
1

Real-Time Testing of Synchrophasor-based Wide-Area

Monitoring System Applications Acknowledging the

Potential use of a Prototyping Software Toolchain

Lalit Kumar1, Shehab Ahmed1, Luigi Vanfretti2, Nand Kishor3
1 CEMSE, KAUST, Saudi Arabia

2 ECSE, RPI, USA

3 FCSEE, Østfold University College, Norway

Correspondence

Lalit Kumar, CEMSE, KAUST, Saudi Arabia

Email: lalitnbd@gmail.com

Abstract: This article presents a study on real-time testing of synchrophasor-based

‘wide-area monitoring system’s applications (WAMS-application)’. Considering the

growing demand of real-time testing of ‘wide-area monitoring, protection and control

(WAMPAC)’ applications, a systematic real-time testing methodology is formulated

and delineated in diagrams. The diagrams propose several stages through which an

application needs to be assessed (sequentially) for its acceptance prior to

implementation into a production system. However, only one stage is demonstrated in

this article which comprises the use of a prototyping software toolchain, and whose

potential is assessed as sufficient for preliminary real-time testing (PRTT) of WAMS-

applications. The software toolchain is composed of two components: the MATLAB

software for application prototyping and other open-source software that allows

ingesting pre-recorded phasor measurement unit (PMU) signals. With this software

toolchain, a PRTT study is presented for two WAMS applications; ‘testing of

PMU/phasor data concentrator (PDC)’ and ‘testing of wide-area forced oscillation (FO)

monitoring application’.

KEYWORDS: wide-area monitoring protection and control (WAMPAC), forced

oscillation, phasor measurement unit (PMU), phasor data concentrators (PDC), north

American synchrophasor initiative (NASPI), synchro-measurement application

development framework (SADF)

Abbreviations: WAMPAC, wide-area monitoring, protection and control; PMU,

2

phasor measurement unit; PDC, phasor data concentrator; FO, forced oscillation;
PRTT, preliminary real-time testing; WAN, wide-area network; WAMC, wide-area
monitoring and control; TSO, transmission system operator; HIL hardware-in-loop;
SIL, software-in-loop; PHIL, power HIL; CHIL, control HIL; WAMS, wide-area
monitoring system; WAPS, wide-area protection system; WACS, wide-area control
system; PUPO, PMU-PDC-stream simulator; SADF, synchro-measurement application
development framework; NASPI, north American synchrophasor initiative; MSC,
magnitude squared coherence; PSD, power spectral density; CPSD, cross PSD

1. INTRODUCTION

The main use of synchrophasor technology has been in the field of ‘wide-area

monitoring, protection and control’ (WAMPAC) [1–4]. However, the full potential of

‘phasor measurement units (PMUs)’ enabled ‘wide-area network (WAN)’ has not been

fully realized in the wide-area monitoring and control (WAMC) center. While many

novel and advanced WAMPAC-applications are proposed yearly, the rate of adoption

of new applications in WAMC centers is much lower. In other words, the adoption of

new applications in WAMC centers is slow despite their availability in the literature.

This is because the transmission system operator (TSO) in WAMC demands the

application to be tested and approved based on certain eligibility criterion before its

real-time implementation [5, 6]. This eligibility criterion differs from application to

application based on how each specific application operates. However, there is one

forth most eligibility which must be met by all WAMPAC-applications, and that is

‘real-time testing’. The demand of real-time testing continues to grow and this trend is

unlikely to change with technology advancement and the deployment of low cost PMUs

[7, 8] at large scale. The other reason behind the slow adoption of WAMPAC-

applications is the lack of a clear generalized and systematic real-time testing

methodology in literature.

Real-time testing poses several challenges and not only is needed for application testing

but for power system component testing as well [9]. Encoding an algorithm into a

software application in a real-time environment requires additional expertise than what

is required for offline software applications. Figure 1 depicts the gap between the TSO’s

demand and researcher’s limitations which is the major roadblock in real-time testing

of WAMPAC-applications, and thus is a roadblock in its frequent upgradation in

WAMC. Indeed, the WAMPAC-applications should meet real-time performance

requirements, but more importantly, the approach to test applications should also be

systematic while at the same time considering the researchers’ limitations as depicted

3

in Fig. 1. While staff from the National Institute of Standards and Technology (NIST)

of the United States have proposed a requirements test framework for applications, this

has not yet gained adoption and it does not formalize a testing methodology [10]. To

the knowledge of the authors, there is no clear systematic testing methodology reported

yet that could be used for real-time testing of WAMPAC-applications in a time-efficient

manner so that the gap depicted in Fig. 1 can be reduced.

• Algorithm should be
encoded into a
software application
compatible with the
TSOs’ software
system.

• Application should
meet real-time
performance
requirements.

• Limited resources to
write & test the
proposed offline
WAMPAC application in
real-time environment

• Limited laboratory
access-hours

• Cost of industry-grade
software for WAMPAC
is prohibitive

TSO Researcher

Fig. 1. Depiction of gap between TSO’s demands and researcher’s limitations

One successful method for thorough testing requires a laboratory testbed consisting

communication-enabled ‘real-time-simulator’ which may be coupled with hardware-

in-loop (HIL), software-in-loop (SIL), power HIL (PHIL) and control HIL (CHIL)

setup [11–15]. In [15], a synchrophasor-based voltage stability monitoring application

was tested with (1) positive-sequence based (PSB) simulations, (2) PMU data from

real-time-HIL and (3) PMU-data from a real Nordic grid transmission system,

sequentially. The authors shared their learned lessons that any synchrophasor based

application must be tested thoroughly with actual PMU measurements so that the

developed application with PSB simulations can be modified to become robust for more

realistic features such as noise, outliers etc. However, a more common approach is to

ignore all aspects of data communications i.e. a communication-less approach and

perform an application’s testing only playing back simulation data or measurement

records [16].

The major issue to incorporate communication-based real-time testing in 2nd and 3rd

stages numbered above lies in the fact that such testing requires all-time access to signal

steam/broadcast until the application is tested satisfactorily. Unlike pre-recorded data,

such all-time access to signal steam/broadcast is difficult to attain in 2nd and 3rd stages

numbered above, due to limited laboratory access hours and security-protocol issues,

etc.

4

With the hype of advanced laboratories, the potential of exploiting a software toolchain

remained unacknowledged in the literature which can be very helpful in communication

based preliminary real-time testing (PRTT), before attempting testing in an advanced

laboratory. It allows to prototype ‘wide-area monitoring system’s applications

(WAMS-applications)’, enhance and test them (preliminarily) without the need of a

laboratory. PRTT stage is proposed herein as a part of a real-time testing methodology

as will be discussed in detail later. The main contributions of this article are as follows;

i. Formulation of real-time testing methodology for synchrophasor-based

WAMPAC-applications.

ii. Establishing an approach to exploit a software-only toolchain for PRTT stage

of the proposed real-time testing methodology.

iii. Demonstration of a software toolchain for PRTT of WAMS/WAMS-

applications.

