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A B S T R A C T   

Electromechanical oscillations are inherent to power networks. Although it is possible to partially damp these 
oscillations, it is impossible to eliminate them completely. This oscillatory behavior can lead to major break-
downs in power networks, especially when the damping is relatively low. It is therefore important to provide 
accurate estimations of the network’s damping values. These estimation can be obtained via system identification 
for which a probing signal needs to be designed. This paper presents a framework for designing a specific probing 
signal that is able to provide accurate damping estimations with a user-defined variance. A power spectrum of 
the probing signal is determined by solving an optimization problem with Linear Matrix Inequality constraints. 
The objective function is defined as a weighted sum of the probing signal’s power and a level of disturbance 
caused by probing the network. A desired level of the damping estimation’s variance is set as a constraint. The 
time-domain realization of the obtained power spectrum is described by a multisine, which is the actual probing 
signal applied to the network. The employed framework is demonstrated through nonlinear simulations using the 
Kundur with an embedded HVDC link and NORDIC 44 networks.   

1. Introduction 

Accurate monitoring of electromechanical oscillations in near real- 
time is one of the most important functions of a wide area monitoring 
system [1]. Oscillations are monitored by continuously estimating the 
frequencies and damping ratios of dominant electromechanical modes. 
These are referred to as critical system modes and, in normal operation, 
are damped enough such that no overly large oscillations occur. How-
ever, the damping ratios of critical modes change over time due to, 
among others, disturbances in the network. It is possible that such a 
disturbance renders these damping ratios too low. Consequently, large 
oscillations and a potential blackout of the network occurs [2,3]. It is 
thus important to continuously provide an accurate damping estimation 
so that, when this crosses a specific lower bound, corrective actions can 
be applied [4]. This prevents major oscillations and even system in-
stabilities [5]. 

The described approaches in the literature that provide a continuous 
near real-time damping estimation can roughly be divided into two 
categories. The first category only uses the power system’s ambient 

response. This occurs when the network is in equilibrium and is due to 
random load changes. This type of excitation is always present in a 
network and should therefore be accounted for in the damping estima-
tion method. In general, ambient excitation is relatively low, which (for 
acceptable experiment lengths) results in estimations with relatively 
high variances. In the second category, the network is excited with a 
probing signal (for example by using a controllable power electronics 
device) and the successive response is measured. Then, both the probing 
signal and successive response are used for estimation. 

The approach employed in this work is placed in the second category 
and have their theoretical underpinnings in the field of system identi-
fication. Results that belong to this category are found in [6–9] and an 
overview is found in [10]. In [6], injected noise is produced by random 
load switching and a frequency domain identification technique is used 
to estimate the network’s behavior. In [7], several manually chosen 
probing signals are injected in the network and corresponding damping 
estimations are compared. In [8], different manually chosen sinusoidal 
probing signals are applied to a real-world network in order to estimate 
characteristics of the network. In [9] however, the authors illustrate that 
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when applying a probing signal with frequency content close to a critical 
mode frequency, the oscillations become dangerously large. This in-
dicates that the frequency content of the probing signal should be 
selected carefully and consequently, probing signal design is necessary. 
All methods presented in [6–8] do not take this into account, but rather 
probe the network with conventional (not optimized) probing signals. In 
this work, the probing signal is optimized. 

Literature on probing signal design is found in [11–15]. In [11–13], 
the probing signal is pre-filtered such that it contains specific frequency 
content before being injected in the network. Although the frequency 
content of the probing signals is chosen more carefully, these existing 
methods do not optimize the probing signal so that the network’s de-
viation from its nominal operating point and the probing signal’s power 
content are minimized. This is however possible with the method pre-
sented in this work. 

In [14], a multisine probing signal is considered and the phases of the 
multisine are in fact optimized to obtain a probing signal with the 
smallest amplitude, while having a user-defined power spectrum. 
Following linear system theory, it is not possible to enhance damping 
estimation by optimizing the phases of a multisine, but instead the 
power spectrum needs to be optimized. In contrast, the presented 
approach in this work explicitly enhances damping estimation via 
optimal probing design by optimizing the power spectrum of the probing 
signal. 

In [15], the authors design the power spectrum of a multisine 
probing signal, (i.e., the amplitudes of the different sinusoids) in such a 
way that a user-defined variance of the damping estimation is ensured, 
while minimizing the disturbance in the network due to probing. This 
work builds further on the work presented in [15] by enhancing it with 
the following contributions:  

1. the introduction of a new discrete-time parameterization of a 
transfer function and covariance matrix containing, among others, 
damping coefficients,  

2. the method is compared to a standard probing method [8],  
3. the method is tested and simulated using a nonlinear power network 

model using both a “textbook” power grid model and a realistic 
power grid model and  

4. in one test network, a high voltage direct current (HVDC) link based 
on voltage source converters is used to probe the network. 

The remainder of this paper is organized as follows: Section 2 details 
the system identification method, which is used to find a damping 
estimation. During the experiment for system identification, the network 
is probed. Therefore, in Section 3, the probing signal design method is 
described. This paper is followed by Section 4 containing simulation 
results and is concluded in Section 5. 

