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Abstract— Active filters (AFs) are effective tools for 

mitigating the detrimental effects of harmonic components 

on the power systems. The performance of AFs is 

significantly dependent on designing an accurate and 

robust estimator which is responsible for providing 

reference harmonic values. In this paper, a novel 

technique, called sliding innovation cubature filter, is 

proposed to estimate the harmonic parameters, i.e., 

magnitude and phase, in various operating conditions. The 

proposed method exploits the concept of sliding mode 

control in the formulation of the measurement update step 

in the Bayesian filtering framework to enhance the 

robustness of the estimator. Furthermore, the iterated 

version of the proposed algorithm, called iterative sliding 

innovation cubature filter, is presented to enhance the 

accuracy of the estimator. The proposed method keeps its 

robustness and accuracy in the noisy conditions under the 

fault occurrence as well as power system transients. The 

obtained results from both simulation and experimental 

setup confirm that the proposed estimator is more 

accurate and robust with a higher convergence speed 

compared to the well-known discrete Fourier transform 

(DFT), cubature Kalman filter (CKF), iterated extended 

Kalman filter (IEKF), and particle filter (PF). 

 
Index Terms—Harmonic estimation, Cubature Kalman Filter, 

Sliding Innovation Filter, sliding boundary, transient signal.  
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I. INTRODUCTION 

OWER electronics science has brought about significant 

advances in modern power systems. The main reason 

behind this is the developments of semiconductors in 

reliability, switching speed, and thermal features, which have 

accelerated the application of power electronic devices in 

flexible power system and control. Nevertheless, power-

switching devices have nonlinear and time-varying dynamics 

leading to non-sinusoidal currents flowing through the power 

lines [1]. In such a situation, the system stability and power 

quality may be at risk of high harmonic distortions. Hence, the 

active power filters are used to compensate for the undesired 

harmonics in the power system. Harmonic estimation 

algorithms, being the core of active filters, are applied to 

extract harmonics parameters of a distorted power signal in 

online mode [2]. As requirements for high power quality 

grows rapidly, researchers have conducted many studies to 

develop harmonic estimation techniques in power systems. 

Discrete Fourier Transform (DFT) in its various forms is a 

simple and time-efficient algorithm that is repeatedly applied 

for harmonic parameters estimation [3-7]. However, this 

method yields reliable and accurate results only when the 

sampling frequency is an integer multiple of the frequency of 

harmonic components existing in the power system. Due to 

generation-demand imbalance, frequency fluctuation in a 

power system is inevitable.  So, Coherent sampling is not 

guaranteed in DFT-based methods leading to so-called leakage 

and picket fence undesirable effects [8]. While the DFT is 

appropriate for just spectral analysis, Discrete Wavelet 

Transform (DWT) is a signal processing tool for the time-

frequency analysis which is capable of extracting the non-

stationary and noisy signal components. However, DWT-

based algorithms with fine tuning become computationally 

intensive and they also take some energy to invest to select the 

proper wavelets for a specific signal processing application 

[9]. Several different methods for the mitigation of DWT 

drawbacks have been proposed [10-12]. Nevertheless, some 

processing time issues are still in effect for DWT-based 

algorithms due to computational limitations in the frequency 

domain, and their sensitivity to sampling parameters. Hence, 

time-domain processing algorithms have attracted more 

interest in extracting signal parameters. 
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Phase-locked loop (PLL) is also a well-known tool for 

signal processing applications, especially in 

telecommunication industries [13, 14]. In spite of precise 

results in steady states, the PLL-based methods do not perform 

efficiently in oscillatory conditions where the signal 

parameters have high dynamics. Besides, these methods 

require complex hardware resources to produce the desired 

reference signals [15, 16]. Artificial Neural Networks are 

capable of approximating the mapping relationship between 

states and measurements in a nonlinear process. Hence, they 

are frequently utilized for estimating the harmonic 

components of the power signals [17-19]. Nonetheless, the 

unavailability of adequate training data and the presence of 

undesirable noises in the signal can lead to convergence issues 

or heavy iterative computation [20]. Evolutionary algorithms 

often provide well-approximating solutions to some types of 

estimation problems [21, 22]. As an advantage, they do not 

need any assumptions about the underlying nonlinear system. 

However, in high dimensional estimation applications, e.g., 

parameter estimation of a signal with multiple harmonic 

components, the computational complexity of EAs may be a 

prohibiting factor. Hence, this category of methods is applied 

to harmonic estimation problems in combination with the 

analytical estimators to control the computational burden [23-

25]. 

