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Abstract—Modular multilevel converters have been widely
reported to experience high-frequency oscillations with the power
system to which they are connected in HVdc applications, and
the root cause is that the system resonance frequencies fall into
the delay-induced non-passive region of the MMCs. This paper
presents a multi-tuned narrowband damping control scheme
to selectively and narrowly enhance the passivity of an MMC
around multiple resonance frequencies, and thereby damp the
associated high-frequencies oscillations. First, this paper presents
a detailed process for simplifying the complete matrix-based
impedance model of MMC into a high-frequency impedance
model suitable for damping design. Second, using the simplified
model, the effect and comprehensive design of the proposed multi-
tuned damping controller are described from a virtual admit-
tance perspective, making it possible to simultaneously damp
the MMC impedance around multiple resonance frequencies in
the high-frequency range. The proposed design method carefully
takes into account the coupling effect among multiple damping
controllers targeting oscillations at different frequencies, in order
to avoid potential unintended interferences. The performance
of the proposed narrowband damping method is verified in
EMT simulations by implementing it to suppress high-frequency
oscillations in three different MMC-based applications.

Index Terms—MMC, impedance-based stability, high-
frequency oscillations, narrowband damping, virtual admittance,
active damping

I. INTRODUCTION

A. Motivation

H IGH frequency oscillation (HFO) events have been
widely reported in modular multilevel converter (MMC)-

based HVdc applications [1]–[4], and are attributed to the
negative damping of the MMC impedance at the system res-
onance frequency. The root cause of the negative damping of
MMC is mainly due to the phase lag in the MMC impedance
introduced by the time delay, including digital control delay
and modulation sampling and hold delay. Such HFOs can
appear at any frequency from a few hundred Hz to the Nyquist
frequency, and may exist at more than one frequency at a
time [5], which presents challenges for designing damping
methods. In addition, the ac system impedance can also exhibit
non-passive behavior at high frequencies when it contains
power converters with active control functions [5] (e.g., turbine
converters and STATCOMs). According to the impedance-
based stability criterion [6], an oscillation may also be formed
between the MMC and the ac system if the net damping
is negative at the system resonance frequency (i.e., phase
difference of impedance between the MMC and the ac system
is larger than 180°), even if the MMC has no negative damping
at that frequency. Therefore, it is necessary to develop a
damping approach that is capable of introducing additional

positive damping at the specific frequency instead of only
eliminating the negative damping of the MMC (i.e., only
making real part of the converter impedance be 0). This
motivation is a significant part of the work presented in this
paper.

B. Literature Review

Impedance-based small-signal stability analysis has been
recognized as an effective approach for studying HFOs be-
tween MMC and the ac system [1], [3]. In order to develop a
solution to counteract the oscillation issues of MMC, several
small-signal impedance modeling methods of MMC have been
proposed in recent years, e.g. multi-harmonic linearization
method [7], [8] and harmonic state-space method [9], [10].
However, because the internal dynamics of the MMC and
frequency coupling are taken into account in the development
of these methods, the resulting MMC impedance is represented
in a high-order matrix form. This can make it challenging to
design damping control schemes as the impedance model of
the MMC is not straightforward to handle. Therefore, consider-
ing that internal dynamics and coupling over frequency can be
ignored in the high-frequency range [11], most previous stud-
ies in the literature have adopted a high-frequency impedance
model in a single transfer function form, which is suitable
for designing damping controls [3]–[5], [12]. However, the
high-frequency impedance models employed in these studies
share a common limitation with respect to the MMC control
modes considered, as they can only represent grid-following
MMCs in dc voltage control with a unity power factor and
grid-forming MMCs in fixed ac voltage and frequency control.
In addition, the derivation of the high-frequency impedance
model is not adequately elucidated in the literature, and the
rationale for neglecting the internal dynamics of MMC and
certain controllers remains unidentified, which needs to be
clarified.

In general, suppressing HFOs of MMC can be achieved
through passive damping methods and active damping meth-
ods. Passive damping [13], [14] can be applied to damp
the resonance over a broad frequency range, but may come
with additional costs, power losses, and installation space
requirements. In contrast, active damping methods can be more
cost effective when used in mitigating HFOs. In the literature,
active damping methods can be broadly divided into three
categories: (i) modifying the parameters of existing controls;
(ii) inserting lowpass filtering functions into existing controls;
or (iii) adding additional control functions supplementary for
damping. Modifying the controller parameters is an effective
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solution to mitigate HFO below the cutoff frequency of
the controller, normally below a few hundred Hz. However,
this approach can have a significant impact on the transient
performance of MMC. Cascading a lowpass filter with the
controllers to remove the undesirable signal component as-
sociated with oscillation is relatively straightforward [3], [4].
The downside of this method is the phase shift introduced by
the lowpass filtering function, especially with heavy filtering,
which usually leads to more negative damping of the MMC at
the passband frequency of the filter, thereby causing the MMC
to be more prone to stability issues at that frequency range. In
addition, an inappropriate selection of the filter’s bandwidth
and order can potentially lead to degradation of controller’s
performance and even instability. Incorporating an additional
damping controller to reshape the converter impedance is
another option to mitigate the oscillation, and the techniques
developed to achieve this include broadband and narrowband
damping. A major challenge of this approach is that the
additional damping function itself is also subjected to the
impact of time delay [15], particularly in broadband damping,
because the phase shift introduced by the delay can be difficult
to compensate for over a wide frequency range. While it might
be possible to compensate for this phase shift within a certain
intended frequency range [16], doing so usually causes more
negative damping at nearby frequencies [5]. Furthermore, the
design of the broadband damping can interfere with existing
control functions, deteriorating the overall stability of the
system at unintended frequencies. To minimize any negative
effects of the damping function at unintended frequencies, a
bandpass filter can be used to limit the damping function to
a specified range, which leads to the narrowband damping
method.

Reference [17] demonstrates such a method by using a
biquadratic filter to improve the phase margin of the two-level
voltage source converter (2L-VSC) in the near-synchronous
range. The time-delay compensation, however, is not taken
into account since the delay effect is approximately unity in
that frequency range. Reference [18], [19] presented a similar
damping method based on the complex bandpass filter but
using a phase-lead unit to compensate for the phase shift
caused by time delay. However, additional phase shift on the
narrowband damping function, which are posed by the control
loops, are not considered. Note that all the three works are built
on the ac current feedforward loop, and the damping effect
can be viewed as a virtual impedance in series with the con-
verter [20]. In [5], it is demonstrated that voltage feedforward-
based narrowband damping can achieve virtually the same
damping effect as the current feedforward-based method used
in [17]–[19], but introduces less negative damping outside
the intended damping range (see Fig. 3 in [5]). As a result,
the voltage feedforward-based damping is considered more
desirable for suppressing HFOs of MMC. However, it has
been observed that existing narrowband damping methods for
resolving the HFO issue focus on only one specific intended
frequency. In other words, these methods cannot be used to
mitigate multiple oscillations and cannot be applied to a wide
frequency range.

This paper presents a methodology to derive simplified high-

frequency impedance models of MMCs, starting from a com-
plete matrix-based impedance expression (modeled by multi-
harmonic linearization method), in which five typical control
schemes for MMC in the HVdc application are considered.
The process is divided into three steps and provides a clear ex-
planation of why internal dynamics, dc voltage control, phase-
locked loop, and circulating current control can be neglected
in the high-frequency range. With the derived high-frequency
impedance model, a multi-tuned narrowband damping method
is proposed to suppress multiple high-frequency oscillations
issue. To fully compensate for the phase lag in the damping
function caused by time delay, control loop and plant transfer
functions at intended resonance frequencies, the damping func-
tion is combined with a phase-lead function, and the design of
the phase-lead function is thoroughly explained. In addition,
a systematic design procedure is presented to allow for the
simultaneous design of multiple damping functions, preventing
unintended effects due to mutual coupling among them. It
is noteworthy that the narrowband damping necessitates an
online resonance detection block to provide resonance frequen-
cies for damping control design, in order to address changes
in resonance frequencies due to variation in grid configuration,
altering control modes and changing operating conditions.
The algorithms for identifying the resonance frequencies and
activating damping controls in the online resonance detection
block are detailed in [21]–[23]; however, to limit the scope of
the paper, they will not be discussed further.