The reminder of the paper is organized as follows; in section 2, with brief discussion

on WAMPAC system, a methodology is formulated for real-time testing of WAMPAC-

applications. In section 3, open-source software for real-time synchrophasor

communication are discussed. Section 4 presents the software toolchain. Section 5

demonstrates software toolchain for PRTT of WAMS/WAMS-application and lastly,

the conclusions are drawn in Section 6.

2. WAMPAC SYSTEM AND METHODOLOGY FORMULATION FOR ITS

REAL-TIME TESTING

2.1 WAMPAC system

Typical deployment of WAN-enabled WAMPAC system is shown in Fig. 2. Generally,

the WAMPAC system and involved-applications are divided in three categories: (1)

wide-area monitoring system (WAMS), (2) wide-area protection system (WAPS), and

(3) wide-area control system (WACS). Classifying how synchrophasor-based

applications are tested, results in two categories; (1) WAMS and (2) WAPS/WACS as

depicted in Fig. 2 in the red oblong label as “WAMPAC”. The differences between

these categories will be discussed in the sequel. In many cases, system operators may

apply protection and control actions after assessing the WAMS-application’s results.

Such assessment based on operator’s own experience is generally referred as

‘situational awareness’ [17], as depicted in Fig. 2.

5

Fig. 2. Typical depiction of WAN-enabled WAMPAC system

Among two categorization listed above, the later one i.e. synchrophasor-based

WAPS/WACS is still in its infancy as far as real-time grid operation is concerned, and

there are relatively few applications deployed in wide-area systems [18]. On the other

hand, the first categorization i.e. synchrophasor based real-time WAMS is widely

studied part of the WAMPAC system and also deployed in many power system, majorly

for situational awareness purposes. The developed application under both

categorizations should be tested systematically and thus a real-time testing

methodology is formulated next.

2.2 Formulation of real-time testing methodology

This section provides a testing methodology to reduce the gap depicted in Fig. 1, by

formulating a systematic real-time testing methodology. If 𝒯𝒯 is the specified domain of

performance metric that must be achieved by a WAMPAC-application, 𝒜𝒜 in its testing,

then it can be deemed successfully tested if the following condition holds true;

𝑇𝑇 ⊃ 𝒯𝒯 ∋ 𝒯𝒯 = 𝕋𝕋(𝒜𝒜) (1)

where 𝕋𝕋 is the operator that is operated on 𝒜𝒜 to achieve its performance metrics, 𝒯𝒯 and

𝑇𝑇 is the actually achieved performance. In practice, 𝕋𝕋 can be referred as testing

6

methodology and 𝒯𝒯 could be the set of performance criteria e.g. execution time <

specified time, application’s output index < pre-defined threshold, etc. Achieving the

Eq. (1) can be regarded equivalent to the stamp of ‘tested and approved’ on 𝒜𝒜.

For generalized testing of any 𝒜𝒜, the existing literature does not report any method to

formulate 𝕋𝕋. Conventionally, this testing methodology, 𝕋𝕋 requires a costly laboratory

testbed. Indeed, such testbed is needed to test whether 𝒜𝒜 meets the performance criteria

or not, under multiple realistic power grid conditions, before it could be deemed

successfully tested. However, performing laboratory tests with a naively implemented

WAMPAC-application might be difficult to justify especially at initial development

stages. However, a communication-enabled software toolchain can greatly help in

PRTT and debugging of WAMS/WAMS-applications and thus significant amount of

time and effort can be reduced prior to laboratory tests. Figure 3 shows the formulated

methodology for real-time testing of WAMPAC-applications involved in WAMPAC

systems which will be described next in detail.

Fig. 3. Testing methodology (𝕋𝕋) for WAMPAC-applications (𝒜𝒜)

WAPS/WACS
testing-stages (𝕋𝕋2)

Attributes that are to be monitored for protection & control are
pre-known/given for comparison
Need RT simulator setup/testbed
Path of WAMS application towards its testing & enhancement
Path of unaltered WAMS application (app.)
Path of WAPS/WACS app. towards its testing & enhancement

✱ :

 :

:
:
:

Passed 𝒜𝒜2WAMS
application
(app.) (𝒜𝒜1)

Passed 𝒜𝒜1

Online testing with
communication: Debugging,

Comparison
App. consumes signals

directly from commercially
deployed PMU/PDC

App. consumes buffered
signals as the power system
model is being simulated in

RT-simulator for multi-
scenario conditions

App. consumes stored PMU
signals broadcasted by

software PMU/PDC

*

WAPS/WACS
app. (𝒜𝒜2)

Offline testing without
communication: Debugging,

Comparison

*

App. ingress the signals
from/to linearized power

system model being
simulated

*

Pseudo-online testing without
communication: Debugging,

Comparison

App. ingress the signals
from/to 3-phase nonlinear
power system model being
simulated in software real-

time

Online testing with
communication: Debugging,

Comparison
App. ingress the signals

from/to 3-phase nonlinear
power system model
being simulated in RT

simulator in HIL
configuration with WACS/

WAPS hardware under
multiple conditions

*

+

7

2.2.1 Proposed testing methodology

The legend shown at the top left corner of Fig. 3 should be perused first before

following of the reminder of Fig. 3. This legend specifies a ‘green box’, a red asterisk

and three different arrows, bold-red, dotted-red and bold-blue. These arrows describe

the paths on which methodology is applied from one testing stage to another after

passing the preceding stage. As mentioned earlier, WAMPAC-applications, 𝒜𝒜 are

categorized in two categories based on the involved testing methodology i.e. 𝒜𝒜1:
WAMS-applications and 𝒜𝒜2: WAPS/WACS-applications and 𝒜𝒜 = [𝒜𝒜1,𝒜𝒜2] .

Similarly, the testing methodology, 𝕋𝕋 can also be segregated in two parts i.e. 𝕋𝕋1:
testing methodology for 𝒜𝒜1 and 𝕋𝕋2: testing methodology for 𝒜𝒜2, and 𝕋𝕋 = [𝕋𝕋1,𝕋𝕋2].