2. System Identification Method 

The prediction error method [16,17] is used as system identification 
technique. Here, measurements are used to estimate a model from which 
damping estimations are evaluated. In the prediction error method, the 
network’s response y(t),1 which for example can be the voltage angle 
difference between two buses, is approximated by ŷ(t) that is composed 
of a superposition of two responses (ambient and probing), i.e.,  

ŷ(t) = Ĝ(z, θ)u(t)
⏟̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅⏟

probing

+ Ĥ(z, θ)e(t)
⏟̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅ ⏟

ambient

, (1)  

with causal and monic transfer function Ĥ(z, θ) that is excited by white 
noise e(t) (representing the random load changes) and causal transfer 
function Ĝ(z, θ) that is excited (probed) by a probing signal u(t). The 
latter is designed in this work and can for example be active power. 
Furthermore, t ∈ Z represents the discrete-time, θ is the parameter 
vector to be estimated and z ∈ C. Fig. 1 depicts schematically the 
network as considered in the prediction error identification method. 

Both Ĥ(z, θ), Ĝ(z, θ) are assumed to have the same denominators in 
this work. This allows to define the ARMAX model structure for Ĥ(z,θ),
Ĝ(z,θ):  

ŷ(t) =
b(z, θb)⋅z− nk

a(z, θa)
⏟̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅ ⏟

Ĝ(z,θ)

u(t) +
c(z, θc)

a(z, θa)
⏟̅̅̅̅⏞⏞̅̅̅̅⏟

Ĥ (z,θ)

e(t), θ =

⎛

⎝
θa
θb
θc

⎞

⎠ ∈ ℝnθ , (2)  

with polynomials:  

a(z, θa) = zna + θ1zna − 1 + … + θna ,

b(z, θb) = θna+1znb − 1 + θna+2znb − 2 + … + θna+nb ,

c(z, θc) = znc + θna+nb+1znc − 1 + … + θna+nb+nc ,
(3)  

and θ the unknown parameter vector that is found by the identification 
procedure. This has tuning parameters na, nb, nc, nk and solves the 
following optimization problem:  

min
θ

1
N
∑N

t=1
ε(t, θ)2

,

subject to ε(t, θ) = Ĥ(z, θ)− 1
(

y(t) − Ĝ(z, θ)u(t)
)
,

(4)  

with N the number of data points in the measurement that is seen as a 
bounded tuning parameter. Indeed, a larger N will result in a more 
precise estimation. However, the objective is to provide a new mode 
estimate every 10–15 min as done in practice [12] and consequently, N 
is bounded. 

The probing signal design method employed in this work (see Section 
3) demands for a parameterization of Ĝ(z, θ), Ĥ(z, θ) in, among others, 
the damping coefficients (ζi) and their corresponding frequencies (ωn,i). 
Note that these are not the parameters defined in θ as found by the 
identification procedure. It is therefore necessary to re-parametrize the 
model in terms of ζi,ωn,i. This new ARMAX model parameterization is 
presented in the following. 

Fig. 1. Power system representation as seen in the prediction error system 
identification method with probing signal u(t) and measurement estima-
tion ŷ(t). 

1 The appendix contains a nomenclature. 
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ARMAX model parameterization in ωn,i and ζi 

In order to define the desired ARMAX model parameterization, the 
poles of Ĝ(z, θ) are firstly evaluated. These are assumed to be inside the 
unit circle and are found by solving a(z, θa) = 0 (see (2)) for z. Let these 
poles be:  

ℵ = {z1, z2,…, znr , znr+1, znr+1,…, znr+ni , znr+ni}, (5)  

with • the complex conjugate of the variable •, nr the number of real 
valued poles and ni the number of complex pole pairs. Then define p as a 
subset of ℵ:  

p = {|z1|, |z2|,…, |znr |, znr+1, znr+2,…, znr+ni}. (6)  

The damping ratios and natural frequencies are evaluated as:  

ζi =
|Re{ln(pi)}|

|ln(pi)|
and ωn,i =

|ln(pi)|

h
, ∀pi ∕= 0, 1, (7)  

with h the sample period, Re{ • } the real part of the variable • and ln(•)
the natural logarithm function. If pi = {0,1} then ζi = 1. The following 
new parameterization of the polynomial a(z, θa) is now introduced:  

a(z, θζ) =
∏ni

i=1

(
z2 − 2e− ζiωn,ihcos

(

ωn,i

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ζ2
i

√

h
)

z + e− 2ζiωn,ih
)

…

…
∏nr

j=1

(
z − sign

(
zj
)
e− ωr

n,jh
)
,

(8)  

with zj the real valued pole location and ωr
n,j its corresponding natural 

frequency. The natural frequency and damping coefficient that corre-
spond to each complex pole pair are defined as ωn,i and ζi, respectively. 
Then define:  

θζ =
(

ζ1 … ζni ωn,1 … ωn,ni ωr
n,1 … ωr

n,nr

)T
, (9)  

with θζ and θa having the same dimensions. 
It should be clear that the polynomial a(z, θa) in (2) is equal to a(z, θζ)

in (8), but only parameterized differently. In other words:  

