respectively: 

�̂�𝑘|𝑘−1 ≈
1

𝑁
∑  ℎ(𝑋𝑗,𝑘|𝑘−1

𝑄𝐺𝐿
, 𝑢𝑘)

𝑁−1

𝑗=0

 (9) 

𝑃𝑧𝑧,𝑘|𝑘−1 ≈
1

𝑁
∑  

𝑁−1

𝑗=0

[ℎ(𝑋𝑗,𝑘|𝑘−1
𝑄𝐺𝐿

, 𝑢𝑘) − �̂�𝑘|𝑘−1] 

∗ [ℎ(𝑋𝑗,𝑘|𝑘−1
𝑄𝐺𝐿

, 𝑢𝑘) − �̂�𝑘|𝑘−1]
𝑇

+ 𝑅𝑘 (10)

 

𝑃𝑥𝑧,𝑘|𝑘−1 ≈
1

𝑁
∑  

𝑁−1

𝑗=0

[𝑋𝑗,𝑘|𝑘−1
𝑄𝐺𝐿

− 𝑥𝑘|𝑘−1]

∗ [ℎ(𝑋𝑗,𝑘|𝑘−1
𝑄𝐺𝐿

, 𝑢𝑘) − �̂�𝑘|𝑘−1]
𝑇

(11)

 

 

 

Eventually, the LKF gain 𝐺𝑘 , the posterior state estimate 

𝑥𝑘|𝑘, and (state) error covariance matrix 𝑃𝑥𝑥,𝑘|𝑘 can be 

computed using the following equations, respectively: 

 

𝐺𝑘 = 𝑃𝑥𝑧,𝑘|𝑘−1𝑃𝑧𝑧,𝑘|𝑘−1
−1  (12) 

𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 + 𝐺𝑘(𝑧𝑘 − �̂�𝑘|𝑘−1) (13) 

𝑃𝑥𝑥,𝑘|𝑘 = 𝑃𝑥𝑥,𝑘|𝑘−1 − 𝐺𝑘𝑃𝑧𝑧,𝑘|𝑘−1𝐺𝑘
𝑇  (14) 

III. PROPOSED ROBUST REFORMULATION OF LKF 

 
As per our previous work [7], LKF yielded asymptotically 

similar results to UKF but with less computational effort. This 

lower computational burden originates in the adjustably lower 

number of sampling points (for the systems with a lower level 

of nonlinearity and uncertainty) introduced by the lattice-based 

integration method. However, the accuracy and robustness of 

LKF decline in the presence of severe nonlinearity, modeling 

uncertainty, and high-level noise disturbances. This issue 

becomes even worse when a lower number of sampling points 

compared to that of the other sigma-point methods is used to 

approximate the nonlinear integrals. This shortfall against 

highly nonlinear models and model uncertainties and 

disturbances has motivated us to propose a robust formulation 

of LKF which is presented and formulated in the following 

subsections. 
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A. Sliding Innovation Lattice Filter (SILF) 

 

The first modification applied to LKF is founded on the 

sliding innovation strategy that is inspired by the concept of 

sliding mode observer and smooth variable structure filter 

(SVSF) [21]. In this regard, the time update stage of the 

proposed SILF algorithm is formulated similar to LKF; 

however, unlike LKF (nonlinear KF, in general) whose gain is 

derived as a function of the state error covariances, the 

measurement update equations of SILF are developed as if the 

gain is a function of the innovation vector sliding within a 

targeted hyper-tube (high-dimensional tube). If the innovation 

term is denoted as �̃�𝑘ǀ𝑘−1 = 𝑧𝑘 − �̂�𝑘|𝑘−1, the SILF gain at the 

current time step 𝐺𝑘 can be formulated as per the following 

equation:   

 

𝐺𝑘
𝑠𝑖𝑙𝑓

= 𝐻𝑘
𝑝𝑖𝑛𝑣

𝑆𝑎𝑡𝑑𝑖𝑎𝑔 (
|�̃�𝑘ǀ𝑘−1|

𝛿
) (15) 

 

In this formulation, 𝐻𝑘
𝑝𝑖𝑛𝑣

 represents pseudoinverse of the 

measurement matrix 𝐻𝑘, 𝑆𝑎𝑡𝑑𝑖𝑎𝑔 represents the diagonal matrix 

of saturation function applied to the element-wise division of 

the absolute value of the innovation vector by a control vector 

𝛿; this keeps the gain inside the targeted boundary layers 

(hyper-tube). Note that saturation function 𝑆𝑎𝑡 yields its output 

sliding between +1 and -1. Based on the level of uncertainties 

in the estimation process, the sliding boundary layer width 𝛿 

can be determined [21].  

Since the measurement equation is often nonlinear in the 

real-world problems, the nonlinear measurement function 

ℎ(𝑥𝑘) can be either approximated by analytical linearization 

based on calculating the Jacobian matrix (derivative-based 

formulation) or formulated using statistical linear regression 

(derivative-free formulation); the latter is developed for the 

proposed SILF in this paper (derivative-free SILF) which is 

further discussed in the following subsection: 

• Derivative-free SILF 

It can be shown that for highly nonlinear measurement 

models, linearization using the first term of the Taylor series 

around the operating point would lead to inaccurate 

approximation. On the other hand, although the approximation 

of nonlinear models using the higher-order terms of Taylor 

series expansion yields a more accurate result, its high 

computational complexity is a substantial barrier in real-time 

applications. Therefore, in order to relax the calculation of the 

Jacobians matrix and the required smoothness of the nonlinear 

functions, we employ the statistical linear regression method 

[35] to develop a derivative-free SILF formulation. 

If we use the lattice-based generated sampling points to 

linearize the nonlinear measurement function using statistical 

regression as per the following equation, 

 
𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝑏𝑘 + 𝕖𝑘 (16) 

 

then, the parameters of the linearized model 𝐻𝑘 and 𝑏𝑘 can be 

obtained by minimizing the mean squared error (MSE) of the 

linear regression model: 

 

𝐻𝑘 = 𝑃𝑥𝑧,𝑘|𝑘−1
𝑇  𝑃𝑥𝑥,𝑘|𝑘−1

−1 (17) 

𝑏𝑘 = 𝑧𝑘 − 𝐻𝑘𝑥𝑘|𝑘−1 + 𝕖𝑘 (18) 

 

and deviation of statistical linear regression model 𝕖𝑘 is a 

stochastic variable with zero mean and covariance of 

𝑃𝑧𝑧,𝑘|𝑘−1 − 𝐻𝑘𝑃𝑥𝑥,𝑘|𝑘−1𝐻𝑘
𝑇. In this framework, we can obtain 

the pseudo-inverse of statistically linearized 𝐻𝑘 by applying the 

Moore-Penrose formula to (17): 