C. Contributions

The specific contributions of this paper are the following:
• Presenting a comprehensive method to simplify the com-

plete high-order matrix-based impedance model of MMC
obtained by multi-harmonic linearization method into
the high-frequency impedance model suitable for control
design, in which different control modes of MMC can be
captured.

• Proposing a multi-tuned narrowband damping method
to improve the passivity of a MMC around multiple
intended frequencies simultaneously. Additionally, inves-
tigating and elaborating on the mutual coupling effects
that arise when multiple narrowband damping controllers
are used.

• Proposing a design procedure for multiple narrow-
band damping controllers with compensation for mutual-
coupling effects.

D. Organization

The rest of the paper is organized as follows. Section II
describes a typical structure for an MMC-based system and
derives the high-frequency impedance model of MMC that
can be used for stability analysis and damping control design
at high frequencies. Based on the derived high-frequency
impedance model, the effect of the proposed voltage feedfor-
ward control on MMC is discussed from a paralleled virtual
admittance perspective in Section III, along with a discussion
of phase lags that the designed damping function is subjected
to and how to compensate for them. Section IV provides a
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virtual admittance-based method to design single- or multi-
tuned damping controls to enhance the passivity of MMC
around single or multiple frequencies. By performing simu-
lations in different MMC-based systems, Section V validates
the effectiveness of the proposed damping control method in
three typical MMC-based application scenarios. Section VI
concludes this paper.

II. MMC AND HIGH-FREQUENCY IMPEDANCE MODEL

A. MMC and Control Structures

Fig. 1. Schematic of the MMC-based system under study and its control
structure.

Fig. 1 shows a single-line diagram of a MMC-based system,
which also indicates where MMC main controllers and the
proposed multi-tuned narrowband damping controller should
be introduced. The ac system can consist either passive ele-
ments only, such as overhead transmission line, cables, and
passive filters, or active elements involving power converters
(e.g., Type-IV wind turbine). When the MMC operates in grid-
following mode, its primary objective is to regulate the output
ac current. Thus, it is referred to as an ac current controlled
MMC (ACC-MMC) in this work. On the other hand, when the
MMC is operated in grid-forming mode (or islanded mode for
wind integration), the output ac voltage and its frequency are
actively controlled by the MMC. Therefore, this type of MMC
is denoted as an ac voltage controlled MMC (AVC-MMC) for
the sake of simplicity.

For MMC-based HVdc applications, MMC control modes
typically include dc-bus voltage control, active/reactive power
control (denoted as “P & Q” mode ) and ac voltage control
with fixed amplitude and frequency (referred to as “fixed
Vac & f ”). The dc-bus voltage control mode can be further
divided into two types, namely, with and without reactive
power regulation [24]. In this paper, the MMC in the dc-bus
voltage controlled mode with unity power factor is marked as
“Vdc & Q = 0”, while the dc-bus voltage controlled mode with
reactive power regulation is denoted as “Vdc & Q”. In addition,
for MMCs equipped with the fixed Vac & f mode, an inner
ac current controller may or may not be used, depending on
stability considerations [10], [12], [25]. In this work, when
the inner ac current control is not used, the control mode is
denoted as “single-loop fixed Vac & f ”; meanwhile when the
inner ac current control is used, the control mode is referred to
as “dual-loop fixed Vac & f ”. The block diagram of different
control schemes for ACC-MMC and AVC-MMC are depicted
in Fig. 2.

Fig. 2. Block diagram of the main control schemes for MMC.

B. Steps to Derive High-frequency Impedance Model of MMC

Although the complete matrix-based impedance model can
well represent both internal and external dynamics of MMC,
such high-order matrix form makes designing damping con-
trols more complex and computationally demanding, partic-
ularly when used to design multi-tuned narrowband damp-
ing controllers. Therefore, this subsection aims to propose
a method to simplify the complete matrix-based impedance
model of MMC, which is modeled by the multi-harmonic
linearization method, into a high-frequency impedance model
represented by a single transfer function.

According to [8], the detailed small-signal model of MMC’s
ac-side impedance can be expressed by

Yac = (U−K)A−1
i Av (1)


Ai = U+Yl [MuZcMu +(Vu +MuZcIu)QiD]

Av = Yl [U+(Vu +MuZcIu)PvD]{
U = diag[(1, ...,1)]n×n

K = diag[(−1)Sk ]n×n
; Sk =

{
1 if k = 2i

0 if k = 2i−1
(2)
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where n is the selected harmonic truncation order for multi-
harmonic linearization method, which is typically 7; i =
0,±1,±2, · · · . The expression of the ac-side admittance of the
MMC is the center element of matrix Yac. The matrix Yl ,
Zc, are diagonal matrices representing the arm impedance and
the impedance of the equivalent module capacitor per arm,
respectively. Vu, Iu, Mu in the Toeplitz matrix form, describes
the steady-state signals of the sum capacitor voltage per arm,
arm current and modulation index, respectively. The matrix Qi
represents the effect resulting from arm current perturbations
on the modulation index via current-related controllers. The
matrix Pv represents the effect resulting from arm voltage
perturbations on the modulation index through voltage-related
controllers. The matrix D represents the time delay effect.
For more details on how to model Qi and Pv for different
control schemes, and how to express the non-zero elements
in the two matrices, please refer to [8], [26]. In the sequel,
the proposed method to simplify this matrix-based impedance
model is described in three sequential steps.

1) 1st-step Simplification

Note that, the elements of matrix Zc represent the
impedance of equivalent module capacitors per arm, whose
elements are virtually zero in the high-frequency range. As a
result, the matrix Zc reduces to a null matrix, allowing for
further simplification of (2), resulting in{

Ai = U+YlVuQiD
Av = Yl(U+VuPvD)

. (3)

This simplification step suggests that any small-signal re-
sponses arising from the interaction between small-signal
perturbations and SMs’ capacitors can be disregarded in the
high-frequency range. As of now, Qi and Pv can only affect
Ai and Av through their multiplication with Vu and Yl .
Subsequent simplification steps take into account the control
scheme employed in the MMC.

2) 2nd-step Simplification

In general, for MMCs in HVdc applications, Qi and Pv can
be expressed as [8]{

Qi = Gi +Gcirc +Gir(GQVQ +GPVP −Gvdc Zdc)

Pv = G f f +Gpll +Gir(Gvac +GQIQ +GPIP)
(4)

where, Gi, Gcirc, GP, GQ, Gvdc , Gvac , Gpll , G f f represent the
control gain matrix of ac current control, circulating current
suppressing control (CCSC), active power control, reactive
power control, dc-bus voltage control, ac voltage control,
phase-locked loop (PLL) and grid voltage feedforward. Gir
represents the ac current loop effect on the small-signal
perturbation on the reference values of current control; while
VP, VQ, IP and IQ describe the steady state values of the
ac voltage and ac current in dq-axis, respectively. Readers
can refer to [8] for more detailed expressions of each of
the matrices mentioned above. It is worth mentioning that,
depending on the specific control scheme in use in the MMC,
certain matrices on the right-hand side of (4) might be zero
when the controllers represented by these matrices are not
used.