Ĝ(z, θ) = Ĝ(z, ρ), Ĥ(z, θ) = Ĥ(z, ρ), (10)  

with new parameter vector: 

ρ =
(

θT
ζ θT

b θT
c

)T
. (11)  

The following steps are followed to evaluate Ĝ(z,ρ), Ĥ(z,ρ): 

The newly parameterized Ĝ(z, ρ), Ĥ(z, ρ) are then defined and used 
in the probing signal design method (see Section 3). This implies indeed 
that the presented method requires an initial Ĝ(z,ρ), Ĥ(z,ρ), which are 
used to design the optimal probing signal. Section 4 details the pro-
cedure of obtaining such an initial Ĝ(z,ρ), Ĥ(z,ρ). 

This ends the proposed identification procedure’s description. As 
state before, in order to perform system identification, the network 
needs be probed. This is carried out via the noise signal e(t) and probing 
signal u(t). The former cannot be chosen as it represents random load 
changes, though, the probing signal u(t) must be designed. In the 
following section, such a probing design method is presented. 

3. Probing Design Method 

In order to perform system identification successfully, experimental 
conditions need to be designed. These conditions depend on the final 
objectives. In this work, these are to run experiments for system iden-
tification while minimizing the disturbances in the network and having 
a damping estimation with a user-defined variance. In order to achieve 
this goal, the probing signal’s power spectrum is designed. In the 
following, the probing signal design method is detailed. 

3.1. Optimization problem formulation 

In order to find a probing signal’s spectrum that minimizes the 
impact on the network while ensuring a user-defined upper bound on 
the damping estimation’s variance, the following optimization problem 
is solved: 

min
Φu(ω)

(
c1

2π

∫ π

− π
Φu(ω)dω

)

+

(
c2

2π

∫ π

− π
Φy(ω)dω

)

,

subject to variance(ζi) < ηi, for i = 1, 2,…, ni,

(12)  

where Φu(ω) and Φy(ω) are power spectra of the probing and output 
signal, respectively, and ω the continuous-time frequency. Furthermore, 
c1 and c2 are weighting factors and ηi is an upper bound on the damping 
coefficient’s variance. Minimizing the first term in the objective results 
in a minimal effort of the actuators. Minimizing the second term results 
in a probing signal without unnecessary excitation power at the natural 
frequencies of low damped modes, because this may result in unwanted 
oscillations. A trade-off between these two terms must be made by 
tuning the weights c1, c2. 

In this work, a multisine time-domain realization for the probing 
signal is adopted, i.e.: 

u(t) =
∑M

r=1
Arcos(ωrt+φr), (13)  

where Ar,ωr,φr are the magnitude, frequency and phase of the rth sine 
component. The power spectrum of a multisine is defined as: 

Φu(ω) =
π
2
∑M

r=1
A2

r (δ(ω − ωr) + δ(ω + ωr)), (14)  

with δ(•) the Dirac function. Furthermore, Ar,ωr,φr,M are the user- 
defined magnitude, frequency and phase of the rth sinusoidal compo-
nent, respectively, and M the number of frequency components taken 
into account in the optimization problem (12). Note that in [14], the 
authors find φr (see (13)). The framework used in this work determines 
the amplitudes Ar in an optimal way whereas φr is chosen randomly and 
a grid is defined for ωr. Due to the newly developed parameterization, Listing 1. Steps to follow in order to define Ĝ(z, ρ), Ĥ(z, ρ).  
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the optimization problem defined in (12) is rewritten as: 

min
A2

r (r=1,2,…,M)

c1

2
∑M

r=1
A2

r +
c2

2
∑M

r=1
A2

r |Ĝ(ωr , ρ)|2,

subject to variance(ζi) < ηi, for i = 1, 2,…, ni,

A2
r ⩾0, for r = 1, 2,…,M.

(15)  

The additional constraints A2
r ⩾0 are to ensure positivity for the probing 

signal’s power (see (14)). Next, the constraints variance(ζi) < ηi are 
rewritten to a linear matrix inequality such that a convex optimization 
problem is obtained. For this, define the covariance matrix of the 
parameter vector ρ as Pρ = variance(ρ). Note that the variance of each 
damping coefficient is placed somewhere on its diagonal. Consequently, 
the constraint variance(ζi) < ηi is written as eT

i Pρei < ηi, with i the 
damping coefficient’s index and ei the unity vector whose ith element is 
equal to one. Then, by using the Schur complement, the constraint 
eT

i Pρei < ηi is written as an linear matrix inequality such that (15) 
becomes: 

min
A2

r (r=1,2,…,M)

c1

2
∑M

r=1
A2

r +
c2

2
∑M

r=1
A2

r

⃒
⃒
⃒Ĝ(ωr, ρ)

⃒
⃒
⃒

2
,

subject to

⎛

⎜
⎝

ηi eT
i

ei P− 1
ρ

⎞

⎟
⎠ > 0, for i = 1, 2,…, ni,

A2
r ⩾0, for r = 1, 2,…,M.