 

𝐻𝑘
𝑝𝑖𝑛𝑣

= 𝑃𝑥𝑥,𝑘|𝑘−1
𝑇 (𝑃𝑥𝑧,𝑘|𝑘−1𝑃𝑥𝑧,𝑘|𝑘−1

𝑇 )
−1

𝑃𝑥𝑧,𝑘|𝑘−1 (19) 

 

Note that in this study, we use the derivative-free formulation 

of 𝐻𝑘
𝑝𝑖𝑛𝑣

 presented in (19) to calculate the SILF gain 𝐺𝑘
𝑠𝑖𝑙𝑓

 (15) 

using which state estimates and state covariance matrices are 

updated as per the following equations: 

 

𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 + 𝐺𝑘
𝑠𝑖𝑙𝑓

𝑧𝑘ǀ𝑘−1 (20) 

𝑃𝑥𝑥,𝑘|𝑘 = 𝑃𝑥𝑥,𝑘|𝑘−1 − 𝐺𝑘
𝑠𝑖𝑙𝑓

𝑃𝑧𝑧,𝑘|𝑘−1𝐺𝑘
𝑠𝑖𝑙𝑓𝑇

 (21)  

 

For the rest of this study, when we use the term SILF, we 

technically refer to the derivative-free formulation of SILF. 

B. Iterated SILF  

To improve the estimation accuracy of the proposed SILF 

algorithm, the iterated sigma-point filtering concept [27] is 

utilized to formulate iterated SILF (ISILF). The main idea of 

the iterated filtering strategy is behind the fact that the updated 

state estimates 𝑥𝑘ǀ𝑘 is expected to provide a better estimate than 

the predicted state estimates 𝑥𝑘ǀ𝑘−1, because  𝑥𝑘ǀ𝑘 is calculated 

once the most recent measured data at time step 𝑘 is received. 

We exploit this fact to regenerate quasi-Gaussian lattice points 

using the updated state estimate 𝑥𝑘ǀ𝑘  and error covariance 

matrix 𝑃𝑥𝑥,𝑘|𝑘, based on (8), which are then used to recalculate 

statistical moments of the posterior state density denoted as 

𝑥𝑘|𝑘
(𝑖𝑡𝑒𝑟)

  and 𝑃𝑥𝑥,𝑘|𝑘
(𝑖𝑡𝑒𝑟)

 at the current time step 𝑘 and iteration count 

𝑖𝑡𝑒𝑟. This strategy may yield a decline in the errors introduced 

by employed numerical integration and statistical regression 

methods after a specific number of iterations. The proposed 

ISILF adds additional stages to the original SILF defined as 

follows. 

After calculating  𝑥𝑘ǀ𝑘 and 𝑃𝑥𝑥,𝑘|𝑘 in each time step 𝑘, we 

initialize 𝑥𝑘|𝑘
(0)

= 𝑥𝑘ǀ𝑘−1, 𝑃𝑥𝑥,𝑘|𝑘
(0)

= 𝑃𝑥𝑥,𝑘|𝑘−1, 𝑥𝑘|𝑘
(1)

= 𝑥𝑘ǀ𝑘, 

𝑃𝑥𝑥,𝑘|𝑘
(1)

= 𝑃𝑥𝑥,𝑘|𝑘, and set 𝑖𝑡𝑒𝑟 = 2. We then calculate the new 

quasi-Gaussian lattice points as follows: 

𝑃𝑥𝑥,𝑘|𝑘
(𝑖𝑡𝑒𝑟−1)

= 𝑆𝑘|𝑘
(𝑖𝑡𝑒𝑟−1)𝑇

𝑆𝑘|𝑘
(𝑖𝑡𝑒𝑟−1)

𝑋𝑗
𝑆𝑁,𝑄𝐿

= 𝜙−1 (𝑥𝑗,𝑑∗
𝐿,𝑆ℎ𝑖𝑓𝑡𝑒𝑑) ;   𝑗 = 0, 1, 2, … , 𝑁 − 1 

𝑋𝑗,𝑘|𝑘
𝑄𝐺𝐿 (𝑖𝑡𝑒𝑟)

= 𝑥𝑘|𝑘
(𝑖𝑡𝑒𝑟−1)

+ 𝑆𝑘|𝑘
(𝑖𝑡𝑒𝑟−1)

𝑋𝑗
𝑆𝑁,𝑄𝐿

 ; 𝑗 = 0, … , 𝑁 − 1(22)
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The newly generated sampling points are then used to correct 

the measurement update equations as follows: 

𝑥𝑘|𝑘−1
(𝑖𝑡𝑒𝑟)

≈
1

𝑁
∑  𝑓 (𝑋𝑗,𝑘|𝑘

𝑄𝐺𝐿 (𝑖𝑡𝑒𝑟)
, 𝑢𝑘−1)

𝑁−1

𝑗=0

 (23) 

�̂�𝑘|𝑘−1
(𝑖𝑡𝑒𝑟)

≈
1

𝑁
∑ ℎ (𝑋𝑗,𝑘|𝑘

𝑄𝐺𝐿 (𝑖𝑡𝑒𝑟)
, 𝑢𝑘)

𝑁−1

𝑗=0

 (24) 

𝑃𝑧𝑧,𝑘|𝑘−1
(𝑖𝑡𝑒𝑟)

≈
1

𝑁
∑  

𝑁−1

𝑗=0

[ℎ (𝑋𝑗,𝑘|𝑘
𝑄𝐺𝐿 (𝑖𝑡𝑒𝑟)

, 𝑢𝑘) − �̂�𝑘|𝑘−1
(𝑖𝑡𝑒𝑟)

] 

∗ [ℎ (𝑋𝑗,𝑘|𝑘
𝑄𝐺𝐿 (𝑖𝑡𝑒𝑟)

, 𝑢𝑘) − �̂�𝑘|𝑘−1
(𝑖𝑡𝑒𝑟)

]
𝑇

+ 𝑅𝑘 (25)

 

𝑃𝑥𝑧,𝑘|𝑘−1
(𝑖𝑡𝑒𝑟)

≈
1

𝑁
∑  

𝑁−1

𝑗=0

[𝑋𝑗,𝑘|𝑘
𝑄𝐺𝐿 (𝑖𝑡𝑒𝑟)

− 𝑥𝑘|𝑘−1
(𝑖𝑡𝑒𝑟)

]

∗ [ℎ (𝑋𝑗,𝑘|𝑘
𝑄𝐺𝐿 (𝑖𝑡𝑒𝑟)