Observe that the small-signal perturbation on the dc-side v̂dc
relies on the interaction between arm current perturbations îu
with the SMs’ capacitor dynamics, i.e. v = 1

C
∫

idt. Due to
the low-pass characteristic of the integral dynamics, the high-
frequency components in îu will experience attenuation from
the SMs’ capacitors. Thus, Gvdc can then be reduced to zero
when analyzing the MMC impedance at high frequencies. In
addition, referring back to (3) and (4), it can be observed
that Gcirc has virtually no effect on Ai in the high-frequency
range, owing to two reasons: 1) upper arm voltage perturbation
v̂u will be attenuated by Yl at fp & fp ± f1, along with
the attenuation by Zc at fp ± f1; 2) the effect of Gcirc is
only on the circulating component in the arm current îu
(i.e., common-mode current) and Gcirc can only affect the
MMC ac-side impedance through its coupling with Vu that
includes harmonics solely below the 3rd-order. Consequently,
the multiplication between Vu and Gcirc results in a negligible
effect in the high-frequency range, indicating Gcirc can be
replaced by a null-matrix. This simplification leads to two
important outcomes: 1) in the high-frequency range, dc-side
small-signal responses propagated from the ac-side can be
ignored, as also noted in [14]; and 2) the circulating current
control has negligible effect on the MMC’s high-frequency
impedance.

3) 3rd-step Simplification

After replacing matrix Gvdc and Gcirc in (4) by a null-
matrix, the remaining matrix in (4) represents the controllers
whose input contains only the ac-side current or voltage. As
explained in [7], each non-zero element of Gpll includes a
transfer function representing the closed-loop response of the
PLL, that is, 1/[1+

√
3
2V1

Hθ (s)
s ], where V1 is the fundamental

RMS voltage of the MMC and Hθ (s) represents the PI
compensator of the PLL. Considering the low bandwidth of
the PLL and 2nd-order lowpass nature of 1/[1+

√
3
2V1

Hθ (s)
s ],

the high-frequency components in the input of the PLL will be
attenuated by the PLL itself, and thus, cannot affect the MMC
impedance at high frequencies. Consequently, Gpll can also be
reduced to a null matrix. This simplification step indicates that
the PLL has no effect on the MMC impedance in the high-
frequency range.

Based on the aforementioned three-step simplification pro-
cess, (4) can be simplified to the following:{

Qi = Gi +Gir(GQVQ +GPVP)

Pv = G f f +Gir(Gvac +GQIQ +GPIP)
. (5)

Combining (1), (2) and (5), then extracting the center ele-
ment of this combined matrix, the resulting simplified high-
frequency impedance of MMC is given as the reciprocal of the
center element. For the sake of conciseness, the high-frequency
MMC impedance model with different control schemes are
summarized in Table I, in which: 1) Gi(s) =Hi(s− jω1)− jKd
represents the ac current controller in the dq-reference frame,
where Hi(s) designates the PI compensator for ac current
control, and Kd = jω1Leq is the dq current decoupling gain;
2) G f f (s) =−Fv

f ilter(s) represents a grid voltage feed-forward
loop with low pass filter (see [2], [27]), typically having
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TABLE I
SIMPLIFIED MMC HIGH-FREQUENCY IMPEDANCE MODEL IN DIFFERENT CONTROL MODES.

Control Modes Null Matrix in (5) High-frequency Impedance of MMC

Vdc & Q = 0 GP, GQ, Gvac

Req+sLeq+e−sTd Gi(s)
1+e−sTd G f f (s)

Vdc & Q GP, Gvac

Req+sLeq+e−sTd [Gi(s)+ 3
4 Gi(s)GQ(s)Vd ]

1+e−sTd [− 3
4 Gi(s)GQ(s)(Id+ jIq)+G f f (s)]

P & Q Gvac

Req+sLeq+e−sTd [Gi(s)+ 3
2 Gi(s)GP(s)Vd ]

1+e−sTd G f f (s)

fixed Vac & f (single-loop) GP, GQ, Gi (Gir = 1)
Req+sLeq

1+e−sTd Gvac (s)

fixed Vac & f (dual-loop) GP, GQ,G f f
Req+sLeq+e−sTd Gi(s)
1+e−sTd Gvac (s)Gir(s)

low bandwidth, thus G f f (s) can be neglected when analyzing
MMC high-frequency characteristics as described in [11], [19];
3) Gir(s)=Hi(s− jω1) represents the ac current control effects
on the current reference generated by an outer control loop1;
4) Gvac(s) =Hv(s− jω1) represents the ac voltage controller in
the dq-reference frame, where Hv(s) designates the PI compen-
sator for the ac voltage regulator; 5) GP(Q)(s)=HP(Q)(s− jω1)
represents the active (reactive) power controller in the dq-
reference frame, where HP(Q)(s) represents a PI compensator
for the active (reactive) power regulator.

TABLE II
ELECTRICAL PARAMETERS FOR ACC-MMC AND AVC-MMC

Parameter Symbol Value Unit

rated active power PN 900 MW
rated ac side voltage UN 300 kV RMS ph-ph
rated dc side voltage Vdc ±320 kV

arm reactor impedance Rs + jLs 0.1+ j0.05 Ω

submodules per arm Nsm 200 N/A
submodule capacitance Csm 4.66 mF

time delay e−sTd 200 µs

TABLE III
CONTROL SPECIFICATIONS FOR ACC-MMC AND AVC-MMC

Control Mode Kp Ki Kd

dc voltage control 0.0065 0.2 NA
ac current control 22.2 27915.5 7.85

circulating current control 22.2 13957.7 31.42
active/reactive power control 1.5 300 N/A

phase-locked loop 1.48×10−4 0.0093 N/A
ac voltage control 0.5 54.4 N/A

To validate the above discussion on simplifying MMC
impedance model, the derived high-frequency impedance
model of MMC are verified by its comparison with numerical
scan of the impedance of the MMC defined in Table II. This
comparison is illustrated in Fig. 3 and Fig. 4. The controller

1Note that, if the inner current control is not used, Gir(s) = 1.

Fig. 3. Comparison of analytical simplified high-frequency impedance model
(solid lines) and numerical scan of ACC-MMCs (markers)

Fig. 4. Comparison of analytical simplified high-frequency impedance model
(solid lines) and numerical scan of AVC-MMCs (markers)

specifications for both ACC-MMC and AVC-MMC are listed
in Table III. As can be observed from the comparisons, the
high-frequency ACC-MMC impedance models are accurate
for frequencies above ∼300 to 400 Hz, while the high-
frequency AVC-MMC impedance models are accurate for
frequencies above ∼200 Hz. In addition, the power control
loop of ACC-MMC (i.e., Vdc & Q and P & Q control modes)
and the inner current loop of AVC-MMC have the effect
of raising the starting frequency of the negative damping
region of MMC, which makes the MMC less likely to develop
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oscillations with the ac system in the medium frequency range
(100Hz to 1000Hz). On the other hand, for the frequency
range above 1000 Hz, the AVC-MMC impedance responses
are nearly the same as the inner current loop has virtually no
effect on the AVC-MMC impedance above ∼800 Hz.

C. General Form for Damping Control Design

Considering the impedance model of MMC in different
control schemes presented in Table I, the simplified model
can be expressed in a general form for the ease of damping
control design, which is given by

Zp (s) =
Req + sLeq + e−sTd Gc(s)

1+ e−sTd Gv (s)
=

Np(s)
Dp(s)

=
1

Yp(s)
(6)

where Np(s) and Dp(s) represent the numerator and denomi-
nator of Zp(s) respectively. Gc(s) and Gv(s) come in different
form as shown in Table I.

In order to demonstrate the generality of the proposed
damping design method, this paper will use MMCs with three
different control schemes as the examples: 1) ACC-MMC in
Vdc & Q = 0 mode; ACC-MMC in P & Q mode; 3) AVC-
MMC in single-loop fixed Vac & f mode.