(16)  

As shown in [17], the inverse of the covariance matrix Pρ can be 
approximated by a first order approximation: 

P− 1
ρ = (variance(ρ) )− 1

=
N
2π

[(
1
σ2

e

∫ π

− π
Fu(ω, ρ)F*

u(ω, ρ)Φu(ω)dω
)]

+

N
2π

[(∫ π

− π
Fe(ω, ρ)F*

e (ω, ρ)dω
)]

,

with  

• σe an estimation of the standard deviation of e(t), and  
• functions Fu(ω, ρ), Fe(ω, ρ) defined as: 

Fu(ω, ρ) = Ĥ(ω, ρ)− 1
∂Ĝ
(

ω, ρ
)

∂ρ and

Fe(ω, ρ) = Ĥ(ω, ρ)− 1
∂Ĥ
(

ω, ρ
)

∂ρ .

Analytical expression for ∂Ĝ/∂ρ and ∂Ĥ/∂ρ are found in Appendix A. 
Due to the multisine parametrization of the probing signal, P− 1

ρ is 
evaluated as [17]: 

P− 1
ρ = N

[(
1

2σ2
e

∑M

r=1
Re

{

Fu(ωr, ρ)F*
u(ωr, ρ)

}

A2
r

)

+
(
CXCT + DDT)

]

,

(17)  

with X the solution to the Lyapunov equation: AXAT +BBT = X and the 
matrices A,B,C,D from the minimal state-space realization of Fe(ω, ρ). 
From (17), it is to be noted that more power in the probing signal (larger 
A2

r ) and more data points in the measurement (larger N) will result in a 

smaller variance of the parameter vector ρ and thus also ζi. However, as 
stated before, the objective is also to minimize the disturbance in the 
network due to probing. The optimization problem formulated in (16) 
takes this into account. 

An important question that needs to be addressed is the actual instant 
at which probing is to be applied. For example, when damping values 
are close to a certain lower bound for which oscillations in the network 
occur, probing is invaluable in order to provide an accurate damping 
estimation. This is a challenging problem and a research subject by itself 
[12] and it will be addressed in future research. Furthermore, in this 
work it is assumed that the moment of probing is known as this is also 
current practice [8]. Furthermore, a choice must be made for probing 
and measurement locations in the network. For example, the probing 
signal can be the reactive power injected at a bus where a power elec-
tronic device is placed. A measurement can be the phase angle or fre-
quency difference between two buses in the network where phasor 
measurement units are placed. One criteria for these choices is that the 
probing signal should have sufficient impact on the measurement’s 
observability of the mode of interest. In other words, the measurement 
should be sufficiently enriched by the probing signal. There are methods 
that allow to find probing and measurement locations [18]. In this work, 
however, these were chosen empirically such that an identified and 
validated model is obtained. A last remark on the proposed framework is 
that actuation limitations are not taken into account (an ideal actuator is 
assumed). In practice, however, an actuator is not ideal due to delays, 
saturation and filtering. Nevertheless, the frequency content of the 
probing signal is crucial for the proposed methodology. The assumption 
is therefore that the actuator generates probing signals that contain all 
frequencies ωr for r = 1,…,M (see (13)). 

Note that the covariance matrix’s expression Pρ, which is used in 
(16), requires an initial estimate of the parameter vector ρ. In other 
words, it requires an initial identified model. The following section de-
scribes how this model is obtained and when the optimized probing 
signal is applied so that accurate damping estimations are obtained. 

4. Simulation Results 

This section discusses the used software, two applied simulation 
procedures for estimating the network’s damping and how the outcome 
of these procedures is compared. Then, the simulation results are pre-
sented and discussed for two different power system non-linear simu-
lation models. 

4.1. Software 

The employed programs are Matlab (for system identification) and 
Modelica tool Dymola in combination with the OpenIPSL library [19] 
(for power system modeling). The library was built to model nonlinear 
power system networks using the phasor (i.e., positive-sequence) 
modeling approach. All developed Dymola models and also the Matlab 
scripts that solve the system identification problem and the optimal 
probing signal selection are placed on a Github repository [20]. 

4.2. Simulation procedures 

In order to demonstrate the proposed method’s effectiveness, two 
different simulation procedures are discussed below and schematically 
depicted in Fig. 2. The first (base) procedure follows a similar approach 
as presented in [8], while the second (optimal) procedure follows the 
approach as presented in this work. The two approaches are later 
compared, but first detailed as follows: 

(1) Base Procedure 
The following steps are followed in the base procedure: 

S. Boersma et al.                                                                                                                                                                                                                                
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The variance Pρ,base is used in the optimal procedure. In the base 
procedure, the tuning variables na, nb, nc, nk, time-window of probing 
(t2 − t0 seconds) and probing signal ubase(t) are chosen manually such 
that an identified (and validated) model is obtained. Note that the time- 
window of probing in the base procedure is not found by solving an 
optimization problem, similarly to current practice [8]. Also note that 
the chosen probing signal ubase(t) contains empirically found amplitudes 
as done in [8], which is in contrast to the optimal procure that is 
described next. 