 Least Squares Estimator (LSE) in its batch format has been 

repeatedly implemented by researchers for harmonic 

parameters estimation [26-28]. Nevertheless, the batch LSE 

requires the information from the previous step in its 

estimation process which leads to structure matrix 

augmentation. In other words, as the number of iterations 

increases, its computational burden outgrows our resources 

which is a limiting factor in online applications. To overcome 

this issue, the recursive and nonlinear versions of LS-based 

methods have been applied [29]. However, these modified 

versions show poor results for the systems with a high degree 

of nonlinearity [30]. Kalman Filter (KF), as a filtering 

approach, has been recognized as a high-performance 

estimation tool. Because of its strong theory, a wide area of 

research has been conducted to propose appropriate versions 

of KFs to find optimal and robust solutions for various 

estimation problems. Also, a significant trend has been shaped 

to establish the state-space model of harmonic estimation 

problems based on KF formulations [31-36]. Despite 

obtaining acceptable simulation results, the robustness of KF-

based methods in the presence of power system disturbances 

(transients, faults, time-varying parameters, etc.) has not been 

practically addressed [37].  

This paper presents a novel Bayesian filtering paradigm to 

estimate harmonic parameters of a distorted power signal. The 

advantages of the proposed approach are its precise and robust 

solution in the presence of faults, transients, and noise polluted 

signals. The time update estimates of the proposed filter are 

obtained by applying the efficient and simple numerical 

integration using cubature points generated by the third-order 

cubature rule. Because of time-varying dynamics, transients, 

and fault conditions in the power systems, modeling errors in 

the state-space representation of the distorted waveforms are 

inevitable. The main contribution of the paper is proposing a 

Sliding Innovation (SI) term in the Bayesian filtering 

framework which guarantees the robustness of the estimates in 

the measurement update phase. Furthermore, in the 

measurement update stage, the SI term is recalculated in an 

iterative process to compensate for the modeling errors caused 

by different operating conditions. Such an iterative process 

enhances the estimation accuracy of the proposed SI-based 

strategy. Different conditions of a distorted power signal are 

simulated and experimentally tested to demonstrate the 

capabilities of the proposed filter, namely Iterated Sliding 

Innovation Cubature Filter (ISICF), in harmonic estimation 

problems. Furthermore, to highlight the performance of the 

proposed technique the accuracy and convergence properties 

of ISICF are compared to those of conventional DFT, CKF, 

IEKF and PF methods. It should be mentioned that the 

proposed filtering paradigm can be used for a variety of 

estimation problems in which the systems cannot be modeled 

precisely. 

II. PROPOSED ALGORITHM 

The discrete form of a distorted voltage or current 

waveform in a power system can be represented by a series of 

Harmonics whose frequencies are integer multiples of the 

power system frequency represented by: 

 

𝑍𝑘 = ∑ 𝐴𝑛𝑠𝑖𝑛(2π𝑓𝑛𝑘𝜏𝑠 + 𝜑𝑛)

𝑁

𝑛=1

+ 𝑣𝑘 

 

            (1) 

 

where 𝑓𝑛 is the frequency of n-th order harmonic of the power 

signal, and N is the total number of the harmonics. The 

measurement signal 𝑍𝑘 at discrete time 𝑘 with the interval of 

𝜏𝑠 is corrupted with additive noise 𝑣𝑘. The amplitudes 𝐴𝑛 and 

phases 𝜑𝑛 are states to be estimated. As can be observed, the 

general formulation of the measurement 𝑍 is a nonlinear 

function of the 𝜑𝑛. Then, the target parameters should be 

estimated by applying a nonlinear paradigm. In presence of a 

high number of harmonics, nonlinear solving of harmonic 

estimation problems would be time-consuming. Hence, a 

computationally efficient Bayesian filtering method with 

simple numerical integration suiting for high dimensional state 

estimation problems is used in this paper [38].  The KF in its 
various forms is established as a two-stage estimation 

approach [39, 40]. The first stage includes time update 

equations. The following state vector is given for the harmonic 

estimation problem: 

 

𝐗 = [𝜑1, 𝜑2, … , 𝜑𝑛 , 𝐴1 , 𝐴2 , … 𝐴𝑛]𝑇             (2) 

 

Cholesky factorization on the covariance matrix 𝑷 is 

performed to obtain square roots of the state estimation errors:  

 

𝑷𝑘−1ǀ𝑘−1 = 𝑺𝑘−1ǀ𝑘−1𝑺𝑘−1ǀ𝑘−1
𝑇              (3) 