, 𝑢𝑘) − �̂�𝑘|𝑘−1
(𝑖𝑡𝑒𝑟)

]
𝑇

(26)

 

𝐺𝑘
𝑠𝑖𝑙𝑓(𝑖𝑡𝑒𝑟)

= 𝐻𝑘
𝑝𝑖𝑛𝑣(𝑖𝑡𝑒𝑟)

𝑆𝑎𝑡𝑑𝑖𝑎𝑔 (
|𝑧𝑘 − �̂�𝑘|𝑘−1

(𝑖𝑡𝑒𝑟)
|

𝛿
) (27) 

where 

 

𝐻𝑘
𝑝𝑖𝑛𝑣(𝑖𝑡𝑒𝑟)

= 𝑃𝑥𝑥,𝑘|𝑘
(𝑖𝑡𝑒𝑟−1)

(𝑃𝑥𝑧,𝑘|𝑘−1
(𝑖𝑡𝑒𝑟)

(𝑃𝑥𝑧,𝑘|𝑘−1
(𝑖𝑡𝑒𝑟)

)
𝑇

)
−1

𝑃𝑥𝑧,𝑘|𝑘−1
(𝑖𝑡𝑒𝑟)

 (28) 

 

Eventually, the state mean and error covariance matrix at 

each iteration are updated as follows:  

 

𝑥𝑘|𝑘
(𝑖𝑡𝑒𝑟)

= 𝑥𝑘|𝑘−1
(𝑖𝑡𝑒𝑟)

+ 𝐺𝑘
𝑠𝑖𝑙𝑓(𝑖𝑡𝑒𝑟)

�̃�𝑘|𝑘−1
(𝑖𝑡𝑒𝑟) (29) 

𝑃𝑥𝑥,𝑘|𝑘
(𝑖𝑡𝑒𝑟)

= 𝑃𝑥𝑥,𝑘|𝑘
(𝑖𝑡𝑒𝑟−1)

− 𝐺𝑘
𝑠𝑖𝑙𝑓(𝑖𝑡𝑒𝑟)

𝑃𝑧𝑧,𝑘|𝑘−1
(𝑖𝑡𝑒𝑟)

(𝐺𝑘
𝑠𝑖𝑙𝑓(𝑖𝑡𝑒𝑟)

)𝑇 (30) 

 

It can be easily proven that the convergence of ISILF is 

guaranteed with the proceed of iterations, as per the discussion 

presented in section II.C of [27]. However, as the number of 

iterations increases to achieve better accuracy, the 

computational complexity introduced by the iterative strategy 

also increases. Note that for most real-world problems a 

noticeable improvement in accuracy is obtained after only a few 

numbers of iterations (in most cases one or two iterations) [29].  

C. Strong Tracking Filtering Strategy 

To further improve the robustness of the proposed SILF 

against abrupt changes in the system dynamics, the strong 

tracking filtering strategy, originally proposed in [10], is used 

to introduce an adaptive fading factor to the predicted 

covariance matrix 𝑃𝑥𝑥,𝑘|𝑘−1 of SILF algorithm. This strategy, in 

fact, reduces the weight of the old measurements against that of 

the recent ones. The adaptive fading factor, denoted as 𝜆𝑘, can 

be calculated as follows (recall �̃�𝑘ǀ𝑘−1 = 𝑧𝑘 − �̂�𝑘|𝑘−1): 

 

𝜆𝑘 = 𝑚𝑎𝑥{𝑐𝑘 , 1}  (31) 
 

𝑐𝑘 =
𝑡𝑟𝑎𝑐𝑒(𝑁𝑘)

𝑡𝑟𝑎𝑐𝑒(𝑀𝑘)
 (32) 

 

𝑁𝑘 = 𝐸𝑘
𝑧 −  𝑃𝑥𝑧,𝑘|𝑘−1

𝑇  𝑃𝑥𝑥,𝑘|𝑘−1
−1 𝑄𝑘−1𝑃𝑥𝑥,𝑘|𝑘−1𝑃𝑥𝑧,𝑘|𝑘−1

𝑇 − 𝛽𝑅𝑘 (33) 

 
𝑀𝑘 = 𝑃𝑧𝑧,𝑘|𝑘−1 −  𝐸𝑘

𝑧 +  𝑁𝑘 + (𝛽 − 1)𝑅𝑘 (34) 
 

𝐸𝑘
𝑧 = 𝔼{�̃�𝑘ǀ𝑘−1 �̃�𝑘ǀ𝑘−1

𝑇 }  

= {

�̃�𝑘ǀ𝑘−1 �̃�𝑘ǀ𝑘−1
𝑇                    ; 𝑘 = 0

𝜌𝐸𝑘−1
𝑧 + �̃�𝑘ǀ𝑘−1 �̃�𝑘ǀ𝑘−1

𝑇

1 + 𝜌
 ; 𝑘 > 0

 (35) 

 

where 𝜌 is the forgetting factor and 𝛽 is the softening factor 

which are usually set to 0.95 and 4.5, respectively. Then, 𝜆𝑘 is 

applied to correct 𝑃𝑥𝑥,𝑘|𝑘−1 at time step 𝑘 as per the following 

equation [10]: 

𝑃𝑥𝑥,𝑘|𝑘−1
𝑆𝑇 = 𝜆𝑘(𝑃𝑥𝑥,𝑘|𝑘−1 − 𝑄𝑘−1) + 𝑄𝑘−1 (36) 

in which subscript ST stands for strong tracking. 𝑃𝑥𝑥,𝑘|𝑘−1
𝑆𝑇  is 

then used to calculate new quasi-gaussian lattice points based 

on (8), which are used to reformulate the update stage of SILF.  

D. Reinforced Lattice Kalman Filter (RLKF) 

Eventually, we employ the three abovementioned algorithms 

simultaneously to propose a new accurate and robust version of 

LKF, named reinforced LKF (RLKF), which exploits the 

guaranteed stability of the sliding innovation strategy, boosted 

robustness against abrupt changes in system dynamics of the 

strong tracking filtering strategy (by defining adaptive fading 

factor applied to the predicted state error covariance), and 

improved accuracy guaranteed by iterative sigma-point filtering 

algorithm. The stages and flowchart of the proposed RLKF 

algorithm are presented in Table I and Fig. 1, respectively. 

IV. SIMULATIONS AND EXPERIMENTAL SETUP 

In this section, the accuracy, robustness, and computational 

complexity of the proposed filters, SILF and RLKF (strong 

tracking strategy combined with iterative SILF), are evaluated. 