By virtue of this categorization, the Fig. 3 is segregated in two parts where the light-

orange colored part indicates 𝕋𝕋1 and the light-blue colored part indicates 𝕋𝕋2. Both parts

comprise multiple testing stages grouped in to ‘offline’, ‘pseudo-online’ and ‘online’

stages and these groups are represented by gray colored boxes. Now, 𝒜𝒜1,𝒜𝒜2 needs to

be passed/moved along the shown path for their approval by their respective parts

𝕋𝕋1,𝕋𝕋2 comprised of their respective grouped-stages. Formulated methodology can be

understood by thorough observation of Fig. 3 in conjunction with the following

noteworthy points;

i. The ‘testing’ and ‘enhancement’ of 𝒜𝒜 are inter-linked to each other. Testing-

results may call for enhancements to the application and enhancement would call

for testing. Therefore ‘testing’ and ‘enhancement’ is a recursive process that ends

when testing results yield specified performance metrics or until the Eq. (1) is

achieved.

ii. As depicted in column’s head in Fig. 3, the application not only is being tested

in the offline/online stages but will also go through the debugging

(enhancements). How fast an application performs to meet real-time

requirements, depends on how 𝒜𝒜 is implemented in the software prototype.

iii. Before moving to laboratory testing (red asterisk boxes in Fig. 3) with 𝒜𝒜, it is

desirable to apply the testing stages (un-asterisk boxes in Fig. 3) to debug 𝒜𝒜,

which will minimize the cost and effort of performing laboratory tests

iv. Differences in 𝕋𝕋1 and 𝕋𝕋2 are as follows. (1) As apparent from Figs. 2-3, the

online stages of 𝕋𝕋1 requires PMU signals to be broadcasted as input whereas the

stages of 𝕋𝕋2 requires the ascertained monitoring results by 𝕋𝕋1 as input. (2) 𝕋𝕋2

essentially requires the power system modelling data in its all stages whereas it

8

is not required in all stages of 𝕋𝕋1 , as apparent from Fig. 3 because

synchrophasor-based monitoring not necessarily needs the power system

modelling data.

v. The findings of WAPS/WACS depends on the monitoring results that are the

output of the WAMS applications. These results are important as the

performance metrics of 𝒜𝒜1 aids in bounding those of 𝒜𝒜2, as can be observed in

Figs. 2-3.

vi. For 𝒜𝒜1 to be tested in 𝕋𝕋1, the attributes to be monitored in the PMU signals must

be known a priori by ancillary studies e.g. eigenvalue analysis, online test case

libraries [19] or self-created attributes via simulation.

vii. Condition in Eq. 1 can be divided as 𝑇𝑇1 ⊃ 𝒯𝒯1 (corresp. to 𝒜𝒜1) and 𝑇𝑇2 ⊃ 𝒯𝒯2

(corresp. to 𝒜𝒜2). Meeting such conditions implies that requirements of

𝒜𝒜1 and 𝒜𝒜2 have been fulfilled in their PRTT, as depicted in upper right corner

of Fig. 3.

The stage highlighted by the box with pink outline in 𝕋𝕋1 (see Fig. 3) is identified as a

most important stage (PRTT stage) in the formulated testing methodology which avails

the facility of pseudo on-line environment. This stage utilizes a software toolchain to

test 𝒜𝒜1 that can broadcast the pre-recorded PMU data similar to how commercial

PMUs stream data, and where the data can be retrieved by an application 𝒜𝒜 in real-

time. Even though, the PRTT stage is not sufficient for commercial real-time testing

because it uses the pre-recorded data, still, it helps in preliminary testing and

enhancement of 𝒜𝒜1 before entering the final testing-stage (red asterisk box in 𝕋𝕋1). The

reminder of this article presents a study that is focused only on the PRTT stage.

3. OPEN-SOURCE SOFTWARE FOR REAL-TIME SYNCHROPHASOR

COMMUNICATION

Real-time synchrophasor communication requires industry-specific communication

protocols (IEEE C37.118.2) between PMUs, PDCs and synchrophasor applications. In

the recent past, several efforts have been made to develop and release open-source

software [12, 20–26] tools that support synchrophasor communications and application

development. These software tools can be categorized into two types: (1) Signal-

broadcaster (publisher and server), (2) Signal-retriever (subscriber and client). The

former type serves to broadcast pre-recorded/stored PMU signals as similarly done by

commercial PMUs/PDCs and the latter type help to retrieve the broadcasted signal.

Table I lists such open-source software, some of which were briefly reviewed

9

by the authors in Ref. [12] which could be followed there if required. The detailed

comparative study between these listed software is out of the scope of this article. A

software toolchain can be formed by combining one signal-broadcaster and one signal-

retriever, one of each type are discussed next.

Table I. Open-source software for real-time communication

Signal-broadcaster

Signal-retriever

 • PMU-PDC Stream Simulator (C++) [24]
• pyPMU (Python) [20]
• iPDC (Linux) [22]
• openPDC (Java) [26]

• SADF (Matlab) [12]
• S3DK (Labview) [25]
• BabelFish (Labview) [23]
• PhasorToolBox (Python) [21]
• openPDC (Java) [26]

3.1 PUPO: Signal Broadcaster

Among the signal broadcasters listed in the Table I, ‘PMU-PDC stream simulatOr’

(PUPO) [24] is found to be a suitable signal-broadcaster to form the software toolchain

which is developed in C++. To briefly describe PUPO, the main GUI is shown in Fig.

4. The merits of PUPO over others are summarized as follows:

i. Easy distribution and deployment (by an ‘.exe’ file or small size).
ii. A simple and intuitive user-friendly graphical user interface (GUI).

Fig. 4. GUI of PUPO

10

iii. No complex installation required, the main GUI opens directly on clicking
‘StrongridSimulatorGUI_MFC.exe’ file.

Being a PMU/PDC emulator, the inner workings of PUPO should not be mistaken with

a conventional software PDC. PUPO was designed to emulate the PMU/PDC data

streaming functionalities by broadcasting the pre-recorded signals following the same

protocols used by commercial PMUs/PDCs. The current version of PUPO consumes

the pre-recorded data in a .csv file (editable in any tool, e.g. Notepad/Notepad++) and

use an extension name, ‘.phcsv’. The pre-recorded data file can be imported by

choosing the option ‘file-based input’ given under each phasor tab. The polar form of

the PMU data given in the ‘.csv’ file has to be converted in rectangular form first,

before entering it into the input file. The method of preparing the input file and other

necessary steps are descripted in Ref. [24]. By default, the PUPO has one PMU station

in which three phasor signals can be imported. However, both of these numbers can be

increased/decreased by clicking on ‘folder/cross’ icon as depicted in Fig. 4.

3.2 SADF: Signal Retriever

The recently developed ‘synchro-measurement application development framework

(SADF)’ [12] is a MATLAB-based software that enables the retrieval of TCP, UDP, or

mixed TCP/UDP synchro-measurement data. To the knowledge of the authors, SADF

is the only MATLAB-based open-source toolbox available for such purpose to the date.

It enables MATLAB to retrieve the PMU data in real-time with additional facility to

perform parallel computations leveraging the parallelization tools within MATLAB.

SADF can be used for real-time prototyping of WAMPAC-applications [12]. Due to

promising potential of SADF and vast functionalities available with the widely used

MATLAB, SADF was selected from the signal retrievers given in the Table I, to form

the software toolchain.

The script, ‘SADF_setting’ allows to configure the PMU/PDC connection settings

such as TCP/IP, port, device ID and maximum time of retrieval. The main script,

‘SADF_run’ allows to embed custom code for a WAMPAC-application [12]. The user

is required to develop an understanding of the default script, ‘demo_WAMS’ to

restructure and encode their WAMPAC-application as per the compatibility with SADF.