 

Using square root matrix 𝑺, the propagated cubature points 

are extracted: 

 

𝑿𝑖,𝑘−1ǀ𝑘−1 = 𝑺𝑘−1ǀ𝑘−1𝝃𝑖 + �̂�𝑘−1ǀ𝑘−1              (4) 

https://www.sciencedirect.com/topics/engineering/sinusoidal-voltage
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Where 𝑖 = 1, 2, … , 2𝑚, and 𝑚 is the number of states to be 

estimated. 𝝃𝑖 is a vector with equal elements as follows: 

 

{
𝝃𝑖 = √𝑚             𝑖 ≤ 𝑚

𝝃𝑖 = −√𝑚         𝑖 > 𝑚
 

            (5) 

 

The propagated cubature points are evaluated using the state 

transition equation of the system. Then, a simple integration is 

implemented to obtain the time update estimation of the states: 

 

𝑿𝑖,𝑘ǀ𝑘−1
∗ = 𝑓(𝑿𝑖,𝑘−1ǀ𝑘−1) 

 

            (6) 

�̂�𝑘ǀ𝑘−1 =
1

𝑚
∑ 𝑿𝑖,𝑘ǀ𝑘−1

∗

2𝑚

𝑖=1

 

          

         (7) 

 

In the harmonic estimation problem, the state transition 

matrix 𝑓 is m dimensional identity matrix. The time update 

process is accomplished by updating the error covariance 

matrix: 

 

𝑷𝑘ǀ𝑘−1 =
1

𝑚
∑ 𝑿𝑖,𝑘ǀ𝑘−1

∗

2𝑚

𝑖=1

𝑿𝑖,𝑘ǀ𝑘−1
∗𝑇 − �̂�𝑘ǀ𝑘−1�̂�𝑘ǀ𝑘−1

𝑇 + 𝑸 

          

    (8) 

 

where Q is the model noise diagonal matrix whose non-zero 

values are tuned by the designer. The second stage is to derive 

the measurement update equations for error and state matrices. 

Once a new measurement is received, the error covariance 

matrix is factorized just the same as the time update stage: 

 

𝑷𝑘ǀ𝑘−1 = 𝑺𝑘ǀ𝑘−1𝑺𝑘ǀ𝑘−1
𝑇      (9) 

 

The cubature points are attained based on factorized matrix 

S: 

 

𝑿𝑖,𝑘ǀ𝑘−1 = 𝑺𝑘ǀ𝑘−1𝝃𝑖 + �̂�𝑘ǀ𝑘−1     (10) 

 

Applying the measurement model of the system cubature 

points are evaluated then, using simple numerical integration 

of the cubature points a deterministic value is estimated for the 

measurement in the measurement update stage: 

 

𝒁𝑖,𝑘ǀ𝑘−1 = ℎ(𝑿𝑖,𝑘ǀ𝑘−1, 𝒖𝑘) 

 

    (11) 

�̂�𝑘ǀ𝑘−1 =
1

𝑚
∑ 𝒁𝑖,𝑘ǀ𝑘−1

2𝑚

𝑖=1

 

 

    (12) 

 

Unlike the common filtering strategies in which the filter 

gain is derived as a function of the state error covariance, the 

proposed filter applies the Sliding Innovation (SI) term 

(inspired by the concept of sliding mode control) in its gain 

formulation [41, 42]. The Innovation �̃� and gain matrix 𝑮 are 

calculated as follows: 

  

�̃�𝑘ǀ𝑘−1 = 𝑍𝑘 − �̂�𝑘ǀ𝑘−1     (13) 

 

𝑮𝑘 = 𝑯−1𝑠𝑎𝑡̅̅ ̅̅ (
|�̃�𝑘ǀ𝑘−1|

𝛿
) 

 

    (14) 

 

As seen, the saturation function 𝑠𝑎𝑡̅̅ ̅̅  and a control 

parameter 𝛿 are utilized to keep the gain value in the targeted 

sliding boundary layer. 𝑠𝑎𝑡̅̅ ̅̅  yields an output sliding between 

+1 and -1, and 𝛿 is the sliding boundary layer width. Based on 

the level of uncertainties in the estimation process, the sliding 

boundary width can be determined (further details on 

computing the 𝛿 values are explained in the next section). 