For this purpose, the proposed filtering methods are applied to 

estimate the harmonic parameters (amplitudes and phases of the 

harmonic contents) of distorted waveforms in power grids. Sate 

vector for the harmonic estimation problems is generally 

defined as follows: 

 

𝑥 = [𝜑1, 𝜑2, … , 𝜑𝑟 , 𝐴𝑚𝑝1, 𝐴𝑚𝑝2, … 𝐴𝑚𝑝𝑟]𝑇 (37) 

 

where 𝐴𝑚𝑝𝑟 and 𝜑𝑟 are the amplitude and phase of the 𝑟-th 

harmonic order, respectively. Note that the dimension of the 

vector state is  𝑛 = 2 ∗ 𝑟. Then, the system and measurement 

models are defined as per the following equations, respectively: 

𝑥𝑘 = 𝐼𝑛×𝑛 ∗ 𝑥𝑘−1 + 𝑤𝑘−1 (38) 

𝑧𝑘 = (∑ 𝐴𝑚𝑝𝑖 ∗ sin(𝜑𝑟)

𝑟

𝑖=1

) + 𝑣𝑘 (39) 
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TABLE I 

THE STAGES OF THE PROPOSED RLKF ALGORITHM 

Initialization: �̂�𝑘−1|𝑘−1 = �̂�0 

𝑃𝑥𝑥,𝑘−1|𝑘−1 = 𝑃𝑥𝑥,0 = Ε{(𝑥0 − �̂�0)(𝑥0 − �̂�0)𝑇} 

State prediction: 𝑃𝑥𝑥,𝑘−1|𝑘−1 = 𝑆𝑘−1|𝑘−1
𝑇 𝑆𝑘−1|𝑘−1

𝑋𝑗
𝑆𝑁,𝑄𝐿

= 𝜙−1(𝑥𝑗,𝑑∗
𝐿,𝑆ℎ𝑖𝑓𝑡𝑒𝑑

);   𝑗 = 0, 1, 2, … , 𝑁 − 1 

𝑋𝑗,𝑘−1|𝑘−1
𝑄𝐺𝐿

= �̂�𝑘−1|𝑘−1 + 𝑆𝑘−1|𝑘−1𝑋𝑗
𝑆𝑁,𝑄𝐿

 ; 𝑗 = 0, 1, 2, … , 𝑁 − 1

 

�̂�𝑘|𝑘−1 ≈
1

𝑁
∑  𝑓(𝑋𝑗,𝑘−1|𝑘−1

𝑄𝐺𝐿 , 𝑢𝑘−1)

𝑁−1

𝑗=0

  

𝑃𝑥𝑥,𝑘|𝑘−1 ≈
1

𝑁
∑  

𝑁−1

𝑗=0

[𝑓(𝑋𝑗,𝑘−1|𝑘−1
𝑄𝐺𝐿 , 𝑢𝑘−1) − �̂�𝑘|𝑘−1]

∗ [𝑓(𝑋𝑗,𝑘−1|𝑘−1
𝑄𝐺𝐿 , 𝑢𝑘−1) − �̂�𝑘|𝑘−1]

𝑇
+ 𝑄𝑘−1 

 

Measurement prediction: 𝑃𝑥𝑥,𝑘|𝑘−1 = 𝑆𝑘|𝑘−1
𝑇 𝑆𝑘|𝑘−1

𝑋𝑗
𝑆𝑁,𝑄𝐿 = 𝜙−1(𝑥𝑗,𝑑∗

𝐿,𝑆ℎ𝑖𝑓𝑡𝑒𝑑);   𝑗 = 0, 1, 2, … , 𝑁 − 1 

𝑋𝑗,𝑘|𝑘−1
𝑄𝐺𝐿 = �̂�𝑘|𝑘−1 + 𝑆𝑘|𝑘−1𝑋𝑗

𝑆𝑁,𝑄𝐿 ; 𝑗 = 0, 1, 2, … , 𝑁 − 1

 

 

�̂�𝑘|𝑘−1 ≈
1

𝑁
∑  ℎ(𝑋𝑗,𝑘|𝑘−1

𝑄𝐺𝐿
, 𝑢𝑘)

𝑁−1

𝑗=0

  

𝑃𝑧𝑧,𝑘|𝑘−1 ≈
1

𝑁
∑  

𝑁−1

𝑗=0

[ℎ(𝑋𝑗,𝑘|𝑘−1
𝑄𝐺𝐿 , 𝑢𝑘) − �̂�𝑘|𝑘−1] 

∗ [ℎ(𝑋𝑗,𝑘|𝑘−1
𝑄𝐺𝐿 , 𝑢𝑘) − �̂�𝑘|𝑘−1]

𝑇
+ 𝑅𝑘

 

𝑃𝑥𝑧,𝑘|𝑘−1 ≈
1

𝑁
∑  

𝑁−1

𝑗=0

[𝑋𝑗,𝑘|𝑘−1
𝑄𝐺𝐿

− �̂�𝑘|𝑘−1]

∗ [ℎ(𝑋𝑗,𝑘|𝑘−1
𝑄𝐺𝐿 , 𝑢𝑘) − �̂�𝑘|𝑘−1]

𝑇

 

�̃�𝑘ǀ𝑘−1 = 𝑧𝑘 − �̂�𝑘|𝑘−1 

Adaptive fading factor: 

𝐸𝑘
�̃� = {

�̃�𝑘ǀ𝑘−1 �̃�𝑘ǀ𝑘−1
𝑇                    ; 𝑘 = 0

𝜌𝐸𝑘−1
𝑧 + �̃�𝑘ǀ𝑘−1 �̃�𝑘ǀ𝑘−1

𝑇

1 + 𝜌
 ; 𝑘 > 0

 

𝑁𝑘 = 𝐸𝑘
𝑧 − 𝑃𝑥𝑧,𝑘|𝑘−1

𝑇  𝑃𝑥𝑥,𝑘|𝑘−1
−1 𝑄𝑘−1𝑃𝑥𝑥,𝑘|𝑘−1𝑃𝑥𝑧,𝑘|𝑘−1 − 𝛽𝑅𝑘 

𝑀𝑘 = 𝑃𝑧𝑧,𝑘|𝑘−1 − 𝐸𝑘
�̃� + 𝑁𝑘 + (𝛽 − 1)𝑅𝑘 

𝑐𝑘 =
𝑡𝑟𝑎𝑐𝑒(𝑁𝑘)

𝑡𝑟𝑎𝑐𝑒(𝑀𝑘)
 