III. NARROWBAND DAMPING OF MMC

A. Impedance-based Stability Analysis of HF Oscillations

Fig. 5 a) depicts the equivalent circuit of an ACC-MMC
connected to a grid and Fig. 5 b) displays the equivalent circuit
of an AVC-MMC connected by a wind farm, where Zp(s)
represents the high-frequency MMC impedance developed in
Section II, Zg(s) and ZWF(s) represent the ac grid impedance
and wind farm impedance, respectively. Stable operation of
the ACC-MMC in circuit a) requires that the output current
of the MMC (indicated as IPCC(s)) be stable. On the other
hand, for a stable operation of the AVC-MMC in circuit b),
the stability of the voltage established by the AVC-MMC at
the PCC (indicated as VPCC(s)) must be assessed. IPCC(s) in
Fig. 5 a) and VPCC(s) in Fig. 5 b) are given by

IPCC(s) =VPCC(s)
1+Zp(s)/Zg(s)

Zg(s)
(7a)

VPCC(s) = IPCC(s)
Zp(s)

1+ZWF(s)/Zp(s)
(7b)

Based on the impedance-based stability criteria [28], the
stability of the two inter-connected system shown in Fig. 5 can
be determined by applying the Nyquist criterion to Zp(s)/Zg(s)

Fig. 5. Equivalent circuit of an: a) ACC-MMC connected to a grid; and b)
AVC-MMC connected by wind farm;

and ZWF(s)/Zp(s). If the locus does not encircle the point
(-1,0), then the system is stable. This stability criterion is
equivalent to that the phase difference between Zp(s) and
Zg(s) or between Zp(s) and ZWF(s) being less than 180° at the
frequency of the magnitude intersection in the Bode plot (i.e.,
resonance frequency). If the phase difference exceeds 180°,
additional damping is required at the resonance frequency to
provide positive damping to the MMC. As a consequence, the
phase difference can be reduced to a value below 180°.

B. Voltage Feedforward-based Damping

The voltage feedforward-based damping control is placed
in parallel (see the blue part of the diagram in Fig. 1) with
the existing controllers, and the control output is sent directly
to the modulator. Using multi-harmonic linearization [7] and
considering up to the 3rd-order steady-state harmonics, the
voltage feedforward-based damping control results in adding
a damping control gain matrix Gd to Pv of (3), in which Gd
is a (7×7) diagonal matrix defined as

Gd = diag[0 Hd(s− j2ω1) 0 Hd(s) 0 0 0]7×7 (8)

where Hd(s) is the transfer function of damping controller. As
a result, in the high-frequency range, the voltage feedforward-
based damping effect is equivalent to adding e−sTd Hd(s) to
Np(s) in (6), and therefore the simplified admittance model of
the damped MMC can be written as

Ypdv (s) =
1+ e−sTd [Hd(s)+Gv (s)]

sL+ e−sTd Gc(s)
= Yp(s)+

Yr(s)︷ ︸︸ ︷
e−sTd Hd(s)

Np(s)
(9)

with the subscript pdv indicating the damped MMC impedance
by voltage feedforward-based damping. Equation (9) shows
that the added damping controller is independent of the other
control loops used in MMC. Therefore, while this paper
focuses specifically on ACC-MMC in the “Vdc & Q= 0” mode,
ACC-MMC in the “P & Q” mode and AVC-MMC in single-
loop “fixed Vac & f ” mode, the proposed damping method can
also be applied to MMC with other control schemes listed in
Table I. In fact, (9) can be interpreted as adding a virtual
admittance Yr(s) in parallel with undamped MMC admittance
Yp(s). When properly designed Hd(s), the passivity of MMC at
a certain frequency will be enhanced, if the designed Yr(s) has
a positive real part at that frequency. As a result, this method
can be referred to as the virtual admittance-based damping
control. To better understand the effect of voltage feedforward
damping, the circuit notation of (9) is shown in Fig. 6.

Fig. 6. Equivalent circuit of voltage feedforward-based damping for: a) MMC
in ACC mode, and b) MMC in AVC mode;
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C. Narrowband Damping Function Hd(s)

1) Phase shift of Yr(s) due to e−sTd/Np(s):
If Hd(s) does not contain any filter but only a damping

gain Kd , e−sTd Kd in (9) will become negative in the frequency
range f ∈ [(4n+1)Td/4,(4n+3)Td/4], n∈N [29]. In addition,
1/Np(s) will further add phase shift to Yr(s) (e.g., 1) For ACC-
MMC in the “Vdc & Q = 0” mode, the frequency response of
1/Np(s) can be treated as a 2nd-order bandpass filter whose
center frequency roughly equals to the cutoff frequency of
current control; 2) For AVC-MMC in the “single-loop fixed
Vac & f ” mode, 1/Np(s) is reduced to 1/(Req + sLeq), which
provides an approximately constant −90◦ phase offset to
Yr(s) across all the high-frequency range). As a result, Yr(s)
may periodically decrease the passivity of the MMC at high
frequencies when added in parallel with the MMC, leading
to more oscillation issues. In order to avoid this unwanted
effect, a band-pass filter must be used, in conjunction with
the damping gain Kd in Hd(s), to limit the damping effect
provided by Yr(s) within an intended damping range.

2) Bandpass Filter in Hd(s):

Various types of bandpass filters are available in the lit-
erature (see [30]), each with its own characteristics and per-
formance specifications. Nonetheless, selecting an appropriate
bandpass filter for enhancing MMC’s passivity requires con-
sideration of some critical factors, which are listed as follows:

• A higher-order filter provides a better attenuation rate
below and above the intended damping range but lead
to more phase shift centered on the cutoff frequency.

• The filter should be stable across all frequencies [31], and
insensitive to numerical rounding errors that arise from
discrete domain filter realization.

• To satisfy the damping speed requirements, the filter
should have a fast settling time and a low computation
burden.

• It is preferable to use a filter with polarity-selective prop-
erties allowing damping in positive or negative sequences
separately.

• Methods based on the Discrete Fourier Transform (DFT)
should be avoided (e.g., sliding DFT in [5]) as they
require additional frequency-locked loops (FLL) to adjust
the base frequency of the filter.

Based on these considerations, the first-order complex co-
efficient filter (CCF) [32] is adopted in this work, which is
given by

Hcc f (s) =
ωb

s− jωr +ωb
(10)

where ωr specifies the center frequency of CCF, which is
also the intended frequency (e.g. resonance frequency), and ωb
defines the -3dB bandwidth. With the inclusion of CCF, the
negative impact of e jθ and Np(s) outside the intended damping
range can be attenuated in the transition band and stop band
of CCF.

3) Additional Phase Lag Compensation at ωr:
Observe that from (9), though the phase shift effect from

e−sTd/Np(s) on Yr(s) can be minimized outside the passband
of CCF, e jθ and Np(s) also add phase lags to Yr(s) within the

Fig. 7. Bode plots of Yr(s) centered on 2000 Hz with different choices of
compensation angle

passband (i.e., at and around ωr), making Re{Yr( jωr)} to be
negative immediately around ωr. To cancel the phase shift, a
steady-state phase-lead compensation e jθ can be included in
Hd(s), ensuring zero phase shift at ωr and reducing the phase
lag around it. Therefore the resulting damping controller is
given by

Hd(s) = Kde jθ Hcc f (s) (11)

where Kd is the desired damping gain. As an example of
how phase lag compensation affects the passivity of Yr(s),
assume that Hd(s) in (11) is being designed for the ACC-
MMC in the “Vdc & Q = 0” mode that is described in
Section II-B. ωb = 2×π×80 rad/s, ωr = 2×π×2000 rad/s,
and Kd is tuned to obtain a 1 Siemens admittance at ωr.
The frequency response of Yr(s) is plotted in Fig. 7 using
a linear frequency scale (zoom-in view around the selected
ωr) for different compensation angles. The one with “θ =
0” indicates no phase lag compensation, the other with“θ =
e− jωrTd ” indicates that the compensation considers only the
impact of time delay, while the one “θ = e− jωrTd/Np( jωr)”
indicates a full compensation on the phase lag. As expected,
with a full phase lag compensation, Yr(s) with positive real part
(i.e. phase limited within [-90◦, 90◦]) is obtained everywhere
but in a narrowband region ( f ∈ [1741 Hz, 2250 Hz]) around
ωr. Yr(s) with the negative real part is encountered outside the
region, however, this could affect the passivity of the other
virtual admittances located outside the region, which is the
root cause of the mutual coupling between multiple virtual
admittances.