(2) Optimal Procedure 
The optimal procedure contains two experiments and its objective is 

to obtain an equivalent variance on the damping estimation as obtained 
during the base experiment (Pρ,base), though while minimizing the 
disturbance in the network (less power in the probing and measurement 
signals). The following steps are followed in the optimal procedure: 

It should be clear that the upper bound ηi in the fifth step is the user- 
defined design constraint. It is set to a value which ensures that the 
optimal procedure combining the manually chosen (during first t1 − t0 
seconds) and the optimized (during last t2 − t1 seconds) probing signal 
yield an estimate of the damping whose variance is smaller or equal to 
the variance of the damping’s estimate in the base procedure. 

Quality measures are introduced in the following section in order to 
compare the two procedures and to ensure that the identified models are 
valid. 

4.3. Quality Measures 

In order to validate the identified model and proposed framework, 
the following quality measures are introduced: 

Listing 2. Steps to follow in the base procedure.  

Listing 3. Steps to follow in the optimal procedure.  
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i) The Bode diagrams of the identified models (both base and optimal 
procedure) are compared with those of the nonlinear power system 
model, linearized by using [21]. 
ii) The sample mean and the sample variance of the estimates in the 
base and the optimal procedure are evaluated by means of Monte 
Carlo simulations to verify that the damping estimate’s accuracy in 
the optimal procedure is larger or equal to the one in the base 
procedure. 

Quality measure i) ensures that identified models are valid. This 
quality measure is used to tune the identification parameters na,nb,nc,nk,

N, i.e., it is used to find a proper model structure (see (2)) and time- 
window (t2 − t0). For quality measure ii), the sample variance is 
defined as: 

P̂ζi ,• =
1

L − 1
∑L

j=1
|ζi,j − ζi| with ζi =

1
L

∑L

j=1
ζi,j, (19)  

with ζi,j estimation j of ζi, L the total number of estimations and ζi its 
sample mean. 

4.4. Optimal Probing Design Simulation Results 

4.4.1. Test network 1: Kundur with an embedded HVDC link 
Fig. 3 depicts schematically a representation of the modified Kundur 

network. 
The probing signal u(t) is the active power through the HVDC link 

and the measurement y(t) is the phase angle difference between bus 7 
and 9. The random load changes are represented by the noise e(t) with 
standard deviation 5⋅10− 4 and injected in bus 2. This network’s mini-
mum under-damped inter-area mode is located at ωtrue = 0.63 Hz with a 
damping coefficient of ζtrue = 0.015 and contains also two other low- 
damped local modes around 1.1 and 1.3 Hz. These values are calcu-
lated from the linearized Dymola network using [21] and used only for 
comparison. 

(1) Base Procedure Results: Kundur with an embedded HVDC link 
Table 1 provides the parameters that are used during the base pro-

cedure (see Listing 2). The parameters na, nb, nc, nk,N are tuned such that 
quality measure i) is ensured (the Bode diagram is shown later). 

(2) Optimal Procedure Results: Kundur with an embedded HVDC link 
The steps listed in Listing 3 are followed for two different pairs of 

weighting factors ci (see (16)). 
a) c1 = 1, c2 = 0 The optimized multisine amplitudes that are found 

using (16) are depicted in Fig. 4. As shown in that figure, they are 
centered around the local low-damped modes located at 1.3 Hz and 
(mostly) around the inter-area mode (vertical black dashed line). This is 
explained by the fact that the optimization problem in (16) minimizes 
only the power in the probing signal when c2 = 0. Therefore, in order to 
obtain the required variance on the damping coefficient, it is more 
efficient to mostly probe around the inter-area mode. This is however 
undesirable as explained before and can be improved by introducing 
c2 > 0 as is shown later. 

The time-domain results are shown in Fig. 5. Here, the first subplot 
depicts the measurement y(t) (blue) and the simulation output from the 
identified model ŷ(t) (red). The second subplot shows the probing signal 
u(t). Note that there is a difference in probing between t0 = 0 until t1 =

60 (manual probing) and t1 = 60 until t2 = 120 (optimal probing). 
b) c1 = 1/2, c2 = 2500 The optimized multisine amplitudes that are 

found using (16) are depicted in Fig. 6. 
Observe that, with respect to the previously found amplitudes 

(Fig. 4), the frequency that is closest to the inter-area mode is less 
excited, which is desired as explained previously. This is due to setting 

Fig. 3. Schematic representation of the Kundur network with an embedded 
HVDC link. 

Table 1 
Parameters that are used in the Kundur network with HVDC link.  

Parameter t0  t1  t2  N h na  nb  nc  nk  M ωr  Ar  

Value 0 60 120 2400 0.05 4 4 2 1 30 [0.1,…, 3] (Hz)  0.03  

Fig. 4. The amplitudes Ar from the base procedure (blue), and optimized ones 
(red) with c1 = 1,c2 = 0. The vertical dashed line indicates the frequency of the 
true inter-area mode. 