𝜆𝑘 = max {𝑐𝑘, 1} 

ST-based Correction: 𝑃𝑥𝑥,𝑘|𝑘−1
𝑆𝑇 = 𝜆𝑘(𝑃𝑥𝑥,𝑘|𝑘−1 − 𝑄𝑘−1) + 𝑄𝑘−1 

𝑃𝑥𝑥,𝑘|𝑘−1
𝑆𝑇 = (𝑆𝑘|𝑘−1

𝑆𝑇 )𝑇𝑆𝑘|𝑘−1
𝑆𝑇

𝑋𝑗
𝑆𝑁,𝑄𝐿

= 𝜙−1(𝑥𝑗,𝑑∗
𝐿,𝑆ℎ𝑖𝑓𝑡𝑒𝑑

);   𝑗 = 0, 1, 2, … , 𝑁 − 1 

𝑋𝑗,𝑘|𝑘−1
𝑆𝑇,𝑄𝐺𝐿 = �̂�𝑘|𝑘−1 + 𝑆𝑘|𝑘−1

𝑆𝑇 𝑋𝑗
𝑆𝑁,𝑄𝐿 ; 𝑗 = 0, 1, 2, … , 𝑁 − 1

 

�̂�𝑘|𝑘−1
𝑆𝑇 ≈

1

𝑁
∑ ℎ(𝑋𝑗,𝑘|𝑘−1

𝑆𝑇,𝑄𝐺𝐿, 𝑢𝑘)

𝑁−1

𝑗=0

  

𝑃𝑧𝑧,𝑘|𝑘−1
𝑆𝑇 ≈

1

𝑁
∑  

𝑁−1

𝑗=0

[ℎ(𝑋𝑗,𝑘|𝑘−1
𝑆𝑇,𝑄𝐺𝐿

, 𝑢𝑘) − �̂�𝑘|𝑘−1
𝑆𝑇 ] 

∗ [ℎ(𝑋𝑗,𝑘|𝑘−1
𝑆𝑇,𝑄𝐺𝐿

, 𝑢𝑘) − �̂�𝑘|𝑘−1
𝑆𝑇 ]

𝑇
+ 𝑅𝑘

 

𝑃𝑥𝑧,𝑘|𝑘−1
(𝑖𝑡𝑒𝑟)

≈
1

𝑁
∑  

𝑁−1

𝑗=0

[𝑋𝑗,𝑘|𝑘−1
𝑆𝑇,𝑄𝐺𝐿 − �̂�𝑘|𝑘−1]

∗ [ℎ(𝑋𝑗,𝑘|𝑘−1
𝑆𝑇,𝑄𝐺𝐿

, 𝑢𝑘) − �̂�𝑘|𝑘−1
𝑆𝑇 ]

𝑇

 

SI-based update: 𝐻𝑘
𝑝𝑖𝑛𝑣 = 𝑃𝑥𝑥,𝑘|𝑘−1

𝑆𝑇 (𝑃𝑥𝑧,𝑘|𝑘−1
𝑆𝑇 (𝑃𝑥𝑧,𝑘|𝑘−1

𝑆𝑇 )𝑇)
−1

𝑃𝑥𝑧,𝑘|𝑘−1
𝑆𝑇  

𝐺𝑘
𝑠𝑖𝑙𝑓 = 𝐻𝑘

𝑝𝑖𝑛𝑣𝑆𝑎𝑡𝑑𝑖𝑎𝑔 (
|𝑧𝑘 − �̂�𝑘|𝑘−1

𝑆𝑇 |

𝛿
)  

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐺𝑘
𝑠𝑖𝑙𝑓

(𝑧𝑘 − �̂�𝑘|𝑘−1
𝑆𝑇 )  

𝑃𝑥𝑥,𝑘|𝑘 = 𝑃𝑥𝑥,𝑘|𝑘 − 𝐺𝑘
𝑠𝑖𝑙𝑓𝑃𝑧𝑧,𝑘|𝑘−1

𝑆𝑇 (𝐺𝑘
𝑠𝑖𝑙𝑓)𝑇  

Iterative Strategy: Initialize statistical moments for 𝑖𝑡𝑒𝑟 = 1, �̂�𝑘|𝑘
(1)

= �̂�𝑘ǀ𝑘, 𝑃𝑥𝑥,𝑘|𝑘
(1)

= 𝑃𝑥𝑥,𝑘|𝑘, 

and set 𝑖𝑡𝑒𝑟 = 2 

Repeat (22)-(30) of the iterative filtering strategy presented in section III.B until the 

specified stop criterion is met. 
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Fig. 1.  Flowchart of the proposed RLKF algorithm 

 

where  𝐼𝑛×𝑛 is 𝑛 × 𝑛 identity matrix that represents the system 

transition matrix. In this study, the nonlinear measurement 

model contains 𝑟 = 5 harmonic orders (including 1st, 3rd, 5th, 

7th, and 11th order) that matches with the harmonic contents 

(with considerable amplitudes) of power signals in smart power 

grids in most cases.   

To demonstrate the strength of the proposed filtering strategy 

in various operating modes, different scenarios of simulations 

along with experiments have been implemented. As per 

software simulations, two harmonic estimation problems are 

defined for estimating the harmonic parameters of static and 

dynamic (with time-varying amplitude) signals.  As per 

practical applications of the proposed method, an experimental 

setup has been mounted to evaluate the performance of the 

proposed filters under the switching operating mode of the 

power system (abrupt changes of the power signal). In fact, the 

proposed methods are applied to process the transient logged 

data set so that their harmonic parameters are estimated. Then, 

the estimated waveform is constructed using the estimated 

harmonic contents. Finally, the proposed algorithms are 

implemented in a real-time hardware-in-the-loop (HIL) setup 

for evaluating their robustness and accuracy in practical 

applications. The performance of the proposed RLKF and SILF 

in terms of accuracy, robustness, and computational complexity 

is compared to those of conventional UKF, EKF, Extended SIF 

(ESIF), and original LKF as well.   

Note that for all scenarios, the initial state vector and state 

error covariance matrix are set to 𝑥0 = [0]𝑛×1and 𝑃0 =

103 × 𝐼𝑛×𝑛, respectively; also, system and measurement noise 

covariance are set to Q = 10−10 × 𝐼𝑛×𝑛 and R = 4 × 10−4, 

respectively. The sliding boundary layer 𝛿 for all simulations 

and experiments is between 0.02 and 0.2, whose value has been 

selected according to the theoretical bound presented by [20]. 

The forgetting factor 𝜌 and softening factor 𝛽 (related to strong 

tracking strategy) are set to 0.95 and 4.5, respectively. 

Moreover, the sampling frequency of 1200 Hz (24 samples per 

cycle of power signal) has been considered for all simulations. 

Note that in all scenarios the iterated stage of RLKF is executed 

only for one iteration. 