This default script is given to plot the retrieved signal in real-time with its specifications

mentioned on the plot. The retrieved signal is being stored in the MATLAB workspace

which can also be utilized later for the offline analysis.

11

4. PUPO-SADF SOFTWARE TOOLCHAIN

As indicated before, PUPO and SADF are the simplest software in their respective

categories (Table I) that can communicate to each other through TCP/IP protocol

(internet) on a single computer. By the combination of these, a software toolchain is

formed named, ‘PUPO-SADF toolchain’ which is found suitable for the PRTT stage

(pink-outlined box in Fig. 3). This software toolchain provides a real-time environment

for testing and enhancement of any 𝒜𝒜1 at PRTT stage.

The flowchart for the complete PUPO-SADF toolchain is shown in the Fig. 5. Firstly,

the pre-recorded PMU data given in the standard ‘.csv’ file needs to be edited in any

text editor (e.g. Notepad/Notepad++). This file is than imported in the PUPO and then

the broadcast can be started as per IEEE C.37.118.2 compliance by pressing ‘start

simulator’ button as depicted in Fig. 5. Then SADF can retrieve the data in real-time

and can execute 𝒜𝒜1 (with parallelization, if needed) consuming the retrieved data

segment/window, 𝑤𝑤(𝑛𝑛). The time-length of this window, 𝑇𝑇𝑤𝑤 can be defined by the user

as per their choice at the beginning of the encoded application, 𝒜𝒜1. The computed

results can be monitored in real-time through the MATLAB plot of individual’s choice

as written in the encoded application, 𝒜𝒜1.

Fig. 5. Flow chart of PUPO-SADF toolchain

4.1 Monitoring Resolution: Speed in real-time monitoring

For any application, 𝒜𝒜1 to be executed in real-time, the computational-time, 𝑇𝑇𝑐𝑐
𝒜𝒜1 must

be lower than 𝑇𝑇𝑤𝑤 i.e. 𝑇𝑇𝑐𝑐
𝒜𝒜1 < 𝑇𝑇𝑤𝑤 [27]. The authors [28] have use the term ‘near real-

time’ instead of ‘real-time’. Indeed, one application can achieve real-time requirements

better than another based on 𝑇𝑇𝑐𝑐
𝒜𝒜1. Therefore, a new index i.e. ‘monitoring resolution’,

𝛹𝛹 is defined herein as;

𝛹𝛹𝒜𝒜1 = �1 − 𝑇𝑇𝑐𝑐
𝒜𝒜1

𝑇𝑇𝑤𝑤
� × 100. (2)

𝛹𝛹 relates to the speed of the 𝒜𝒜1 in real-time and 𝛹𝛹 = 100 % is practically impossible

because no application can produce the results in zero seconds. Therefore the value of

PUPO

Conversion of data to
‘.phcsv’ format for

Notepad++

Importing the
‘.phcsv’ file in LPDC
and data info entry SADF embedded with external WAMPAC algorithm

Stored PMU
data in ‘.csv’

format

localhost

Real time monitoring

SADF

12

𝛹𝛹 lies in the range of, 0 < 𝛹𝛹 < 100 and a high value of 𝛹𝛹 signifies that real-time

performance is being met for 𝒜𝒜1. However, the index 𝛹𝛹 should not be mistaken with

the overall performance of any application. 𝛹𝛹 is just a one index among several indices

required to govern overall performance. For example, the application developed in [29]

for oscillation monitoring, utilized mode decomposition technique and thus it will be

giving low 𝛹𝛹 due to the heavy computation burden involved in comparison to a simple

power spectral density (PSD) operation. On the other hand, [29]’s application would

give better oscillation detection results subjected to mode mixing problems [29]. In

other words, if there exists any detection-accuracy index, 𝔇𝔇 then the application in [29]’

would have a better score than the PSD operation, but 𝛹𝛹 would be compromised. It is

obvious that the application’s overall performance would be a function of 𝛹𝛹 and 𝔇𝔇, as

well as other indices. There are no sets of indices defined in the literature to govern the

global performance of a particular synchrophasor application yet, and the further

discussion on this aspect is also omitted here.

As mentioned before, the proposed software toolchain provides a real-time

environment for testing and enhancement of any 𝒜𝒜1 at PRTT stage shown in Fig. 3.

After qualifying this stage, the application moves to next and final testing stage (red-

asterisk box) where a real-time-HIL laboratory testbed is required. If any 𝒜𝒜1 is

qualified/approved in the PRTT stage then it is expected to meet the performance

requirements of the final stage i.e. red asterisk box/stage of 𝕋𝕋1 in Fig. 3 or at the least

it will assist in the final testing-stage. Next, the PUPO-SADF toolchain for the PRTT

is demonstrated.

5. REAL-TIME TESTING OF SYNCHROPHASOR BAED WAMS USING

PUPO-SADF TOOLCHAIN

Before continuing, it is to mention here that PUPO-SADF toolchain is exclusively

utilized in PRTT stage, however, SADF can be utilized in other online testing also

where the signal stream is accessible in real-time. A demonstration of the PUPO-SADF

toolchain is presented in two WAMS applications; (1) testing/validation of PDC

emulation, and (2) testing of wide-area forced oscillation (FO) monitoring application.

Even though, the first one is not related with application testing, it helps to verify that

PUPO can be used to develop monitoring applications with it.

The pre-recorded PMU data from north American synchrophasor initiative (NASPI)

[30] are considered for the analysis. The data file ‘NASPI-2014-Workshop-

13

Oscillation-Case2.csv’ which belongs to ‘oscillation detection: test case 2’,

consists of 30 signals of 10 min. sampled at 60 Hz. The pre-recorded voltage-phasor

signals from Bus-06 and Bus-01 are broadcasted using PUPO which can now be treated

as if they were wide-area PMU signals streaming in real-time from a commercial PDC.

5.1 Testing of PUPO for authentic WAMS results

Testing of PMU/PDC compliance is one of the important parts of WAMPAC

application’s testing [31]. The testing of commercial PDC requires a rigorous approach

considering several compliance aspects however, in the case of PUPO’s testing in this

article, the objective is to ensure validity of results for real-time WAMS-applications.

The broadcasted signals are retrieved by SADF by inputting TCP/IP and port settings

of PUPO. Testing of PUPO is a post-retrieval process. The retrieved 10-min voltage-

magnitude signals along with time stamps are stored in the MATLAB workspace in the

variable, ‘DATA.Magnitude’ and ‘DATA.Timestamp’. Now, the testing of PUPO

includes two aspects to validate real-time monitoring results as follows.