IV. VIRTUAL ADMITTANCE-BASED DAMPING DESIGN

With proper phase compensation at the center frequency of
the CCF, the design of Hd(s) is now narrowed down to the
design of the damping gain Kd and the selection of the width
of the damping band ωdb, as described in the sequel.

A. Damping Design for a Single Resonance at ωr

1) Design Consideration of Kd:
Equation (9) and (11) can be combined and rearranged to

obtain an expression that excludes Kd , as shown in (12) a),
where θ is −∠e− jωrTd/Np( jωr). Hence, Kd is then determined
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by the conductance of undamped MMC at ωr, resulting in (12)
b), where x is a factor that scales the percentage of the total
conductance of MMC being compensated at ωr.

Yd(s) = e jθ e−sTd Hcc f (s)
Np(s)

a); Kd = x

∣∣Re
{

Yp( jωr)
}∣∣

Yd( jωr)
b)

(12)

Combining (9) and (12), the designed virtual admittance can
be re-written as:

Yr(s) = KdYd(s) = Kde jθ e−sTd Hcc f (s)
Np(s)

(13)

2) Design Consideration of x:
As indicated in (12) b), x can be treated as a per-unit (p.u.)

value, which expresses the designed amount of conductance
(i.e., Re{Yr( jωr)}) in terms of a base quantity selected as
conductance of undamped MMC (i.e., Re

{
Yp( jωr)

}
). Theo-

retically, x can be any value greater than 0. However, adding
a positive conductance at ωr would cause a change in MMC
magnitude at ωr, indicating a new magnitude intersection be-
tween the damped MMC impedance and ac system impedance.
As a result, a new resonance may be developed if the new
resonance frequency falls into the non-passive region. As
depicted in Fig. 8 a), x = 1 gives improved passivity, as
it helps to fully cancel the negative conductance of MMC
at ωr1 (i.e., Re{Yp( jωr1)} ). But it is often not enough to
prevent instability, as the compensation makes the damped
MMC purely inductive. In turn, this decreases the magnitude
of MMC’s admittance at ωr1, and as a result, it moves the
resonance frequency above the original resonance frequency
ωr1, at which system net-damping may still be negative. To
avoid resonance frequency drift, x can be set to 2 to ensure that∣∣Ypdv( jωr)

∣∣= ∣∣Yp( jωr)
∣∣. This design approach is illustrated in

Fig. 8 b), where the magnitude of MMC admittance remains
unchanged before and after damping.

As shown in Fig. 7, the designed virtual admittance Yr(s)
introduces a positive real admittance below ωr and above
ωr, but only within a narrow damping band where the phase
response of Yr(s) is inside [−90◦,90◦]. Thus, the passivity
of the MMC is enhanced within this narrow frequency range
centered at ωr, which allows system resonance frequency
to move slightly below or above ωr after damping. As a
result, one can further enlarge x to effectively adjust the
level of damping introduced based on the system damping
requirements.

3) Width of the Damping Band ωdb:
For design purposes, we first define the term damping band

Fig. 8. Complex vector figure of the admittances at ωr1 under single-tuned
damping when a) x = 1; b) x = 2.

ωdb to be the frequency range around ωr where the phase
response of Yr(s) is inside [-90◦, 90◦]. If one ignores e jθ e−sTd

and 1/Np(s) in (13), then ωbd would be the entire frequency
range, as the phase shift of the 1st -order CCF is always within
[−90◦,90◦]. However, e−sTd e jθ and Np(s) further enlarge the
phase shift. Given the -3dB bandwidth ωb and center frequency
ωr of Hcc f (s), the width of damping band ωdb can be obtained
by numerically evaluating the following expressions

ωl = max{FindRoot[ e jωrTd e− jωTd Hcc f ( jω)

Np( jω) = 0,x ≤ ωr]}

ωu = min{FindRoot[ e jωrTd e− jωTd Hcc f ( jω)

Np( jω) = 0,x ≥ ωr]}
ωdb = ωu −ωl

(14)

where, FindRoot denotes a function returns the roots of
the polynomial represented by e jωrTd e− jωTd Hcc f ( jω)/Np( jω),
which can be programmed in any available numerical comput-
ing environment.

As mentioned previously, if x is selected to be greater than
2, the virtual admittance would cause |Ypdv( jωr)|> |Yp( jωr)|,
leading to a resonance frequency drift. In general, after Kd
is obtained, ωdb can be selected as any value as long as
it is wide enough to cover the drifted resonance frequency.
However, though a large ωdb increases the passivity of MMC
over a wider frequency range centered on ωr, it can result
in unintended effects at other frequencies nearby the damping
band.

B. Damping Design for Multiple Resonances from ωr1 to ωrn

The proposed damping controller design may be applied to
more than one resonance frequency in two scenarios: 1) There
are multiple magnitude intersections between impedance of
MMC and the impedance of external system, where the net-
damping at each intersection are all smaller than zero. As
a result, there are multiple resonances in the system that
need to be suppressed simultaneously; 2) There are multiple
magnitude intersections between the impedance of MMC
and the impedance of external system, but the negative net-
damping exits only at some intersection frequencies. However,
the added virtual admittances that enhance passivity at those
frequencies may induce new resonances at other frequencies
where the MMC was poorly damped in the first place.

1) Mutual Coupling Effect:
To better understand the mutual coupling effect, consider an

example where virtual admittances Yr2(s), Yr3(s), . . . , Yrn(s)
are designed to enhance passivity at ωr2, ωr3, . . . , ωrn. Each
Yrk(s) ∀ k = 2 . . .n introduces an admittance at ωr1, which are

Fig. 9. Complex vector figure of admittances at ωr1 under multi-tuned
damping when undamped MMC admittance a) Yp( jωr1)> 0; b) Yp( jωr1)< 0
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Yr2( jωr1), Yr3( jωr1), . . . , Yrn( jωr1). All of these admittances
can be superposed and denoted as ∑

n
j=2 Yr j( jωr j). Fig. 9 a)

illustrates the complex vector of admittances at ωr1, where
Yp( jωr1) is the undamped MMC impedance at ωr1. As can
be observed, even if Yp( jωr1) is passive, the impedance
Ysyn( jωr1) synthesized by ∑

n
j=2 Yr j( jωr j) and Yp( jωr1) falls

into the non-passive range. There is, therefore, a risk of the
occurrence of a new unstable resonance at ωr1 after damping
controllers are applied at ωr2, ωr3, . . . , ωrn. On the other hand,
as depicted in Fig. 9 b), when an MMC’s impedance is orig-
inally non-passive at ωr1, the MMC’s passivity at ωr1 can be
further jeopardized by ∑

n
j=2 Yd j( jωr j) (i.e., Re

{
Ysyn( jωr1)

}
<

Re
{

Yp( jωr1)
}
< 0 ). Therefore, the design of the virtual

admittance at a particular resonance frequency should also
counteract the negative conductance introduced by the virtual
admittances centered at other resonance frequencies.