Fig. 2. Schematic representation of the base procedure, which is similar to [14] 
and the proposed optimal procedure. 
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c2 > 0 in (16) so that also the output is minimized. Consequently, 
probing the network close to its inter-area mode is penalized. On the 
other hand, around the inter-area mode, the amplitudes are increased in 
order to ensure the demanded variance on the damping coefficients. The 
time-domain results are shown in Fig. 7. 

(3) Comparison Base and Optimal: Kundur with an embedded HVDC link 
Fig. 8 depicts the Bode magnitude plots of the nonlinear power 

system model after being linearized in Dymola, and of all three identi-
fied models. One model obtained during the base procedure (Ĝbase) and 
one for each optimal procedure (Ĝopt1 , Ĝopt2 ). It can be observed that the 
dominant characteristics of interest for this work are captured with the 
identified models, but that the local modes above 1 Hz are not perfectly 
approximated. This is due to the fact that the identified models contain 4 
poles with respect to the 46 poles in the linearized power system model. 
In any case, for the proposed damping estimation method, it is important 
to estimate accurately the lowest damping coefficient, which is reflected 
in the peak around 0.63 Hz in the Bode magnitude plot and not other 
relatively high valued coefficients. The identified models estimate this 
peak sufficiently well. 

In order to verify quality measure ii), for all three cases, 100 
nonlinear time-domain simulations are conducted and damping esti-
mations are obtained. The estimation’s sample means and variances (18) 
are evaluated. The results for the lowest damping coefficient are 
depicted in Table 2. This table also shows the average normalized power 
in the probing signal and measurement. 

Recall that the lowest damping value, obtained when linearizing the 
nonlinear power system model, is 0.015. Even though this is not taken 
into account in our procedure, we observe a small bias in the three 
identification procedures. Among other reasons, this bias can be 
explained by the use of a lower order model structure to identify the 

Fig. 5. Identification results obtained following the optimal procedure with c1 = 1,c2 = 0. The probing signal u(t) has MW as units and its value is plotted around an 
equilibrium value. 

Fig. 6. The amplitudes Ar from the base procedure (blue), and optimized ones 
(red) with c1 = 1/2,c2 = 2500. The vertical dashed line indicates the frequency 
of the true inter-area mode. 

Fig. 7. Identification results obtained following the optimal procedure with c1 = 1/2, c2 = 2500. The probing signal u(t) has MW as units and its value is plotted 
around an equilibrium value. 
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system [17]. Due to the presence of the bias, the accuracy of a given 
estimate can be best evaluated using the MSE which is equal to the sum 
of the variance and of the squared bias. The (sample) MSE for the esti-
mate obtained with the base procedure is thus here equal to 9.46⋅10− 6 

while this MSE is respectively equal to 2.8⋅10− 6 and 4.99⋅10− 6 in the two 
optimal procedures. We thus indeed observe that the accuracy obtained 
in the two optimal procedures are larger or equal than the one in the 
base procedure. It should also be noted that the bias is relatively low for 
practical purpose and it is consistent with other similar research [22]. 

The probing signal’s and measurement average power are in the first 
optimal procedure approximately 90% and 15% lower, respectively, 
compared to the base procedure. This is in the second optimal procedure 
70% and 40% lower, respectively. Comparing the two optimal proced-
ures, it can be observed that in the second one, there is less average 
power in the measurement. This is as expected since c2 = 2500 in (16) is 
introduced, which penalizes the measurement’s deviation from its 
nominal value. However, in order to still ensure the demanded variance 
in the second optimal procedure, the average power in the probing 
signal increased with respect to the first optimal procedure. This clearly 
illustrates the trade-off between average power in the probing signal and 
measurement, which is regulated by the weights c1, c2 in (16). 

4.4.2. Test network 2: Nordic 44 
The second case study is the Nordic 44-bus test network [23]. Via a 

Voltage Source Converter working in STATCOM mode (modeled as in 
[24]), reactive power u(t) is injected at bus 3020 and the measurement 
y(t) is chosen to be the angle difference between bus 5601 and bus 7010. 
The random load changes that are modeled by e(t) with a standard de-
viation 0.02, are injected in bus 7020. The Nordic 44 has in total 374 
under damped modes. The lowest is at ωtrue = 0.4 Hz with a damping 
coefficient of ζtrue = 0.01. The second lowest is at 0.95 Hz having a value 
of 0.07. These two are the most dominant inter-area modes. The inter-
ested reader is referred to [23,24] for a schematic representation of the 
Nordic 44-bus test network. 

(1) Base Procedure Results: Nordic 44 
Table 3 provides the parameters that are used during the base pro-

cedure (see Listing 2). The parameters na, nb, nc, nk,N are tuned such that 
quality measure i) is ensured (the Bode diagram is shown later). 

(2) Optimal Procedure Results: Nordic 44 
The steps listed in Listing 3 are followed for two different pairs of 

weighting factors ci (see (16)). 
(a) c1 = 1,c2 = 0 
The optimized multisine amplitudes that are found using (16) are 

depicted in Fig. 9. Observe in this figure again that the optimal probing 
signal is centering its energy around the (in this test case) two most 
dominant inter-area modes. The frequencies that belong to these modes 
are illustrated by the black vertical dashed lines. This is due to the fact 
that c2 = 0 for this optimal experiment and thus, the objective is to 
minimize the probing signal’s energy and not the output power’s energy. 
This steers the optimal probing signal’s energy around the most domi-
nant inter-area modes. 