Note that the measurement equation is nonlinear in the 

harmonic estimation problem. Hence, the measurement matrix 

ℎ is linearized around the time-update estimates using first-

order Taylor series expansion: 

 

𝑯𝑘 =
𝜕ℎ

𝜕𝑥
|

𝑥=𝑥𝑘ǀ𝑘−1

 
    (15) 

 

The estimates for states and covariance matrices are then 

updated using the gain matrix: 

 

�̂�𝑘ǀ𝑘 = �̂�𝑘ǀ𝑘−1 + 𝑮𝑘�̃�𝑘ǀ𝑘−1 

 

    (16) 

𝑷𝑘ǀ𝑘 = (𝑰 − 𝑮𝑘𝑯𝑘)𝑷𝑘ǀ𝑘−1(𝑰 − 𝑮𝑘𝑯𝑘)𝑇 + 𝑮𝑘𝜎𝑣𝑮𝑘
𝑇     (17) 

 

The current measurement information is utilized to 

estimate �̂�𝑘ǀ𝑘; then, it is expected that a better estimation is 

obtained for the updated state vector �̂�𝑘ǀ𝑘  compared to  �̂�𝑘ǀ𝑘−1. 

This leads to the idea of reconstructing the linearized 

measurement matrix 𝑯𝑘 around the new estimate �̂�𝑘ǀ𝑘 to 

reduce the linearization error. Then, the process given in the 

(14) through (17) is used to recalculate the state vector and 

error covariance matrix in the measurement update stage. Re-

linearizing the measurement matrix can be repeated as many 

times as desired, although for most problems the majority of 

the possible improvement is obtained by only one-time re-

linearization [39, 43].  

The proposed filtering procedure makes use of the sliding 

innovation concept in the gain matrix formulation to obtain 

robust estimates for a typical nonlinear system whose 

measurement and system equations are evaluated using 

cubature points. Hence, the filter is named Sliding Innovation 

Cubature Filter (SICF). When applying the re-linearized 

measurement matrix in an iterative process, the filter is called 

as Iterative Sliding Innovation Cubature Filter (ISICF). The 

formulation of the proposed filtering paradigm in the context 

of the harmonic estimation problem was presented in this 

section. The theory can be expanded to be used in a wide area 

of nonlinear estimation research. The flowchart of the 

proposed algorithm is shown in Fig. 1. 

 

A. Determination of sliding boundary width: 

The proposed method applies sliding boundary width 𝛿 to 

keep the estimation uncertainty in a bounded range. The 𝛿 

parameter regulates the filtering gain such that state estimates 

stay within a region of the true state trajectory in the whole 

estimation process. For this purpose, the sliding boundary 
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layer width is defined as a function of the modeling 

uncertainty and noise present in the estimation process [44, 

45]. To keep the uncertainties in a constraint boundary, the 

Lyapunov stability equation is applied. Firstly, the state 

estimation error �̃� in terms of process uncertainties is 

obtained. The gain formulation in (14) is applied to the 

measurement update (16) which results in: 

 

 

�̂�𝑘ǀ𝑘 = �̂�𝑘ǀ𝑘−1 + 𝑯𝑘
−1𝑠𝑎𝑡̅̅ ̅̅ (

|�̃�𝑘ǀ𝑘−1|

𝛿
) �̃�𝑘ǀ𝑘−1 

    (18) 

 

Then, the state estimation error equation is exploited 

according to (19): 

 

�̃�𝑘ǀ𝑘 = �̃�𝑘ǀ𝑘−1 − 𝑯𝑘
−1𝑠𝑎𝑡̅̅ ̅̅ (

|�̃�𝑘ǀ𝑘−1|

𝛿
) �̃�𝑘ǀ𝑘−1 

    (19) 
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Fig. 1.  Flowchart of the proposed ISICF algorithm 

 

Since the state transition matrix 𝑓 is the identity matrix, then 

the (19) can be written as follows: 

 

�̃�𝑘ǀ𝑘 = �̃�𝑘−1ǀ𝑘−1 − 𝑯𝑘
−1𝑠𝑎𝑡̅̅ ̅̅ (

|�̃�𝑘ǀ𝑘−1|

𝛿
) �̃�𝑘ǀ𝑘−1 

    (20) 

 

Then, the following is the recursive way of estimating the state 

error in terms of the initial condition:  

 

�̃�𝑘ǀ𝑘 = �̃�0ǀ0 − ∑ 𝑯𝑘
−1𝑠𝑎𝑡̅̅ ̅̅ (

|�̃�𝑘ǀ𝑘−1|

𝛿
) �̃�𝑘ǀ𝑘−1

𝑘

𝑘=1

 

    (21) 

 

The above Lyapunov stability equation is marginally 

stable if the state estimation error �̃� is bounded for all 

iterations 𝑘 and all bounded initial conditions �̃�0ǀ0. Then, the 

sliding boundary width 𝛿 should be assigned to satisfy the 

following equation: 

 

∑ 𝑯𝑘
−1𝑠𝑎𝑡̅̅ ̅̅ (

|�̃�𝑘ǀ𝑘−1|

𝛿
) �̃�𝑘ǀ𝑘−1

𝑘

𝑘=1

< 𝜉 

    (22) 

 

where 𝜉 is a limit which is determined by the filter designer. 