2) Design Consideration of Damping Gains Kdk:
Assume that virtual admittances Yrk(s)|k=1,...,n needs to be

designed at ωrk|k=1,...,n, and x for each virtual admittance
is selected to be xk|k=1,...,n. Considering the full effects of
mutual coupling on the designed admittance at each intended
frequency, a proper design of Kdk yields:

Kd1Yd1( jωr1)︸ ︷︷ ︸
Yr1( jωr1)

+ ∑
n
k=2KdkYdk( jωr1)︸ ︷︷ ︸

Mutual Coupling Effect at ωr1

= x1
∣∣Yp( jωr1)

∣∣︸ ︷︷ ︸
Desired Conductance

Kd2Yd2( jωr2)︸ ︷︷ ︸
Yr2( jωr2)

+ ∑
n
k ̸=2KdkYdk( jωr2)︸ ︷︷ ︸

Mutual Coupling Effect at ωr2

= x2
∣∣Yp( jωr2)

∣∣︸ ︷︷ ︸
Desired Conductance

...
KdnYdn( jωrn)︸ ︷︷ ︸

Yrn( jωrn)

+ ∑
n−1
k=1KdkYdk( jωrn)︸ ︷︷ ︸

Mutual Coupling Effect at ωrn

= xn
∣∣Yp( jωrn)

∣∣︸ ︷︷ ︸
Desired Conductance

(15)

where Ydk(s) is in the same expression to Yd(s) in (12) a). By
putting such system of linear equations into matrix form, the
damping gains can be solved by calculating

Kd =


Re{Ydk( jωr1)}
Re{Ydk( jωr2)}

...
Re{Ydk( jωrn)}


−1

·diag(xk) ·


∣∣Re

{
Yp( jωr1)

}∣∣∣∣Re
{

Yp( jωr2)
}∣∣

...∣∣Re
{

Yp( jωrn)
}∣∣


(16)

where, k = 1,2, ...,n; Kd = [Kd1,Kd2, ...,Kdn]
T; Ydk( jωrk) are

row vectors with n entries; diag(xk) is a (n × n) diagonal
matrix, consisting of elements that are specified by the desired
amount of positive conductance in p.u. at resonance frequen-
cies ωrk|k=1,...,n.

3) Determination of xk:
When Yp( jωrk) is negative at ωrk, the same considerations

on selection of xk as discussed in Section IV-A can be applied.
Special attention must be paid when the MMC admittance
originally has a positive real part at a certain intended fre-
quency ωrk, but the mutual coupling effects lead to a negatively
damped admittance at that frequency after damping controls
are applied to enhance passivity at other frequencies. In such
a condition, xk = 1 is recommended for virtual admittance
designed at ωrk unless a specific damping level is required,

which maintains the original passivity of MMC at ωrk and
avoids creating a new unstable resonance.

4) Existence of Solutions for Kd:
Equation (16) can be written in a shortened form as:

Kd = Y−1Xb (17)

As Kd is calculated by using the inverse of Y, it is necessary
to discuss the condition for Y to be an inverse-positive matrix,
and to provide the solution when Y is not inverse-positive.

In order to understand the characteristics of the entries in Y,
one may recall Fig. 7 and re-plot the Yr(s) with a full phase
lag compensation in a wider frequency range from 100 Hz
to 5 kHz, as shown in Fig. 10. As can be seen, the added
virtual admittance creates a narrow positive damping range
(i.e., Region 1) around 2 kHz, but outside this range unwanted
negative damping is added almost everywhere except Region 2
and 3. Therefore, Y is usually a Z-matrix whose off-diagonal
entries are less than or equal to zero [33]. In addition, the
added virtual admittance designed for intended frequencies
(i.e., main-diagonal entries) is strictly conductive and positive.
Hence, based on the Gershgorin Circle Theorem [34], the
eigenvalues of Y are all positive, which indicates that Y is a
non-singular M-matrix whose inverse matrix is always positive
[33].

In case another intended frequencies fall within the Region
2 or Region 3, though it is not usual, there will be positive
entries in Y, meaning Y is not a non-singular M-matrix.
However, from the perspective of passivity enhancement of
MMC, the positive entry represents that: When a virtual
admittance Yr(s) centered at 2 kHz is introduced, there is
always positive damping inherently added to Region 2 and
Region 3, enhancing the passivity of MMC in these two
regions. It should be noted that the amount of positive damping
introduced by Yr(s) to Region 2 and Region 3 is relatively
small, as a result of the magnitude attenuation of the bandpass
filter used in the damping controller. Thus, a simple and direct
solution is to replace these positive entries in Y by 0, then Y
becomes to a non-singular M-matrix and it is again inverse-
positive.

Fig. 10. Bode plots of Yr(s) centered on 2000 Hz with a full phase lag
compensation



10

Fig. 11. The structure of MCCF synthesized as direct-form I; b) realization
of the proposed voltage feedforward-based damping in αβ reference frame

C. Discrete-Time Modeling of the Proposed Damping Con-
troller

Due to the discrete nature of measurements, controls and
modulation, a CCF in the z-domain, synthesized as direct-
form I [31], is adopted in this work. With its multiple-
parallel expression, multiple CCF (MCCF) can be synthesized
simultaneously, as shown in Fig. 11 a). The transfer function
of discretized MCCF is given by

Hmcc f (z) =
n

∑
k=1

Kdke jθk(1− e−ωbkTs)z
z− e−(ωbk− jωrk)Ts

(18)

It is noteworthy that e−ωbkTs , e jωrkTs and e jθk in (18) result
in complex-valued signals, while practical signals are real-
valued. Hence, to make use of the imaginary part of complex-
valued signals, the realization of the proposed damping control
is accomplished in the αβ -reference frame [32] as shown in
Fig. 11 b), where three-phase voltage vabc

s is the input, and the
damping controller output mabc

d is directly sent to the MMC
modulator as early illustrated in Fig. 1.

The block diagram in Fig. 12 offers a comprehensive
overview of the process for programming the proposed multi-
tuned narrowband damping control, drawing upon the dis-
cussions and findings presented throughout the paper. This
high-level architecture captures the key stages involved in
developing the damping control method, beginning with the
identification of high-frequency oscillations and continuing
through to the final implementation of the multi-tuned nar-
rowband damping control strategy.

V. CASE STUDIES

To validate the performance of the proposed narrowband
damping method on suppressing HFO in MMC-based ap-
plications, three examples are presented in this section. For
the sake of illustration of proposed damping control in the
forthcoming examples, the resonance frequencies are assumed
to be given by online resonance detection or online impedance
measurement method such as those in [21]–[23]. The MMC-
based renewable energy integration has been known to suffer
from multiple HFOs when the MMC is imposed to long
overhead transmission lines (OTL) or HVac cables [5], [21].
The first two case studies specifically aim to verify the
performance of the multiple narrowband damping method in
a scenario when the ACC-MMC is connected to a 160-km
overhead transmission line (OTL) via a 300/345 kV step-up
transformer, where in the first case the MMC operates in Vdc &
Q= 0 mode while the MMC in the second cases works in P &
Q mode. The third case study aims to validate the performance
of the proposed narrowband damping controls when used to
suppress HFO during the integration of wind farms. Each of
the case is simulated in MATLAB/Simulink using a detailed
EMT models, inclusive of the MMC.

A. ACC-MMC (Vdc & Q = 0) Connected to a Long Overhead
Transmission Line

Fig. 13. ACC-MMC (Vdc & Q = 0 mode) connected to a power grid via
160-km long overhead transmission line.

The ACC-MMC is connected to a 345 kV OTL via a
300/345 kV step-up transformer. The OTL has a length of
160 km and the parameters are tabulated in Table IV. The
power grid behind the transmission line is assumed to be an
ideal voltage source. The schematic diagram of this system is
depicted in Fig. 13.