A zoom-in of the time-domain results is shown in Fig. 10. Here, the 
first subplot depicts the measurement y(t) (blue) and the simulation 
output from the identified model ŷ(t) (red). The second subplot shows 
the probing signal u(t). Note that there is a difference in probing be-
tween t0 = 0 until t1 = 450 (manual probing) and t1 = 450 until t2 =

900 (optimal probing). 
(b) c1 = 3/4, c2 = 1/4 The optimized multisine amplitudes that are 

found using (16) are depicted in Fig. 11. 
Observe in Fig. 11 that the optimal probing signal’s power around 

the two frequencies, which belong to the two most dominant inter-area 
modes, is reduced with respect to the previous optimal experiment. 
However, in order to ensure the demanded accuracy of the damping 
estimation, the optimal amplitudes of other frequency components in 
the probing signal are increased. This is again due to introducing c2 > 0. 
A zoom-in of the time-domain results is shown in Fig. 12. 

(3) Comparison Base and Optimal: Nordic 44 
Fig. 13 depicts the Bode magnitude plots of the nonlinear power 

Fig. 8. Bode magnitude plot of the three estimated models and the linearized nonlinear network.  

Table 2 
Simulation results for the Kundur network with an embedded HVDC link.     

normalized normalized  
sample mean sample variance probing signal power measurement power 

Base procedure 0.018 4.6⋅10− 7  1 1 

Optimal procedure 1 0.016 18⋅10− 7  0.1 0.85 

Optimal procedure 2 0.017 9.9⋅10− 7  0.3 0.6  
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system model after being linearized in Dymola, and of all three identi-
fied models. One model obtained during the base procedure (Ĝbase) and 
one for each optimal procedure (Ĝopt1 , Ĝopt2 ). It can be observed that the 
dominant characteristics are again captured with the identified models 
containing the modes with lowest damping at 0.4 Hz and 0.95 Hz. The 
local mode around 0.5 Hz is not approximated, which is due to the fact 
that the identified models contain 6 poles with respect to the 1013 poles 
in the linearized Dymola model. As in the previous example, the iden-
tified models contain the important information for the current appli-
cation, which is damping estimation. 

In order to verify quality measure ii), for all three cases, 10 nonlinear 
time-domain simulations are conducted and damping estimations are 
obtained. The estimation’s sample means and variances (18) are 
evaluated. Only 10 simulations are conducted per procedure because 
each simulation requires 48 h to be completed. Although the results are 
not fully statistically significant, they still give an insight in the proposed 
method’s validity. The results for the lowest damped damping coeffi-
cient are depicted in Table 4. This table also shows the average 
normalized power in the probing signal and measurement. 

Recall that the lowest damping value from the linearized Dymola 
model is 0.01. We here also observe a bias and we therefore also 
compute the sample MSE to evaluate the accuracy of the estimates ob-

tained in the three identification procedures: MSE= 9.017⋅10− 6 for the 
base procedure, MSE= 16.04⋅10− 6 for the first optimal procedure and 
MSE= 4.34⋅10− 6 for the second optimal procedure. We observe that this 
MSE is small for the three procedures, but, contrary to what would be 
expected, the MSE in the first optimal procedure is larger than the one in 
the base procedure. This discrepancy could perhaps be explained by the 
relatively low number of Monte-Carlo simulations. 

The probing signal’s and measurement average power are in the first 
optimal procedure approximately 18% lower and 17% higher, respec-
tively, compared to the base procedure. These results coincide with the 
fact that the focus in this optimal experiment is on the minimization of 
the probing signal’s power (c2 = 0) and not on the measurement’s 
power. For the second optimal procedure, the probing signal’s and 
measurement average power are approximately 50% higher and 8% 
lower, respectively, compared to the base procedure. This results again 
clearly indicates that the presented optimal probing design framework 
allows the user find a trade-off between probing signal and measure-
ment power content during the system identification experiment for 
damping coefficient estimation. 

Table 3 
Parameters that are used in the Nordic 44 network.  

Parameter t0  t1  t2  N h na  nb  nc  nk  M ωr  Ar  

Value 0 450 900 1200 0.1 6 3 3 0 30 [0.1,…, 3] (Hz)  0.01  

Fig. 9. The amplitudes Ar from the base procedure (blue), and optimized ones 
(red) with c1 = 1, c2 = 0. The vertical dashed lines indicate the true most 
dominant inter-area modes’ frequency. 

Fig. 10. Zoom-in of the identification results obtained following the optimal procedure with c1 = 1, c2 = 0. The probing signal u(t) is plotted in percentages of its 
nominal value (i.e., 0.1 means a 10% deviation of its nominal value). 