The above equation extracts a theoretical bound for the 

estimation error. Based on our empirical studies, the 𝜉 is 

selected to be 0.02 for the harmonic estimation problem. 

  

III. SIMULATION AND EXPERIMENTAL RESULTS: 

To demonstrate the performance of the ISICF in the 

estimation of power signals, different scenarios are taken into 

consideration. Two categories of experiments including 

software simulations and experimental tests are considered in 

this respect. To drive the software simulations, a typical 

distorted waveform containing a chain of common power 

harmonics is defined as a reference. The harmonic content of 

the selected waveform is in accordance with the electrical 

current of high-intensity discharge electronic devices and arc 

furnaces [37]. Furthermore, a dynamic signal, which is 

constructed based on the reference waveform, is defined to 

show the strength of the proposed method in tracking the time-

varying harmonic amplitudes. Simulation results of ISICF in 

each step are numerically compared with those of the well-

known DFT, CKF, IEKF, and PF methods.  

In order to verify the practical application of the proposed 

method, experimental setups are developed to generate the 

practical measurement data with abrupt changes. Then, the 
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transient measured data are processed by applying ISICF to 

estimate their harmonic contents. Using the obtained 

parameters, we construct the estimated waveform, whose 

result is compared with the true waveform. Moreover, a real-

time test setup is established to evaluate the convergence 

speed and quality of the proposed method in practical cases. 

Note that the initial conditions for all simulations and 

experiments are selected as follows: �̂�0|0 is a 𝑚 × 1 vector 

with zero elements;  𝑷0|0 is 103 × 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝑚); Q is 

10−10 × 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝑚); σ𝑣 is 0.01; 𝛿 ∈ (0.02, 0.2). The 𝛿 

value is selected based on the theoretical bound obtained by 

(22). Moreover, the sampling rate for all simulations is 

considered to be 1200 Hz (24 samples per cycle). 

 

A. Static signal estimation 

As per the first stage of simulations, the static signal model 

defined in (23) is applied to investigate the capability of the 

ISICF in harmonic parameter estimation.  

 

𝑍𝑘 = 1.5𝑠𝑖𝑛(𝜔𝑡 + 80°) + 0.5𝑠𝑖𝑛(3𝜔𝑡 + 60°) +
0.2𝑠𝑖𝑛(5𝜔𝑡 + 45°) + 0.15𝑠𝑖𝑛(7𝜔𝑡 + 36°) + 

0.1𝑠𝑖𝑛(11𝜔𝑡 + 30°) + 𝑣𝑘 

   

    (23) 

 

where 𝜔 is the angular frequency of the power signals with 

the fundamental frequency of 50Hz. Furthermore, the signal is 

corrupted with different noise levels to explore the noise 

rejection performance of the proposed algorithm. In this 

regard, simulations under different noisy conditions, including 

15dB and 20dB signal-to-noise ratios (SNRs).  Initial 

parameters of the ISICF are kept constant at all noise levels. 

The estimation problem is also implemented by the well-

known DFT, CKF, IEKF, and PF approaches. Since the 

graphical representation of the estimation algorithms for both 

noise levels are visually the same, only those obtained by the 

proposed ISICF method for the noise level (SNR = 20dB) are 

shown in Fig 2. It should be mentioned that the standard 

deviation of the injected Gaussian noise i.e., 𝑣𝑘 is considered 

to be 0.022 for this case. Although the convergence rate of the 

parameter estimation of higher-order harmonics is lower than 

that of low orders, overall waveform tracking quality using the 

proposed ISICF, depicted in Fig. 3, demonstrates that the 

algorithm converges to the true value in around half a cycle.  