TABLE IV
PARAMETERS OF THE 345 KV OTL

Parameter Series Resistance Series Inductance Shunt Capacitance

Values (per km) 18.45×10−3 Ω 0.98×10−3 H 11.06×10−9 F

Fig. 12. The big-picture architecture of the programming of the multi-tuned damping control.
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Fig. 14. Impedance responses of 160 km, 345 kV OTL predicted by
frequency-dependent model and 10 cascaded π-sections

1) Modeling of Long Transmission Line

The impedance of a long transmission lines exhibit multiple
peaks (i.e., shunt resonances) and dips (i.e., series resonances)
on the magnitude due to the distributed nature of the line.
To correctly predict the high-frequency characteristic of a
long transmission line, cascaded π-section models are widely
used in the literature [4], [16]. However, the number of π-
sections needed depends on the targeted analysis frequency
range and the desired level of accuracy. As an example, the
impedance comparison of the 160-km OTL predicted by 10
cascaded π-section model and predicted by the frequency-
dependent model (FDM) [35] is given in Fig. 14. As can
be observed from the comparison, a 10 π-section model can
only approximate the high-frequency behavior of the OTL up
to 2 kHz. Although a larger number of π sections can help
predict the high-frequency impedance of a long transmission
line more precisely, adding more π-sections inevitably reduces
simulation efficiency, and might even cause spurious numerical
oscillations [36]. Considering that the targeted frequency range
in this work ranges from 100 Hz to the Nyquist frequency (i.e.,
5000 Hz), the FDM-based OTL model is adopted and used in
the remaining examples.

2) Impedance Analysis and Simulation Validation

Fig. 15 shows the impedance response of the undamped
MMC impedance Zp(s) (orange), the impedance of MMC
with five damping controllers (i.e., penta-tuned damping)
Zp5d(s) (green) and the OTL impedance Zg(s) (blue). The
undamped MMC and OTL result in five series resonances
below 5 kHz at 724 Hz, 1551 Hz, 2448 Hz, 3372 Hz, and
4305 Hz. Table V summarizes the undamped MMC’s damping
(marked as Re

{
Zp(s)

}
), damped MMC’s damping (marked

as Re
{

Zp5d(s)
}

) and the phase difference between Zp(s)
and Zg(s), and between Zp5d(s) and Zg(s). As indicated by
the green box in the second row of Table V, the MMC is
negatively damped at 1551 Hz, 2448 Hz and 3372 Hz where
the real part of the MMC impedance is negative. Thanks to
the resistance of the step-up transformer and the resistance

Fig. 15. a) Impedance responses of: undamped and damped ACC-MMC
(Vdc & Q = 0 mode) against OTL impedance; b) zoom-in view of impedance
responses plotted in a).

distributed along the OTL, only the phase difference at 1551
Hz exceeds 180°, while with the phase difference at 2448 Hz is
very close to 180°. According to the impedance-based stability
theory, an unstable oscillations at 1551 Hz and poorly damped
oscillations at 2448 Hz are expected when this MMC connects
to the OTL.

Although it is not necessary to design damping controllers
for all resonance frequencies listed in Table V, it is important
to demonstrate the ability of the method to address multiple
resonance frequencies simultaneously over a wide frequency
range. The compensation angle used in (12) for the damping

TABLE V
MMC’S DAMPING AND PHASE DIFFERENCE AT INTERSECTION

FREQUENCIES (CASE 1)

724 Hz 1551 Hz 2448 Hz 3372 Hz 4305 Hz

Re
{

Zp(s)
}

2.21 Ω −17.54 Ω −20.62 Ω −1.63 Ω 15.22 Ω

∠Zp(s)−∠Zg(s) 176.52° 181.65° 179.81° 174.62° 171.27°
Re

{
Zp5d(s)

}
4.45 Ω 17.62 Ω 20.37 Ω 1.63 Ω 30.73 Ω

∠Zp5d(s)−∠Zg(s) 175.06° 172.83° 173.80° 174.28° 169.98°
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controller at each frequency is calculated by substituting the
resonance frequencies into θ = −∠e− jωrTd/Np( jωr), which
yields θ = [140.68°,-153.92°,-90.73°,-27.05°,38.69°]. There-
after, the damping gain of each damping controller can be
automatically obtained by using a suitable computer program
to solve the following matrix equation 2

Kd = Y−1Xb (19)

where

Y=


113.24 −9.43 −4.25 0.63 2.46
−3.51 42.09 −3.17 −1.52 0.23
−0.86 −1.74 23.04 −1.70 −0.79
0.08 −0.54 −1.10 14.98 −1.12
0.23 0.06 −0.36 −0.77 10.54

×10−4

min(Y,0)
=⇒


113.24 −9.43 −4.25 0 0
−3.51 42.09 −3.17 −1.52 0
−0.86 −1.74 23.04 −1.70 −0.79

0 −0.54 −1.10 14.98 −1.12
0 0 −0.36 −0.77 10.54

×10−4

(20)

X=


1 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 1

 and b =


2.89
6.73
2.68
0.11
0.32

×10−4 (21)

which yields Kd = [0.044,0.174,0.134,0.026,0.035]T. It
should be noted that, based on the discussion in the Section
IV.B.4), in order to ensure matrix Y always invertible, the
positive entry in Y is automatically replaced by 0 as shown
in (20) (e.g., MATLAB command min(Y,0)). It is also worth
mentioning that each element of matrices (19), (20) and (21)
are automatically calculated by a computer program when the
resonance frequencies are given.

Fig. 15 demonstrates that the designed penta-tuned damper
has negligible effect on the impedance, except in the immedi-
ate vicinity of the damping band created by each damping
controller. Table V shows that the added damper reduces
the phase differences at 1551 Hz and 2448 Hz to 172.83°
and 173.80°, respectively, indicating that both the negatively
damped and poorly damped impedance are compensated. In
particular, as noted by the green box in the fourth row
of Table V, the designed damper introduced the expected
level of positive damping, which compensates the negative
MMC damping at 1551 Hz, 2448 Hz and 3372 Hz while
virtually not changing the absolute value of the real part of the
MMC impedance at these frequencies. As a consequence, the
magnitude intersection frequencies between MMC and OTL
remain unchanged before and after damping.

Time-domain simulation results are presented in Fig. 16 a)
and b) to verify the performance of the penta-tuned damping
control design. The simulation is carried out by connecting
the undamped MMC to the OTL, resulting in an unstable
oscillation that arises at 1551 Hz. At t = 0.5 s, the penta-
tuned damping control is enabled, and the growing oscillation
is effectively suppressed within five fundamental cycles, al-
lowing MMC to transfer power to the power grid stably. At t
= 2.5 s, the added penta-tuned damping function is deactivated,
causing the 1551 Hz oscillation to grow once again.

2Note: the cutoff frequency ωbk is set to be 2π ·80 rad/s for each CCF.

Fig. 16. Simulated time-domain responses: a) overall response of MMC
current; b) zoom-in view of MMC current in 0.5 ∼ 0.8s

B. ACC-MMC (P & Q Mode) Connected to a Long Overhead
Transmission Line

Fig. 17. ACC-MMC (P & Q mode) connected to a power grid via 160-km
long overhead transmission line.

As indicated by Table I and Fig. 3, the outer active/reactive
power loop contributes to positive damping for the frequency
range below 1 kHz, helping the MMC to avoid oscillation
in that region. However, the outer active/reactive power loop
levels up the amount of negative damping between 1 kHz and
3 kHz, a frequency range where the majority of reported HFO
issues occur [3], [4]. This subsection specifically aims to verify
the multi-tuned narrowband damping method when a P & Q
controlled MMC is connected to the OTL defined in case 1,
and to demonstrate the generality of our proposed damping
method.