 

A. Scenario 1: Static Power Signal Estimation 

In this section, the reference signal is considered as a 

distorted waveform defined as a series of 5 common harmonic 

contents, which matches with the electrical current of arc 

furnaces and high-intensity discharge electronic devices [36]:  

 

𝑧𝑘 = 1.5𝑠𝑖𝑛(𝜔𝑡 + 80°) + 0.5𝑠𝑖𝑛(3𝜔𝑡 + 60°) … 

+0.2𝑠𝑖𝑛(5𝜔𝑡 + 45°) + 0.15𝑠𝑖𝑛(7𝜔𝑡 + 36°) … 

+0.1𝑠𝑖𝑛(11𝜔𝑡 + 30°) + 𝑣𝑘 (40) 

wherein 𝜔 denotes the angular frequency of the fundamental 

harmonic component of the power signals whose frequency is 

50Hz in our study. The static signal defined in (40) is used to 

assess the capabilities of the proposed filtering methods (RLKF 

and ISILF) in tracking the original signal corrupted with noise 

𝑣𝑘 (white noise). Accordingly, two different levels of noise 

with signal-to-noise ratios (SNRs) of 30dB and 20dB are added 

to the reference signal to investigate the performance of the 

proposed algorithms in noise rejection. The estimation results 

of the proposed RLKF and ISILF are compared with those 

obtained by the UKF, ESIF, and original LKF. Note that the 

initial parameters of all filters are set to the same values for all 

noisy conditions. Due to space limitations, only the graphical 

representations of the estimation results obtained by the 

filtering methods for the highest noise level (SNR = 20dB) are 

presented. The standard deviation of the Gaussian noise i.e., 𝑣𝑘 

injected to the static waveform in (40) is set to be 0.022.  

Regardless of the relatively lower convergence rate of the 

proposed algorithms in estimating parameters of the higher-

order (harmonic) components (as seen in Fig. 2), RLKF and 
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ISILF track the overall waveform with a convergence time of 

around half a cycle of the power signal, as shown in Fig. 3.a. 

Note that RLKF presents a better convergence behavior than 

SILF. Moreover, the proposed estimation algorithms show 

stability after being converged to the final values of the 

parameters as shown in Fig. 3. Then, the signal estimation 

errors introduced by the different algorithms are statistically 

analyzed and the mean squared error (MSE) and variance (Var) 

are computed using which the algorithms’ accuracy and 

robustness can be evaluated, respectively. These statistical 

indices are generated using the estimation results obtained 

between 0.06s and 0.5s (as discussed, this range is selected to 

compare the performance of all algorithms after transient 

behavior of all filters) for all algorithms under various noisy 

conditions. The results of the first three cycles are not 

considered to let all algorithms converge to their final values 

(although this convergence rate of LKF and UKF is not 

acceptable from the power system operation point of view). 

Results presented in Table II demonstrate that RLKF and ISILF 

track the true signal with high accuracy at different noise levels, 

with RLKF presenting a slightly better result due to the strong 

tracking strategy integrated with ISILF. As observed from the 

last column of Table II, the computational complexity of 

proposed algorithm is dominated by the number of states (n) 

and the number of lattice points (N), as can be seen from the 

term 𝑛2𝑁. This means that as the number of states and the 

number of lattice points increase, the computational burden of 

the approach rises quadratically with respect to the number of 

states and linearly with respect to the number of lattice points. 

Therefore, this approach might face scalability issues when 

applied to very high-dimensional systems or when a very large 

number of lattice points is required. However, many of the 

computations can potentially be parallelized in practical 

applications, which could significantly reduce the actual 

computational time if parallel computing resources are 

available. 

Although SILF shows almost the same behavior as the RLKF 

in tracking the static signal (see Fig. 3), the indices, mean 

squared error (MSE) and variance (Var), presented in Table II, 

reveal the lower performance of SILF compared to RLKF. The 

corresponding results obtained by ESIF are noticeably worse in 

terms of accuracy and robustness. This is mainly because of the 

drawback of approximating a highly nonlinear measurement 

function using the first term of Taylor series expansion. 

Furthermore, estimation results obtained by UKF and LKF are 

the worst ones with UKF presenting slightly a better result. As 

discussed earlier, the required number of sampling points used 

by LKF increases for approximating functions with a higher 

level of nonlinearity in the presence of uncertainty (this is why 

N is set to 21 for LKF). Meeting this requirement is facilitated 

by an adjustable number of sampling points introduced by the 

lattice-based filtering strategy. Note that we exploit this 

capability originated in LKF formulation and improved the 

performance of the proposed RLKF and ISILF by increasing 

their number of sampling points (see the results of RLKF and 

ISILF in Table II where 𝑁 = 21). 

 
(a) 

 

(b) 

Fig 2. (a) Amplitude and (b) phase estimation results obtained by 

different algorithms for the static waveform.  

B. Scenario 2: Dynamic Power Signal  

Time-varying operating conditions in the power systems 

yield some dynamic changes in the electrical waveforms. These 

dynamics cause time-varying harmonic parameters whose 

estimation would be more challenging. In this subsection, we 

define a dynamic power signal by injecting time-variant terms 

into the signal (40), using which the performance of the 

proposed algorithms is further investigated for dynamic signal 

tracking. The following equation represents the dynamic signal 

with the corresponding time-variant parameters: 

 

𝑍𝑘 = (1.5 + a1(𝑡))𝑠𝑖𝑛(𝜔𝑡 + 80°) + ⋯ 

(0.5 + a3(𝑡))𝑠𝑖𝑛(3𝜔𝑡 + 60°) + ⋯ 

(0.2 + a5(𝑡))𝑠𝑖𝑛(5𝜔𝑡 + 45°) + ⋯ 

0.15𝑠𝑖𝑛(7𝜔𝑡 + 36°) + 0.1𝑠𝑖𝑛(11𝜔𝑡 + 30°) + 𝑣𝑘 (41) 

where 

a1(𝑡) = 0.15𝑠𝑖𝑛(2𝜋f1𝑡) + 0.05𝑠𝑖𝑛(2𝜋f3𝑡), 

a3(𝑡) = 0.05𝑠𝑖𝑛(2𝜋f2𝑡) + 0.02𝑠𝑖𝑛(2𝜋f3𝑡) 

a5(𝑡) = 0.025𝑠𝑖𝑛(2𝜋f1𝑡) + 0.005𝑠𝑖𝑛(2𝜋f3𝑡) 

f1 = 0.25 + 1.875t Hz 

f2 = 0.75 + 5.625t Hz 

f3 = 1.5 + 11.25t Hz 
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As seen, the amplitudes of 1st, 3rd, and 5th harmonics are 

considered to be time-varying signals with time-dependent 

frequencies as well which makes the harmonic estimation 

problem even more complex. Additionally, a 20 dB Gaussian 

noise (zero-mean with standard deviation = 0.022) is added to 

make the model represents real-world conditions. 