Also, all estimated parameters are stable after converging to 

the final values. The mean square error (MSE) and variance 

indices of the waveform estimation error are employed as a 

measure of accuracy and robustness, respectively. The results 

corresponding to the last 200ms of the simulation time 

(between 0.8s and 1s) at different noise levels are selected for 

the computation of these indices. Results given in Table I 

show that ISICF estimates the true waveform precisely at 

different noise levels. In spite of the excellent results of DFT 

in low noise levels, this method loses its accuracy and 

robustness in the presence of intensive noise. The IEKF and 

PF algorithms have almost the same tracking behavior as 

ISICF for static signal estimation. However, numerical indices 

(mean and standard deviation) reveal that this method is not as 

precise as ISICF.  

 
(a) 

 
(b) 

Fig. 2. Estimation results obtained by proposed ISICF algorithm for static 

signal: (a) Amplitudes (b) Phases. 

 

 
Fig. 3. Estimated waveform and corresponding error using proposed ISICF 

algorithm for static signal. 
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B. Dynamic signal estimation 

Due to the existence of time-varying conditions in the 

power systems, the electrical current has dynamic nature. The 

severity of dynamics depends on generation topology and load 

configuration. To explore the estimation capability of the 

proposed method in the presence of the dynamic parameters, 

time-variant terms are inserted into the structure of the signal, 

defined in the previous sub-section, as follows: 

 

𝑍𝑘 = (1.5 + a1(𝑡))𝑠𝑖𝑛(𝜔𝑡 + 80°) + (0.5 +
a3(𝑡))𝑠𝑖𝑛(3𝜔𝑡 + 60°) + (0.2 + a5(𝑡))𝑠𝑖𝑛(5𝜔𝑡 +
45°) + 0.15𝑠𝑖𝑛(7𝜔𝑡 + 36°) + 0.1𝑠𝑖𝑛(11𝜔𝑡 +
30°) + 𝑣𝑘  

   

    (24) 

 

where 

 

a1(𝑡) = 0.15𝑠𝑖𝑛(2𝜋f1𝑡) + 0.05𝑠𝑖𝑛(2𝜋f3𝑡), 

a3(𝑡) = 0.05𝑠𝑖𝑛(2𝜋f2𝑡) + 0.02𝑠𝑖𝑛(2𝜋f3𝑡) 

a5(𝑡) = 0.025𝑠𝑖𝑛(2𝜋f1𝑡) + 0.005𝑠𝑖𝑛(2𝜋f3𝑡) 

f1 = 0.25 + 1.875t Hz 

f2 = 0.75 + 5.625t Hz 

f3 = 1.5 + 11.25t Hz 

 

As can be observed in the presented model, the 1st, 3rd, and 

5th harmonics have time-varying amplitudes whose 

frequencies are also set to be variable to make a more severe 

condition on the estimation process of the proposed method. 

Also, a zero-mean Gaussian noise with a standard deviation of 

0.022 is added to the signal to make the model closer to real 

conditions. Estimation results of the proposed algorithm for 

estimating dynamic signal parameters and overall waveform 

are presented in Figs. 4 and 5, respectively. Although the 

process model used in the structure of the estimator is kept the 

same as one defined in the static signal test, the ISICF still 

tracks the dynamic parameters accurately. Nevertheless, the 

required time for the convergence of parameter estimation is 

slightly more than that of a static test. Furthermore, CKF, 

IEKF and PF estimators have been applied to the same 

dynamic signal, and comparison results for the error of 

waveform estimation during the last 200ms of simulation 

(reported in Table II) show the superiority of the ISICF in 

tracking dynamic signals. The main reason behind this is the 

sliding innovation strategy applied in ISICF that places more 

emphasis on the measurements than the process model when 

encountering model uncertainties. However, such model errors 

can significantly affect the CKF, IEKF and PF estimation 

results. In the investigated dynamic situation, the estimation 

errors of the DFT method are higher than minimum 

requirements and are not reported consequently.  

 

 
 

(a) 

 
(b) 

Fig. 4. Estimation results obtained by proposed ISICF algorithm for dynamic 

signal: (a) Dynamic amplitudes (b) Corresponding phases. 
 

TABLE I 

NUMERICAL COMPARISON OF ESTIMATORS IN STATIC WAVEFORM ESTIMATION 
 

 
ISICF DFT CKF IEKF PF 

SNR 

 

MSE Variance MSE Variance MSE Variance MSE Variance MSE Variance 

20 dB 8.4464 

×10-6 

 

6.7595 

×10-6 

1.3006 

×10-8 

1.2159 

×10-8 

4.7551 

×10-5 

6.9462 

×10-5 

2.3682 

×10-5 

2.4419 

×10-5 

5.8256 

×10-5 

7.9437 

×10-5 

15 dB 4.0056 

×10-5 

5.3092 

×10-5 

7.6182 

×10-2 

1.8437 

×10-1 

2.3331 

×10-3 

4.4318 

×10-2 

3.0113 

×10-4 

2.7008 

×10-3 

2.8016 

×10-3 

5.7552 

×10-2 
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Fig. 5. Estimated waveform and corresponding error using proposed ISICF 

algorithm for static signal. 
 