Fig. 18 displays the undamped MMC impedance Zp(s)
(orange), the damped MMC impedance Zp3d(s) (green) and
their comparison with the OTL impedance Zg(s) (blue). The
MMC forms series resonances with the OTL at five frequen-
cies listed in Table VI, where the damping of Zp(s) and the
phase difference between Zp(s) and Zg(s) are also presented.
As shown in Table VI, Zp(s) exhibits negative damping at
1559 Hz, 2448 Hz and 3369 Hz, with the phase differences
at 1559 Hz and 2448 Hz larger than 180°. This results in two

TABLE VI
MMC’S DAMPING AND PHASE DIFFERENCE AT INTERSECTION

FREQUENCIES (CASE 2)

747 Hz 1559 Hz 2448 Hz 3369 Hz 4303 Hz

Re
{

Zp(s)
}

16.07 Ω −38.95 Ω −63.75 Ω −18.63 Ω 48.72 Ω

∠Zp(s)−∠Zg(s) 159.58° 188.5° 185.99° 176.27° 168.65°
Re

{
Zp3d(s)

}
13.36 Ω 40.15 Ω 62.07 Ω 18.34 Ω 37.38 Ω

∠Zp3d(s)−∠Zg(s) 162.62° 165.48° 167.72° 172.67° 169.59°
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Fig. 18. a) Impedance responses of: undamped and damped ACC-MMC (P
& Q mode) against OTL impedance; b) zoom-in view of impedance responses
plotted in a).

unstable oscillations, with the one at 1559 Hz dominating due
to its larger phase difference.

In contrast to Case 1, Zp(s) has sufficient positive damping
around 747 Hz and 4303 Hz. Thus, narrowband damping in
this case targets only the three aforementioned frequencies
where the MMC is negatively damped. Because the design pro-
cess follows the method discussed in Section IV and the calcu-
lation of damping gain is similar to what was presented in Case
1, the details of the calculation process are omitted here for
the sake of briefness. The damping gains Kd obtained with the
proposed design method are Kd = [0.4467,0.3956,0.1218]T

for this case.
As it can be observed in Fig. 18 and Table VI, the triple-

tuned damper reduces the phase difference between Zp(s) and
Zg(s) ∼23° at 1559 Hz, ∼18° at 2448 Hz and ∼4° at 3368
Hz, effectively eliminating the negative damping of the MMC
at all three resonance frequencies. In addition, the designed
damper results in a negligible phase boost at 747 Hz and
4303 Hz, demonstrating that narrowband damping has minimal
effects on the impedance shape of the MMC at unintended
frequencies.

The above analysis and damping performance has been vali-

Fig. 19. Simulated time-domain responses: a) overall response of MMC
current; b) zoom-in view of MMC current in 0.15 ∼ 0.5s

dated via time-domain simulation and the results are presented
in Fig. 19. The simulation is conducted by connecting the
MMC to the OTL without the triple-tuned dampers conducted.
The system experiences an immediate and unstable oscillation
due to the 188.5° phase difference at 1559 Hz, and within 150
ms, the currents in the system exceed the rated MMC current
more than 4.5 times. The proposed triple-tuned damper is
activated at 0.15 s to suppress the oscillation, and the unstable
oscillation disappears at 0.4 s. At t = 2.7 s, the added triple-
tuned damping function is deactivated, causing the 1559 Hz
oscillation to grow once again. Note that, in a real-world
practical application where such a severe unstable oscillation
scenario may arise, it is critical to have an online resonance
detection scheme with fast response to identify the oscillation
frequency and provide it for damping control.

C. AVC-MMC Connected by a Wind Farm

Fig. 20. MMC-based offshore wind integration through 8-km short submarine
cable networks.

The third case study aims to illustrate the proposed multiple
narrowband damping control when used to suppress the oscil-
lations between the AVC-MMC and a wind farm during MMC-
based wind integration (Note that the MMC in this case does
not use dual loop). In the wind farm, there are six 8-km cable
strings rated at 66 kV (RMS ph-ph), and the terminal of each
string is connected by an aggregated 150 MW Type-IV turbine
interfaced via a 0.69/66 kV (RMS ph-ph) step-up transformer.
The six strings are collected and the voltage is stepped up to
300 kV (RMS ph-ph) to interconnect with the MMC. A 2.5
kHz double-edged sampling-based PWM (resulting in a 100
µs delay), and 200 µs digital control delay are additionally
included in the Type-IV turbine model. It should be noted that,
for demonstration purposes, this 200 µs digital control delay
is added into the wind turbine controller to create a negatively
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TABLE VII
MMC’S DAMPING AND PHASE DIFFERENCE AT INTERSECTION

FREQUENCIES (CASE 3)

218 Hz 583 Hz

Re{Zp(s)} −2.90 Ω −16.06 Ω

∠Zp(s)−∠ZWF (s) 180.09° 192.28°

Re{Zp2d(s)} 40.15 Ω 62.07 Ω

∠Zp2d(s)−∠ZWF (s) 166.02° 164.47°

damped wind farm impedance in the medium frequency range.
The schematic diagram of the system is depicted in Fig. 20.

Fig. 21 compares the impedance response of the undamped
MMC Zp(s) and the wind farm ZWF(s) above 100 Hz, the
MMC and the wind farm form two series resonances at 218 Hz
and 583 Hz, where the damping of Zp(s) and the phase
difference between them are also presented. As shown in
Table VII, Zp(s) is negatively damped at both 218 Hz and
583 Hz, with the phase difference of 180.08° and 192.28°
between it and ZWF(s), respectively. As a consequence, it can
be inferred that two unstable oscillations would arise at 218 Hz
and 583 Hz, with 583 Hz being the dominant frequency.

Note that the resonance frequency 218 Hz is close to the
near-synchronous range (i.e., below ∼ 100 Hz), which is
where most of the controls’ bandwidth are located. To avoid
unintended stability issues at low frequencies, a CCF with
short bandwidth is needed to limit the damping control effect
to a relatively narrow range around 218 Hz. In this case, the
cutoff frequency of the CCF centering at 218 Hz is designed
to be ωb1 = 5 Hz, and the cuttoff frequency of CCF at 583
Hz to be ωb2 = 30 Hz. diag(xk) is defined by diag(2, 2) as the
MMC is negatively damped at both frequencies. The solution
of Kd is [0.39, 0.70].

The impedance response of MMC damped by double-tuned
damping (marked as Zp2d(s)) is also plotted in Fig. 21, and the
phase difference between Zp2d(s) and ZWF(s) at 218 Hz and
583 Hz are pulled down to 166.02° and 164.47° (see Table
VII). As a result, the unstable oscillations are expected to be
damped at both frequencies, and a stable operation of the wind
farm can be ensured.

Above analysis is confirmed by the time-domain simulation
results presented in Fig. 22, where the simulation is started
with 200 µs control delay excluded from turbine controller
except 100 µs PWM delay, thus a stable operation of the
MMC-wind farm is observed. At t = 0.4 s, the 200 µs
control delay is added to the turbine controller, and unstable
oscillations dominated by the 583 Hz resonance are created.
The designed double-tuned virtual admittance is enabled at t
= 0.5 s and the fast-growing oscillation is quickly mitigated
within two fundamental cycles. At t = 2.8 s, the double-tuned
virtual admittance is deactivated, and the resonance at 583 Hz
pushes the unstable oscillation to grow again.

VI. CONCLUSION

The paper presented a detailed process to simplify the
complete matrix-based impedance model of MMC into a high-
frequency impedance model, which is suitable for the design of

Fig. 21. a) Impedance responses of: undamped and damped AVC-MMC
(single-loop fixed Vac & f mode) against Type-IV wind farm; b) zoom-in
view of impedance responses plotted in a).

Fig. 22. Simulated time-domain responses: a) overall response of MMC
voltage; b) zoom-in view of MMC voltage in 0.3 ∼ 0.7s.

a damping controller to suppress high-frequency oscillations of
MMC. Based on the derived high-frequency impedance model
of MMC, this paper discussed the effects and comprehensive
design of the proposed multi-tuned damping controller from a
virtual admittance perspective, enabling simultaneous damping
of MMC impedance around multiple resonance frequencies
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in the high-frequency range. By carefully considering and
compensating the coupling effect among multiple damping
controllers targeting oscillations at different frequencies, po-
tential and unintended interferences are avoided. The per-
formance of the proposed narrowband damping method was
verified through EMT simulations, demonstrating its effec-
tiveness in suppressing high-frequency oscillations in three
distinct MMC-based applications. This work has laid a solid
foundation for further research and development of adaptive
damping control schemes for MMCs in various applications.
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