5.1.1 Check for synchronized overlapping

The recorded NAPSI signals are already synchronized in its data file (.csv) [30], it is

necessary to ensure that the signals, while being broadcasted by PUPO, would also

remain synchronized. This check can be done by plotting retrieved and broadcasted

signals in one figure. If the retrieved signals perfectly overlap the respective

broadcasted signals then it can be accepted that the PUPO had broadcasted the signals

correctly. To this end, ‘array- alignment’ (time-frame shifting) of the retrieved signals

with pre-recorded (PUPO-broadcasted) signals needs to be assessed. This is because

the PUPO broadcasts the imported array/signals (‘.phcsv’) in a loop without

encountering any time-delay in streaming from end-sample to the first one, and thus, it

is unlikely that the first sample of the retrieved array/signal in the MATLAB workspace

is exactly the same as that of the inputted signal in PUPO. Whatever array-alignment

rule is followed for one array (signal), should also be followed by all other arrays. If

the same array-alignment rule can overlap all retrieved signals with respective

broadcasted signals then the ‘synchronized overlapping check’ can be passed. Fig. 6 (a)

shows the plot of both pre-recorded (‘.csv’) and both retrieved signals following the

one single ‘array-alignment’ rule. It can be seen that both the retrieved signals overlap

with the respective broadcasted signals therefore this check can be passed for PUPO.

5.1.2 Check for sampling rate

14

The purpose of this check is to be verify that PUPO has broadcasted the pre-recorded

signals at its original sampling rate, 𝐹𝐹𝑠𝑠 , and if it is uniform throughout. This is an

important test as 𝒜𝒜1 may require 𝐹𝐹𝑠𝑠 to compute the monitoring results e.g. 𝒜𝒜1

comprising the PSD operation will require 𝐹𝐹𝑠𝑠. This check can be performed by plotting

the retrieved timestamps stored in the workspace variable, ‘DATA.TimeStamp’. Fig.

6 (b) shows the plot of retrieved timestamps versus the sample number in which it is

apparent that the PUPO had indeed broadcasted at the original sampling/data rate, 𝐹𝐹𝑠𝑠 =
60 𝐻𝐻𝐻𝐻 as 60 samples (x-axis) have been retrieved in every one second (y-axis) and also,

this 𝐹𝐹𝑠𝑠 remained uniform. Therefore, this check is also passed for PUPO. Thus, PUPO

has been tested ‘OK’ for the testing-objective defined earlier. However, Fig. 6 (b)

suggests one bug in current version of PUPO that does not affect the defined testing-

objective but, it will create a problem in plotting the retrieving signal. The identified

Fig. 6. (a) Pre-recorded and retrieved voltage signals (b) Retrieved timestamps

15

bug is further discussed and rectified next.

5.1.3 Discussion on identified bug and its rectification

Looking to the x-axis and y-axis in Fig. 6 (b), it can be ascertained that the retrieved

timestamps are following stair case pattern instead of a linear pattern because the PUPO

is streaming one same timestamp 60 times in one second. This is because the GPS-

clock quality of PUPO is limited to second (HH:mm:ss) and not up to milliseconds

(HH:mm:ss.sss). This corresponds with PUPO’s own repository [24] which states that

“commit button doesn't gray out for setting PMU station settings”. This is also shown

here with the help of Fig. 7 where it can be seen that due to non-functioning of

highlighted commit button, the clock quality of PUPO cannot be more granular. To

further understand the problem with this bug, notice that the bug has caused the repeated

entries at y-axis/array in Fig. 6 (b) which correspond to the timestamps at the x-axis in

the real-time signal. Therefore, the real-time plot would not be possible unless the

repeated timestamps, i.e. stair case pattern in Fig. 6 (b) are corrected with a linear

Fig. 7. Depiction of the disabled commit button in PUPO

16

monotonically increasing pattern. Notice that this rectification is equivalent to

improving the clock quality of PUPO. This is achieved by using the ‘linspace’

command on retrieving data window, 𝑤𝑤(𝑛𝑛) in the embedding 𝒜𝒜1 as follows:

𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑛𝑛) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(1), 𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑒𝑒𝑒𝑒𝑒𝑒), 𝑇𝑇𝑤𝑤 × 𝐹𝐹𝑠𝑠� (3)

Readers may follow Fig. 9 (a) before reading further to observe how the real-time signal

retrieving plot is made possible by rectifying the bug as described above. Notice that

the PUPO’s bug is not rectified in PUPO but is rectified in SADF. Next, the PUPO-

SADF toolchain as a whole provide a suitable mean for PRTT of any 𝒜𝒜1.

5.2 PRTT of wide-area FO monitoring application

5.2.1 FO monitoring application

In this section the FO monitoring application utilizes magnitude squared coherence

(MSC) tool [16] for spectral analysis. MSC estimate is a powerful spectral tool for

oscillation monitoring that has been shown to yield better results as compared to the

PSD [16]. The authors in [27] indicate that without having any prior information, it is

very challenging to distinguish oscillations from ambient responses by only using PSDs

and spectrums. The MSC estimate, 𝐶𝐶𝑥𝑥𝑥𝑥, is a function of frequency, 𝑓𝑓, which reflects

how well the sequence, 𝑥𝑥(𝑛𝑛) correlates to another sequence, 𝑦𝑦(𝑛𝑛) at any frequency, 𝑓𝑓

where 𝑓𝑓 ∈ R. The region of space, R, maps the space [0 𝐹𝐹𝑠𝑠
2

] where 𝐹𝐹𝑠𝑠 is the common

sampling frequency of both the sequences, 𝑥𝑥(𝑛𝑛) and 𝑦𝑦(𝑛𝑛) . The mathematical

expression of MSC is written as [27, 32];

𝐶𝐶𝑥𝑥𝑥𝑥(𝑓𝑓) ≜ �𝑃𝑃𝑥𝑥𝑥𝑥(𝑓𝑓)�2

𝑃𝑃𝑥𝑥𝑥𝑥(𝑓𝑓)𝑃𝑃𝑦𝑦𝑦𝑦(𝑓𝑓) (4)

0 ≤ 𝐶𝐶𝑥𝑥𝑥𝑥(𝑓𝑓) ≤ 1 ∀ 𝑓𝑓 ∈ R (5)

where 𝑃𝑃𝑥𝑥𝑥𝑥(𝑓𝑓) and 𝑃𝑃𝑦𝑦𝑦𝑦(𝑓𝑓) are the PSDs of 𝑥𝑥(𝑛𝑛) and 𝑦𝑦(𝑛𝑛) respectively and, 𝑃𝑃𝑥𝑥𝑥𝑥(𝑓𝑓), is

the cross PSD (CPSD) between 𝑥𝑥(𝑛𝑛) and 𝑦𝑦(𝑛𝑛). Values of MSC estimate are real and

lie between 0 and 1 as indicated in Eq. 5. If 𝑥𝑥(𝑛𝑛) and 𝑦𝑦(𝑛𝑛) are two sinusoidal signals

of frequency, 𝑓𝑓𝑥𝑥 and 𝑓𝑓𝑦𝑦 respectively than following holds true;
𝐶𝐶𝑥𝑥𝑥𝑥(𝑓𝑓𝑥𝑥) = 𝐶𝐶𝑥𝑥𝑥𝑥�𝑓𝑓𝑦𝑦� = 1 𝑖𝑖𝑖𝑖 𝑓𝑓𝑥𝑥 = 𝑓𝑓𝑦𝑦
𝐶𝐶𝑥𝑥𝑥𝑥(𝑓𝑓𝑥𝑥) = 𝐶𝐶𝑥𝑥𝑥𝑥�𝑓𝑓𝑦𝑦� = 0 𝑖𝑖𝑖𝑖 𝑓𝑓𝑥𝑥 ≠ 𝑓𝑓𝑦𝑦