C. Abrupt changes estimation 

The abrupt changes in electrical signals caused by transient 

phenomena are inevitable in power systems. Since these short-

time events last from a few microseconds, up to a few 

milliseconds, the estimation of their abrupt changes is usually 

challenging. In this section, a laboratory setup is designed to 

extract real data from a load switching circuit. Then, the 

proposed method is applied to estimate the abrupt changes in 

voltage magnitudes logged from the dedicated setup. The 

setup includes a 0.1H inductor in series with two parallel 

transformers whose power ratings are 100VA and 200VA, 

respectively. The no-load 100VA transformer is directly fed 

by an AC source while the 200VA transformer with a 48W 

LED driver load is powered by a switch. The analog voltage 

of the inductor is measured by a fast response voltage 

transducer (LV 25-P). The measured data is then logged using 

an analog to digital NI USB-6009 data acquisition (DAQ) card 

at a 1200 Hz sampling rate. The experimental setup is 

demonstrated in Fig. 6. To generate an abrupt change in the 

voltage of the series inductor, the 200VA transformer with 

LED load is switched on at 4.725 seconds. The transient 

behavior of inductor voltage is also shown in Fig. 6. The 

logged data is analyzed in off-line mode by the proposed 

algorithm in MATLAB and the graphical results of the 

estimated signal are presented in Fig. 7. As observed, ISICF 

provides close estimation results to the real measured signal. 

On the other hand, CKF, IEKF and PF present poor 

estimations of abrupt changes. Since significant changes in the 

signal are not modeled in the state space representation of 

estimators, the efficiency of estimation in the time update 

phase is considerably degraded. Using CKF, IEKF and PF 

algorithms, this error is propagated to the measurement phase 

which results in low-quality final estimates. In contrast, ISICF 

exploits the use of sliding innovation term in its measurement 

update phase to compensate for the errors of the time update 

phase. Hence, final solutions obtained by the proposed method 

are more reliable when encountering the transients in the 

signal. A numerical comparison of the results obtained by both 

estimators is presented in Table III. In the investigated 

situation, the estimation errors of the DFT method are higher 

than minimum requirements and are not reported 

consequently. 

D. Real-time implementation 

To show the performance of the proposed algorithm in the 

practical application a Hardware-In-the-Loop (HIL) setup is 

designed. The main objective of the HIL setup is to validate 

the real-time operation of the algorithm. Because of the 

inherent processing delays of MATLAB codes particularly 

when reading data from DAQ cards, it is not considered a real-

time tool in most cases. 

To cope with this issue, the implemented codes are compiled 

to the C++ programming language which strongly gains 

traction in real-time systems. The code is implemented in an 

embedded hardware system based on PC/104 micro-computer 

set that has wide applications in real-time processing. A VDX-

6354 processor card (Vortex86DX 800MHz CPU module) and 

a PCM-5114 DAQ card are dedicated hardware to PC/104 to 

process and acquire the actual input. Also, a fast response 

current sensor is employed to collect the current of an AC 

power line feeding a total of 6KW LED luminaires. The setup 

diagram is shown in Fig. 8. The sampling rate of DAQ card is 

set to 1200 Hz for reading the current measured by sensor. 

The measured current contains a large amount of 3rd, 5th, and 

7th harmonics. Once a measurement is collected by the DAQ 

card, a 5V digital activation pulse is applied to the General-

Purpose Input Output (GPIO) port of the processor card and 

one iteration of ISICF is simultaneously run to provide the 

estimates associated with the current iteration. The digital 

pulse is then deactivated (set to 0V) at the end of processing 

time. The chain of pulses is detected by a digital scope to 

analyze the computational performance of the proposed 

ISICF. As the sampling frequency is set to be 1200Hz, the 

processing time (duration of digital activation pulse) should be 

less than (1/1200)𝑠 to guarantee the real-time performance of 

the proposed method in practical applications. Although the 

processing time of all iterations is not exactly the same, as 

shown in Fig. 9, it is always less than (1/3000)𝑠 which 

confirms the performance of the ISICF in real-time 

applications. This originates in the fact that the proposed 

ISICF algorithm approximates nonlinear multivariate integrals 

TABLE II 

NUMERICAL COMPARISON OF ESTIMATORS IN DYNAMIC WAVEFORM ESTIMATION 

(SNR=20 DB) 