Figs. 4 and 5 demonstrate the harmonic parameters and the 

associated dynamic signal estimated by the filtering algorithms 

along with their corresponding estimation errors. although the 

filters are blind to these dynamic changes of the signal due to 

the fact that their process model formulation is kept similar to 

one defined for the static signal in (41), as can be observed, the 

proposed SILF and RLKF maintained their estimation quality 

in the presence of model dynamics. However, the convergence 

rate of the estimation problem in this scenario is slightly lower 

than that of the static signal case. 

It should be noted that the performance of UKF and LKF 

estimators significantly declined in tracking the dynamic signal; 

on the other hand, ESIF results remain acceptable benefiting 

from the sliding innovation strategy in its formulation. Table III 

presents the performance of the proposed algorithms in 

comparison with other filtering methods in terms of statistical 

indices: MSE and Var. These indices are again computed using 

the estimated value of the dynamic waveform obtained between 

0.06s and 0.5s for all algorithms. As per the estimation results 

given in this table, UKF and LKF present the highest errors 

among the others. Although ESIF performance is comparable 

to that of SILF and RLKF with 11 sampling points, the 

proposed algorithms with 21 sampling points clearly 

outperform ESIF but at a higher computational cost. Note that 

PFSIF also present comparable results to those obtained by 

proposed algorithms with 11 points but with significantly 

higher computational burden (1000 particles). This superiority 

of the SILF and RLKF originates in the fact that the sliding 

innovation strategy (used by both) and strong tracking theory 

(adaptive fading factor used in RLKF) place more weight on the 

measurements than the process model when encountering 

model uncertainties. 

C. Scenario 3: Power Signal with Abrupt changes  

Transient phenomena in power systems yield abrupt changes 

in the power signals with an effective time in the range of a few 

microseconds to milliseconds. Such a sudden change in the 

power signal introduces some challenges to the filtering 

algorithms in maintaining their robustness while tracking the 

transient waveform. 

In this section, an experimental setup (shown in Fig. 6) is 

developed to extract data under a transient phenomenon, i.e., 

load switching. We then apply the SILF, RLKF, and ESIF 

algorithms to estimate the voltage magnitudes with transient 

changes measured from the test setup. 

 

 
(a) 

 
(b) 

Fig 3. (a) Estimated waveform and (b) the corresponding error of 

different algorithms for static signal. 

TABLE II 

STATISTICAL COMPARISON OF FILTERS IN ESTIMATING STATIC SIGNAL  

 
Number of  

Points  

SNR (dB) 
Average Time 

(sec) 

2 sec sim. 

 

Computational 

Complexity 

(FLOPs) 

30  20 

MSE Var MSE Var 

UKF 2n+1 = 21 6.0395 × 10−4 4.4639 × 10−4 6.1409 × 10−3 4.3697 × 10−3 0.4180 𝑂(𝑛3 + 𝑛2𝑚) 

ESIF - 1.1502 × 10−3 8.9456× 10−4 5.4242 × 10−3 4.3438 × 10−3 0.2758 𝑂(𝑛3 + 𝑚3) 

PFSIF P = 1000 8.2341 × 10−4 4.7658 × 10−4 5.7312 × 10−3 3.6454 × 10−3 1.8671 𝑂(𝑃𝑙𝑜𝑔𝑃 + 𝑃𝑛) 

LKF N = 21 8.9149 × 10−4 7.3073 × 10−4 6.9803 × 10−3 5.7631 × 10−3 0.3973 𝑂(𝑛3 + 𝑛2𝑁) 

SILF 
N = 21 2.5654 × 10−4 1.1449 × 10−4 7.8205 × 10−4 5.1438 × 10−4 0.4207 

𝑂(𝑛3 + 𝑛2𝑁) 
N = 11 8.6804 × 10−4 5.4786 × 10−4 5.1592 × 10−3 3.0522 × 10−3 0.3427 

RLKF 
N = 21 1.8741 × 10−4 9.1593 × 10−5 6.0078 × 10−4 4.6312 × 10−4 0.4288 

𝑂(𝑖𝑡𝑒𝑟(𝑛3 + 𝑛2𝑁)) 
N = 11 7.7928 × 10−4 6.1528 × 10−4 4.5894 × 10−3 1.9837 × 10−3 0.3657 

n is the number of states; m is number of measurements; N is the number of lattice points; and P is the number of particles for PFSIF; 𝑖𝑡𝑒𝑟 is number of iterations. 

This article has been accepted for publication in IEEE Open Journal of Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2023.3298555

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

10 

 

(a) 

 

(b) 

Fig 4. (a) Amplitude and (b) phase estimation results obtained by 

different algorithms for the dynamic waveform.  

TABLE III 

STATISTICAL COMPARISON OF FILTERS IN TRACKING DYNAMIC SIGNAL  

 Number of Points 

SNR (dB) 

20  

MSE Var 

UKF 21 2.3578 × 10−2 1.1798 × 10−2 

ESIF - 9.1090 × 10−3 5.8768 × 10−3 

PFSIF 1000 5.7581 × 10−3 3.4377 × 10−3 

LKF 21 3.8375 × 10−2 2.7631 × 10−2 

SILF 
21 9.4805 × 10−4 7.1438 × 10−4 

11 7.3592 × 10−3 6.0522 × 10−3 

RLKF 
21 6.9759 × 10−4 3.5671 × 10−4 

11 5.1894 × 10−3 4.6837 × 10−3 

 

The mounted circuit consists of a 0.1H inductor connected in 

series with two parallel transformers whose named power are 

100VA and 200VA, respectively. The 100VA transformer 

operates under the no-load condition and is directly supplied via 

an AC power source; however, the 200VA transformer is fed 

through a switch to supply a 48W LED driver load. A fast 

response voltage transducer, i.e., LV 25-P, is used to measure 

the analog voltage of the series inductor. The analog data is then 

digitized using an A/D NI USB-6009 data acquisition (DAQ) 

card at a sampling rate of 1200 Hz. Transient voltage change of 

the series inductor is generated by switching the 200VA 

transformer (supplying LED load on its secondary winding) at 

the time of 2.759sec. Fig. 6 also depicts the transient changes 

of inductor voltage after switching time. Note that the filtering 

algorithms are used in the off-line mode to process the logged 

data of transient voltage waveform. 

 

(a) 

 
(b) 

Fig 5. (a) Estimated waveform and (b) the corresponding error of 

different algorithms for the dynamic signal. 