� (6)

The application utilizing the MSC estimate is encoded in the script, ‘smart_WAMS’

(𝒜𝒜1) using the ‘mscohere’ function of MATLAB’s ‘signal processing toolbox’ that

computes the MSC estimate between two signals. Before MSC, the application first

17

pre-processes the signals by 1st order high pass Butterworth filter with a cut-off

frequency of 0.01 Hz. Increasing the window length, 𝑇𝑇𝑤𝑤 increases the frequency

resolution but reduces the time resolution [27]. The time-length of the data window, 𝑇𝑇𝑤𝑤

is considered as 30 sec herein. A Hamming window is chosen to minimize leakage

noise [27].

The application also incorporates automatic peak-detector with the help of function

‘findpeaks’. This function detects the peaks in MSC estimate in real-time and shows

it on the MSC plot to provide real-time visualization of the FO frequency. Threshold,

𝐶𝐶𝑥𝑥𝑥𝑥𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟(𝑓𝑓) for peak-detection is set to 0.1 i.e. if 𝐶𝐶𝑥𝑥𝑥𝑥(𝑓𝑓) ≥ 𝐶𝐶𝑥𝑥𝑥𝑥𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑠𝑠(𝑓𝑓) then the peak will

be detected in MSC indicating the FO detection at its corresponding frequency. The

major steps in the encoded ‘smart_WAMS’ application are delineated in Fig. 8’s flow

chart.

5.2.2 Real-time FO monitoring using PUPO-SADF toolchain

The script, ‘smart_WAMS’ is embedded in the main script of SADF, i.e. ‘SADF_run’.

The script, ‘SADF_run’ is edited to compute the MSC and plot it which is being

updated in real-time. The script, ‘smart_WAMS’ also plots the segmented-MSC in

real-time. The method to plot the segmented-MSC is same as for segmented-PSD and

segmented-self-coherence described in Ref. [32]. Here, the 30 secs window, 𝑤𝑤(𝑛𝑛) is

slid 30 times for next retrieving 30 secs. As a result, 30 MSC estimates are obtained

and plotted as a segmented-MSC. The recorded screen capture for this real-time

retrieval and monitoring can be viewed in [33]. As SADF begins retrieving and plotting

the signals, the MSC plot (colormap) begins showing the results only after the retrieval

of predefined length of the window, 𝑇𝑇𝑤𝑤. The retrieving signals and their MSC estimate

are also shown in Fig. 9 (a) and (b) respectively for one instant in the real-time

monitoring.

As the embedded script, ‘smart_WAMS’ runs and update the figures in real-time [33],

it is also made to save the colormap (segmented-MSC) at every 30 secs by using

‘saveas’ command placed in the script. The purpose of doing this is to show the real-

time monitoring [33] by a set of relevant figures (video frames), as shown in Fig. 10.

18

data window
(Bus-01 PMU)

data window
(Bus-06 PMU)

Preprocessing
‘butter’

Preprocessing
‘butter’

Magnitude squared coherence
 ‘mscohere’

Is ?

()xyC

xy thresC C≥

xy thresf C C≥

 xy xy thresC f C C≥
‘ ∙ ’✱ : us

Fig. 8. Main steps in the ‘smart-WAMS’ application (𝒜𝒜1)

Fig. 9. (a) Real-time retrieval of broadcasted PMU signals (b) Real-time FO monitoring using MSC
estimate

19

5.2.3 Summary of Fig. 10 results

Fig. 10. Real-time FO monitoring using PUPO-SADF toolchain

From Fig. 6 (a), Fig. 10 and recorded screen [33], it can be noticed that first frame (Fig.

10) is associated with the early secs of the signals (Fig. 6 (a)) wherein the 13.3 Hz FO

is observable. The second frame (Fig. 10) shows the monitoring of pre-event secs (Fig.

6 (a)) wherein it can be noticed that the spectrum-band of the 13.3 Hz FO has widened.

The occurrence of an event at 272 secs (Fig. 6 (a)) triggered another 1.25 Hz FO which

sustained over the event’s duration. The third frame (Fig. 10) shows the monitoring of

the signals during the period when first outliers appears in the data (see Fig. 6 (a)). The

presence of outliers can be noticed along with the newly triggered 1.25 Hz FO. When

outliers are present, the MSC estimate does not provide useful information. It can be

noticed in the fourth frame (Fig. 10) that after first outlier is passed, both FOs sustained,

and the widened spectrum-band of 13.3 Hz FO has reverted back to narrow. The last

frame is the monitoring results during the period when additional/second outliers (Fig.

6 (a)) finished passing through the window, 𝑤𝑤(𝑛𝑛). It can be noticed that after the

outliers are passed and after the event stopped at around 587 secs (Fig. 6 (a)), the 1.25

Hz FO disappears and 13.3 Hz FO still sustains. The discussed analysis can be verified

from the video in Ref.[33] .The presence of these FOs were also confirmed in the Ref.

[34] in an offline study.

5.2.4 Speed of ‘smart_WAMS’: Discussion on 𝛹𝛹

It is observed that the computation time of ‘smart_WAMS’, 𝑇𝑇𝑐𝑐
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 varies. On a

computer with characteristics, Windows 10 OS, Intel(R) Core(TM) i7-8550U CPU @

20

1.80GHz, 16 GB RAM, the computation times, 𝑇𝑇𝑐𝑐
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 are measured for 709

retrieved window, 𝑤𝑤(𝑛𝑛) with 𝑇𝑇𝑤𝑤 = 30 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝐹𝐹𝑠𝑠 = 60 𝐻𝐻𝐻𝐻 . The measurements are

presented in a form of normalized histogram shown in Fig. 11. The average

𝑇𝑇𝑐𝑐
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 and average 𝛹𝛹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 are obtained as, 𝑇𝑇𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 0.8961 𝑠𝑠𝑠𝑠𝑠𝑠

and 𝛹𝛹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑊𝑊𝑊𝑊𝑊𝑊𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 = 97.01 % respectively, which indicates that this particular

application has acceptable performance and thus can pass the PRTT stage to move on

to final testing stage (red-asterisk box in Fig. 3).