ISICF DFT CKF IEKF PF 

MSE Variance MSE Variance MSE Variance MSE Variance MSE Variance 

2.3049 

×10-4 

5.9457 

×10-4 

1.0008 

×10-1 

9.4554 

×10-2 

8.8105 

×10-3 

1.3501 

×10-2 

8.2441 

×10-4 

6.9406 

×10-3 

9.3063 

×10-3 

1.4069 

×10-2 
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using a simple integration method that leads to a relatively low 

computational burden. DAQ card outputs the estimated 

waveform at its analog output channel. Then, using the scope,  

the measured and estimated waveforms are shown in Fig. 9. 

The MSE and variance of estimation error for the last 200ms 

of the process are computed and results are given in Table IV. 

Results confirm that ISICF has acceptable performance even 

in practical test cases. 

 

 
 

Fig. 8. Real-time experimental setup. 
 

 
(a) 

 
(b) 

Fig. 9. Results obtained by proposed ISICF algorithm for real-time setup: (a) 

Measured and estimated waveforms (b) Processing time. 

 

 
 

Fig. 6. Experimental setup for testing abrupt changes in the signal. 

 

 
Fig. 7. Estimated waveform and corresponding error using proposed ISICF 

algorithm for the signal with abrupt changes. 

 

TABLE IV 

NUMERICAL RESULTS OF ISICF IN THE REAL-TIME ESTIMATION 

Filter ISICF 

Statistical Indices 

MSE Variance 

4.3049 

×10-4 

6.9460 

×10-4 

 

 

LED module & driver 

Parallel transformers 

Series inductor 
 

Voltage transducer 

DAQ card 

Transient behavior 

TABLE III 

NUMERICAL COMPARISON OF ISICF WITH CKF AND IEKF  IN ABRUPT CHANGE 

ESTIMATION 

ISICF CKF 

 

IEKF 

 

PF 

MSE Variance MSE Variance MSE Variance MSE Variance 

3.8802 

×10-4 

6.0130 

×10-4 

1.3813 

×10-2 

1.6582 

×10-2 

4.7529 

×10-3 

3.5866 

×10-3 

1.4277 

×10-2 

1.8092 

×10-2 
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Fig. 10. Statistical distribution of the fundamental harmonic components 

obtained by MC runs. 

IV. STABILITY ANALYSIS OF THE PROPOSED METHOD USING 

MONTE CARLO METHOD  

The stability proof of the ISICF algorithm has been 

explored in section II. In this section, a statistical analysis 

based on Monte Carlo (MC) method is conducted to show the 

stability of the results obtained by the proposed method. For 

this purpose, in each MC run, the sliding boundary width δ is 

randomly selected from the range defined by equation (22); 

then, the output parameters including estimated amplitudes 

and phases are statistically analyzed to assess the stability of 

the estimation process. The MC campaign consists of 250 runs 

in which the noise level with SNR=20dB is set. The δ value 

for each run is selected from the Gaussian distribution 

𝑁(0.11,0.03) which covers the range obtained in the equation 

(22). The statistical distribution of the fundamental harmonic 

components obtained by MC runs is shown in Fig. 10. The 

MC analysis outputs for other harmonic components follow 

almost the same statistical characteristics. The results obtained 

by MC analysis support the theoretical stability analysis in 

section II confirming that the estimation results of ISICF are 

stable in the selected range of the sliding boundary width.  

V. CONCLUSION 

A novel robust estimator, called ISICF, exploiting the 

concept of sliding mode control in the formulation of the 

measurement update step in the Bayesian filtering framework 

was proposed for the harmonic estimation problem in this 

paper. The condition for stability of ISICF was obtained using 

the Lyapunov stability equation. The algorithm uses iterated 

structure to maintain the accuracy of estimation results in an 

acceptable boundary. Different simulation case studies have 

been carried out in MATLAB to show the performance of the 

ISICF in the presence of the noise and system unmodeled 

dynamics. Furthermore, an HIL setup based on real-time 

coding and an embedded hardware system was implemented 

to validate the real-time application of the proposed algorithm 

in practical conditions. Eventually, the theoretically extracted 

boundedness was supported by applying the MC campaign. 

The proposed ISICF can be used for harmonic estimation 

problems in various applications, including power quality 

assessment, monitoring, fault detection, etc. 
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