 

Fig. 6. Experimental setup for testing abrupt changes in the signal. 

Fig. 7 shows the graphical representation of their 

corresponding estimated signals. As observed, RLKF tracks the 

measured transient waveform within an acceptable range of 
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error compared to other algorithms. Since transient changes in 

the signal are not modeled in the process model of the filtering 

algorithms, their predicted results in the time update phase 

present a significant error. Using UKF and LKF algorithm, this 

error is propagated to the measurement update phase which 

yields low-quality updated estimates. On the other hand, SILF 

and RLKF exploit the sliding innovation strategy in their 

measurement update phase to compensate for the errors of the 

time update phase. This robust behavior against sudden changes 

is reinforced for RLKF by exploiting an adaptive fading factor 

term applied to the predicted error covariance. Thus, RLKF 

provides even more reliable estimation results for transient 

changes in the system model. The estimation results obtained 

by estimators are compared numerically in Table IV. As 

discussed above (and even could be predicted from dynamic 

case results), UKF and LKF poorly track the abrupt changes, 

and this is why we exclude them in reporting the results in this 

section. 

 
(a) 

 
(b) 

Fig. 7. (a) Estimated waveform and (b) the corresponding error of 

different algorithms for transient signal. 

D. Scenario 4: Real-time Implementation  

In this section, a Hardware-In-the-Loop (HIL) setup is 

developed to evaluate the real-time operation of the proposed 

SILF and RLKF methods. Since MATLAB-based implemented 

scripts present some processing delays while reading data from 

DAQ cards, the C++ programming language, which provides 

strong traction in real-time applications, is used in the current 

scenario for the implementation of the proposed algorithms. 

The codes are processed in a real-time manner using an 

embedded hardware system, i.e., PC/104 micro-computer set, 

equipped with a VDX-6354 processor card (Vortex86DX 

800MHz CPU module) and a PCM-5114 DAQ card. 

Furthermore, we employ a fast response current sensor using 

which the current of an AC feeder line supplying a total of 6KW 

LED luminaires is measured. This current is then read by the 

DAQ card at the sampling rate of 1200 Hz. The harmonic 

contents of the measured current are 3rd, 5th, and 7th harmonic 

orders with noticeable amplitude. Fig. 8 shows the diagram of 

the real-time experimental setup.  

TABLE IV 

STATISTICAL COMPARISON OF FILTERS IN TRACKING SIGNAL WITH ABRUPT 

CHANGE 

 Number of Points MSE Var 

ESIF - 5.5655 × 10−2 4.2975 × 10−3 

SILF 
21 7.8734 × 10−3 5.9583 × 10−3 

11 3.8885 × 10−2 2.5487 × 10−2 

RLKF 
21 4.3759 × 10−3 1.1006 × 10−3 

11 2.2804 × 10−2 9.0337 × 10−3 

Once a measurement is received by the DAQ card, a 5V 

digital activation pulse is submitted to the General-Purpose 

Input Output (GPIO) port of the processor card and one 

recursion of the filtering method (SILF or RLKF) is 

simultaneously executed to provide the estimates associated 

with the current recursion. The digital pulse is then set to 0V at 

the end of each recursion of the corresponding estimator. The 

train of pulses detected by a digital scope is then used to analyze 

the computational performance of the proposed algorithms. To 

guarantee the real-time performance of the proposed methods, 

the duration of the digital activation pulse (processing time) is 

required to be less than (1/1200)𝑠 (since the sampling rate is 

1200Hz). As Figs. 9.a and 9.b depicts, the processing time of 

all recursions (not exactly the same though) is always less than 

(1/3000)𝑠 and (1/2500)s for SILF and RLKF, respectively, 

which confirms the performance of the proposed algorithms in 

real-time applications. Note that the number of lattice-based 

sampling points for both algorithms is set to 21. It is worth 

mentioning that the relatively low computational burden of 

SILF originates in using a simple integration method (Lattice 

rule) to approximate nonlinear multivariate integrals (inherited 

from LKF), and a simple gain formulation inherited from SIF. 

Having the SILF formulation reinforced by the iterative 

filtering strategy and strong tracking filtering method, RLKF 

provides more robust and accurate estimation results but at a 

higher computational complexity.  

 

Fig. 8. Real-time HIL experimental setup. 
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The estimated waveform is outputted by the DAQ card to its 

analog output channel (for each proposed filter). Then, the 

measured and estimated waveforms are cabled to the scope. 

Note that for the sake of a more efficient graphical 

representation, the data logged for 1-minute execution of the 

SILF and RLKF algorithms is used in the MATLAB 

environment to present the measured and estimated waveforms 

in one plot, as shown in Fig. 9.c.  

 
(a) 

 
(b) 

 
(c) 

Fig. 9. Processing time of (a) SILF and (b) RLKF along with (c) their 

real-time estimation results.  

TABLE V 

STATISTICAL COMPARISON OF THE PROPOSED FILTERS IN REAL-TIME 

APPLICATION 

 Number of Points MSE Var  

SILF 21 8.2767 × 10−4 6.5874 × 10−4 

RLKF 21 6.1286 × 10−4 3.2322 × 10−4 

V. CONCLUSIONS 

This paper presented a derivative-free robust formulation of 

the LKF algorithm, namely SILF, by applying the sliding 

innovation strategy to the update stage of the original method 

with the aim of enhancing its performance against different 

uncertainty resources. The proposed algorithm was then 

reinforced by an adaptive fading factor and iterated filtering 

method to battle transient changes in the system 

model/parameters. The resulting filter has been formulated as a 

predictor-corrector estimator and is called RLKF. Different 

simulation and experiment scenarios have been carried out to 

investigate the performance of the proposed SILF and RLKF 

under uncertain system dynamics perturbed with high-level 

noises as well. The obtained results have shown the superiority 

of the RLKF compared to SILF, ESIF, UKF, and the original 

LKF in terms of accuracy and robustness, and convergence rate 

as well. Furthermore, the results obtained from a HIL setup 

based on real-time coding and an embedded hardware system 

have confirmed the performance of the proposed filtering 

strategy in the real-time application in terms of estimation 

accuracy and processing time. Although RLKF requires more 

computational burden compared to SILF and other well-known 

filtering methods, its adjustable number of sampling points 

inherited from the LKF formulation gives us the opportunity of 

reducing the number of points for the systems with a lower level 

of nonlinearity and uncertainty while maintaining the 

estimation accuracy in an acceptable range. The development 

of the proposed filter in the non-Gaussian framework and its 

interacting multiple models (IMM)-based formulation for fault 

tolerance and detecting model changes are considered for future 

research works.  
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