Fig. 11. Real-time FO monitoring using segmented-MSC estimate

5.2.5 Discussion

Next, the additional potential of the software toolchain to be used in the final testing

stage is discussed. As mentioned before, the PRTT stage is the only stage that is

demonstrated in this article, however, there are potential uses in the final testing stage,

i.e. red asterisk box/stage of 𝕋𝕋1 in Fig. 3. After being approved in PRTT stage, the

designed ‘smart_WAMS’ application is ready to move to its final testing stage, where

the only modification required is to change the connection IDs in the SADF’s script

from PUPO’s IDs to laboratory-PMU/PDC’s IDs. No further efforts have to be made

in laboratory in rewriting of the application unless it fails tests when subjected to

multiple realistic power grid conditions. The software toolchain can help here too, by

storing the PMU/PDC signals recorded from the failed tests and replaying them using

21

the toolchain to debug the application, while avoiding the cumbersomeness and limited

access time at the laboratory. In this way, the PRTT stage incorporating the PUPO-

SADF toolchain is highly beneficial in professional testing of WAMPAC applications.

6. CONCLUSIONS

This article presents a study on real-time testing of synchrophasor based WAMSPAC

applications. A real-time testing methodology is formulated and specified in multiple

stages. A few offline testing stages are incorporated along with online testing stages

and it is expected that the application passes (for approval) all the stages sequentially,

making the testing process more efficient and less cumbersome. The potential uses of

a software toolchain to assist in the testing process was acknowledged and found

sufficient for PRTT of WAMPAC applications. The software toolchain is formed using

MATLAB and the PUPO open-source software which is referred as the PUPO-SADF

toolchain. With this software toolchain, the PRTT is demonstrated in two WAMS

applications i.e. ‘testing of PMU/PDC’ and ‘testing of wide-area FO monitoring

application’. In first one, a minor bug was found and rectified in custom-encoding

within SADF while in later one, FOs at frequencies 13.33 Hz and 1.25 Hz are detected

and monitored in real-time using recorded PMU data provided by NASPI.

ACKNOWLEDGMENTS

This work was carried out under the project, ‘Gridx: The Autonomous Digital Grid’

funded by ‘King Abdullah University of Science and Technology, Saudi Arabia’ under

grant OSR-2019-CoE-NEOM-4178.12 as a part of the Kingdom’s vision, "New Future"

and "New Enterprise Operating Model" (NEOM-2030).

The fourth co-author acknowledges the funding support received by department of

science and technology (DST), New Delhi, Govt. of India, granted with a SERB No:

CRG/2019/000951.

Symbols: 𝑇𝑇,𝑎𝑎𝑎𝑎ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 performance; 𝒜𝒜 , WAMPAC- 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ; 𝕋𝕋 , Testing
methodology; 𝒯𝒯 , specified domain of performance-eligibilities; 𝒜𝒜1 , WAMS-
applications; 𝒜𝒜2 , WAPS/WACS applications; 𝕋𝕋1 , testing methodology for 𝒜𝒜1 ; 𝕋𝕋2 ,
testing methodology for 𝒜𝒜2; 𝐶𝐶𝑥𝑥𝑥𝑥, MSC estimate; 𝑃𝑃𝑥𝑥𝑥𝑥(𝑓𝑓), PSD; 𝑇𝑇𝑤𝑤, window length; 𝑇𝑇𝑐𝑐,
computation time; 𝛹𝛹, monitoring resolution

REFERENCES

1 Haugdal, H., Uhlen, K., Muller, D., Johannsson, H.: ‘Estimation of Oscillatory Mode Activity
from PMU Measurements’, in ‘IEEE PES Innovative Smart Grid Technologies Conference

https://cemse.kaust.edu.sa/cnr/gridx-autonomous-digital-grid-0

22

Europe’ (Institute of Electrical and Electronics Engineers (IEEE), 2020), pp. 201–205

2 Shweta, Kishor, N., Uhlen, K., Mohanty, S.R.: ‘Identification of coherency and critical
generators set in real-time signal’IET Gener. Transm. Distrib., 2017, 11, (18), pp. 4456–4464.

3 Kamwa, I., Pradhan, A.K., Joos, G.: ‘Adaptive phasor and frequency-tracking schemes for wide-
area protection and control’IEEE Trans. Power Deliv., 2011, 26, (2), pp. 744–753.

4 Ashrafi, A., Shahrtash, S.M.: ‘Dynamic wide area voltage control strategy based on organized
multi-agent system’IEEE Trans. Power Syst., 2014, 29, (6), pp. 2590–2601.

5 Jakobsen, S.H., Uhlen, K.: ‘Testing of a hydropower plant’s stability and performance using
PMU and control system data in closed loop’IET Gener. Transm. Distrib., 2019, 13, (23), pp.
5339–5348.

6 Hur Rizvi, S.M., Kundu, P., Srivastava, A.K.: ‘Hybrid voltage stability and security assessment
using synchrophasors with consideration of generator Q‐limits’IET Gener. Transm. Distrib.,
2020, 14, (19), pp. 4042–4051.

7 Laverty, D.M., Best, R.J., Brogan, P., Al Khatib, I., Vanfretti, L., Morrow, D.J.: ‘The OpenPMU
platform for open-source phasor measurements’IEEE Trans. Instrum. Meas., 2013, 62, (4), pp.
701–709.

8 Chauhan, S., Dahiya, R.: ‘Multiple μPMU placement solutions in active distribution networks
using nonlinear programming approach’Int. Trans. Electr. Energy Syst., 2021, 31, (11), p. e13116.

9 Chatterjee, S., Ghosh, P.K., Saha Roy, B.K.: ‘PMU-based power system component monitoring
scheme satisfying complete observability with multicriteria decision support’Int. Trans. Electr.
Energy Syst., 2020, 30, (2), p. e12223.

10 ‘NIST-USA: “PMU Application Requirements Test Framework (PARTF)”’,
https://github.com/usnistgov/PARTF, accessed May 2022

11 Adewole, A.C., Tzoneva, R.: ‘Co-simulation platform for integrated real-time power system
emulation and wide area communication’IET Gener. Transm. Distrib., 2017, 11, (12), pp. 3019–
3029.

12 Naglic, M., Popov, M., Meijden, M.A.M.M. Van Der, Terzija, V.: ‘Synchro-Measurement
Application Development Framework: An IEEE Standard C37.118.2-2011 Supported MATLAB
Library’IEEE Trans. Instrum. Meas., 2018, 67, (8), pp. 1804–1814.

13 Musleh, A.S., Muyeen, S.M., Al-Durra, A., Kamwa, I.: ‘Testing and validation of wide-area
control of STATCOM using real-time digital simulator with hybrid HIL–SIL configuration’IET
Gener. Transm. Distrib., 2017, 11, (12), pp. 3039–3049.

14 Rebello, E., Vanfretti, L., Almas, M.S.: ‘Experimental Testing of a Real-Time Implementation of
a PMU-Based Wide-Area Damping Control System’IEEE Access, 2020, 8, pp. 25800–25810.

15 Leelaruji, R., Vanfretti, L., Uhlen, K., Gjerde, J.O.: ‘Computing sensitivities from synchrophasor
data for voltage stability monitoring and visualization’Int. Trans. Electr. Energy Syst., 2015, 25,
(6), pp. 933–947.

16 Zhou, N., Dagle, J.: ‘Initial results in using a self-coherence method for detecting sustained

23

oscillations’IEEE Trans. Power Syst., 2015, 30, (1), pp. 522–530.

17 Shrivastava, D.R., Siddiqui, S.A., Verma, K.: ‘A new synchronized data-driven-based
comprehensive approach to enhance real-time situational awareness of power system’Int. Trans.
Electr. Energy Syst., 2021, 31, (5), p. e12887.

18 Ashok, A., Hahn, A., Govindarasu, M.: ‘Cyber-physical security of wide-area monitoring,
protection and control in a smart grid environment’J. Adv. Res., 2014, 5, (4), pp. 481–489.

19 Sun, K., Wang, B., Ivan, J., et al.: ‘Locating the Source of Sustained Oscillation’,
http://web.eecs.utk.edu/~kaisun/TF/Tutorial_2016IEEEPESGM/Synchrophasor_8_Kai.pdf,
accessed January 2021

20 Sandi, S., Krstajic, B., Popovic, T.: ‘PyPMU - Open source python package for synchrophasor
data transfer’, in ‘24th Telecommunications Forum, TELFOR 2016, IEEE’ (IEEE, 2017), pp. 1–
3

21 Zhong, X., Arunagirinathan, P., Jayawardene, I., Venayagamoorthy, G.K., Brooks, R.:
‘PhasorToolBox-A Python Package for Synchrophasor Application Prototyping’, in ‘Clemson
University Power Systems Conference, PSC 2018’ (Institute of Electrical and Electronics
Engineers Inc., 2019)

22 Khandeparkar, K. V, Pandit, N., Kulkarni, A.M., Attar, V.Z., Ghumbre, S.U.: ‘Design of a Phasor
Data Concentrator for Wide Area Measurement System’,
http://www.iitk.ac.in/npsc/Papers/NPSC2012/papers/12223.pdf, accessed April 2020

23 Almas, M.S., Vanfretti, L., Baudette, M.: ‘BabelFish—Tools for IEEE C37.118.2-compliant real-
time synchrophasor data mediation’SoftwareX, 2017, 6, pp. 209–216.

24 ‘GitHub - ALSETLab/PMU-PDC-StreamSimulator: A C++ PMU and/or PDC Stream Simulator
for IEEE C37.118.2’, https://github.com/ALSETLab/PMU-PDC-StreamSimulator, accessed
March 2020

25 Baudette, M., Firouzi, S.R., Vanfretti, L.: ‘The STRONgrid library: A modular and extensible
software library for IEEE C37.118.2 compliant synchrophasor data mediation’SoftwareX, 2018,
7, pp. 281–286.

26 ‘Grid Protection Alliance - Home’, https://www.gridprotectionalliance.org/, accessed April 2020

27 Zhou, N.: ‘A cross-coherence method for detecting oscillations’IEEE Trans. Power Syst., 2016,
31, (1), pp. 623–631.

28 Naglic, M., Popov, M., Meijden, M.A.M.M. Van Der, Terzija, V.: ‘Synchronized Measurement
Technology Supported Online Generator Slow Coherency Identification and Adaptive
Tracking’IEEE Trans. Smart Grid, 2020, 11, (4), pp. 3405–3417.

29 Kumar, L., Kishor, N.: ‘Wide area monitoring of sustained oscillations using double-stage mode
decomposition’Int. Trans. Electr. Energy Syst., 2018, 28, (6), pp. 1–18.

30 ‘NASPI Oscillation Detection and Voltage Stability Tools Technical Workshop - Houston, TX |
North American SynchroPhasor Initiative’, https://www.naspi.org/node/440, accessed March
2020

24

31 Kaliappan, P., Meera, K.S., Selvan, M.P.: ‘Assessment of compliance of phasor measurement
units (PMUs) for smart grid applications’Int. Trans. Electr. Energy Syst., 2021, 31, (4), p. e12835.

32 Kumar, L., Kishor, N.: ‘Spectral identification of forced oscillation in PMU signal using mode
decomposition’, in ‘2018 First International Colloquium on Smart Grid Metrology (SmaGriMet)’
(IEEE, 2018), pp. 1–6

33 Lalit Kumar: ‘Video: Real-time FO monitoring through LPDC-SADF real-time framework’,
https://drive.google.com/file/d/1L_KI4FF-u4Q2C74rzmtLOwi9yFN6LdVh/view, accessed
January 2021

34 Silverstein, A.: ‘NASPI Technical Report: Diagnosing Equipment Health and Mis-operations
with PMU Data’, https://www.naspi.org/sites/default/files/reference_documents/14.pdf,
accessed April 2020

	Real-Time Testing of Synchrophasor-based Wide-Area Monitoring System Applications Acknowledging the Potential use of a Prototyping Software Toolchain
	Abstract: This article presents a study on real-time testing of synchrophasor-based ‘wide-area monitoring system’s applications (WAMS-application)’. Considering the growing demand of real-time testing of ‘wide-area monitoring, protection and control (...
	Keywords: wide-area monitoring protection and control (WAMPAC), forced oscillation, phasor measurement unit (PMU), phasor data concentrators (PDC), north American synchrophasor initiative (NASPI), synchro-measurement application development framework ...
	Abbreviations: WAMPAC, wide-area monitoring, protection and control; PMU, phasor measurement unit; PDC, phasor data concentrator; FO, forced oscillation; PRTT, preliminary real-time testing; WAN, wide-area network; WAMC, wide-area monitoring and contr...
	1. Introduction
	2. WAMPAC System and Methodology Formulation for its Real-Time Testing
	2.1 WAMPAC system
	2.2 Formulation of real-time testing methodology

	3. OPEN-SOURCE SOFTWARE FOR REAL-TIME SYNCHROPHASOR COMMUNICATION
	3.1 PUPO: Signal Broadcaster
	3.2 SADF: Signal Retriever

	4. PUPO-SADF software toolchain
	5. REAL-TIME TESTING OF SYNCHROPHASOR BAED wams using PUPO-SADF toolchain
	5.1.1 Check for synchronized overlapping
	5.1.2 Check for sampling rate
	5.1.3 Discussion on identified bug and its rectification
	5.2.1 FO monitoring application
	5.2.2 Real-time FO monitoring using PUPO-SADF toolchain
	5.2.4 Speed of ‘smart_WAMS’: Discussion on 𝛹
	5.2.5 Discussion

	6. Conclusions
	Acknowledgments
	Symbols: 𝑇, 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑 performance; 𝒜, WAMPAC-𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛; 𝕋, Testing methodology; 𝒯, specified domain of performance-eligibilities; ,𝒜-1., WAMS-applications; ,𝒜-2., WAPS/WACS applications; ,𝕋-1., testing methodology for ,𝒜-1.;...
	ReferenceS