Fig. 11. The amplitudes Ar from the base procedure (blue), and optimized ones 
(red) with c1 = 3/4, c2 = 1/4. The vertical dashed lines indicate the true most 
dominant inter-area modes’ frequency. 
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5. Conclusions 

Inter-area mode estimation has proven to be one of the key applications 
in PMU-based wide-area monitoring systems for power system operation. 
For example, a damping estimate below a certain threshold can serve to 
indicate when corrective control actions needs to be taken. However, taking 

such action requires a high degree of confidence that the damping estimates 
are accurate, which translates into a low variance requirement on the es-
timates. This is a challenge in ambient data-based estimators because the 
excitation of a particular mode can be low and consequently resulting in 
damping estimates with unacceptable variance. While probing methods 
have been applied in the past to address this issue, they do not provide any 

Fig. 12. Zoom-in of the identification results obtained following the optimal procedure with c1 = 3/4,c2 = 1/4. The probing signal u(t) is plotted in percentages of 
its nominal value (i.e., 0.1 means a 10% deviation of its nominal value). 

Fig. 13. Bode magnitude plot of the three estimated models and the linearized nonlinear network.  

Table 4 
Simulation results for the Nordic 44.     

normalized normalized  

sample mean sample variance probing signal power measurement power 

Base procedure 0.013 1.7⋅10− 8  1 1 

Optimal procedure 1 0.014 4.0⋅10− 8  0.82 1.17 

Optimal procedure 2 0.012 34⋅10− 8  1.5 0.92  
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means to constraint on the amount of perturbation that the power network 
experiences due to the probing signal injection, which is undesirable. 

To address these challenges, this work presented a method that pro-
vides damping estimations with guaranteed accuracy, while minimizing 
the perturbations in the network. The method combines system identi-
fication and optimal probing signal design. An identified model is used to 
evaluate an optimal probing signal, which is then applied to find the 
accurate damping estimation. The framework presented in this paper 
allows the probing signal designer to make a trade-off between the power 
in the probing signal and measurement for an ensured estimation accu-
racy. The proposed framework is demonstrated through two simulation 

examples. One relatively small example with an embedded HVDC link 
and one realistic grid model called the Nordic 44. It has been shown that 
by utilizing an advanced probing design method, accurate damping co-
efficient estimations are provided while simultaneously minimizing the 
network’s perturbation. A comparison with a standard probing design 

method shows that the proposed method causes less perturbations in the 
network, while having an equivalent estimation accuracy. 

Even though the model parameters that are estimated by the proposed 
method are random variables by itself (they are uncertain), the method does 
not take uncertain network parameters into account. This is an interesting 
avenue for future work. This also hold for the application of the proposed 
method on a power system model with power hardware in the loop of an 
HVDC controller such that the method can be tested even better. 

Nomenclature 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
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System Identification  
t, z  Discrete-time and complex variable, respectively 

u(t),e(t) Probing signal and white noise (random load changes), respectively 

y(t), ŷ(t) Network’s response (measurement) and its estimation, respectively 

Ĝ(z,θ), Ĥ(z,θ) Identified model parameterized in θ  

θ  Parameter vector found by the identification method 

Ĝ(z,ρ), Ĥ(z,ρ) Identified model parameterized in ρ  

ρ  Parameter vector with, among others, ζi,ωn,i  

ζi,ωn,i  Estimated damping coefficient i and its corresponding natural frequency 
na,nb,nc,nk  Tuning variables of the identification procedure 

N,h  Number of data points in, and sample period of the data used for identification 
ni,nr  Number of complex pole pairs and real poles, respectively, in the identified model   

Probing Signal Design  
ω  Continuous-time frequency 

Φu ,Φy  Power spectrum probing signal and measurement, respectively 
Ar,ωr ,φr,M  Parameters of the probing signal (multisine) 

c1 ,c2  Tuning variables of the optimal probing design procedure 
ηi  Upper bound on variance(ζi)  
Pρ  Covariance matrix of the parameter ρ  

P̂ρ  Sample covariance matrix of the parameter ρ    

Simulation Results  
ŷ(t) Output of the identified model (estimation of y(t))  

ζmin ,ωmin  Lowest estimated damping coefficient and its corresponding natural frequency 
ζtrue ,ωtrue  Lowest true damping coefficient and its corresponding natural frequency   
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Appendix A 

Recall that the parameter vector was defined as: ρ =
(

θT
ζ θT

b θT
c
)T, with  

θζ =
(

ωr
n,1 … ωr

n,nr
ωn,1 ζ1 … ωn,ni ζni

)T
,

θb = ( θna+1 … θna+nb )
T
, θc = ( θna+nb+1 … θna+nb+nc )

T
.

The transfer functions defined in (2) are re-written as:  

Ĝ(z, ρ) = m(z)

⎛

⎜
⎜
⎝

0na − nb

θna+1
⋮
θna+nb

⎞

⎟
⎟
⎠

⏟̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅ ⏟
Bg(θb)

a(z, θζ)
− 1z− nk ,

Ĥ(z, ρ) = m(z)

⎛

⎜
⎜
⎝

1
θna+nb+1
⋮
θna+nb+nc

⎞

⎟
⎟
⎠

⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟
Bh(θc)

a(z, θζ)
− 1
,

with 

m
(
z
)
=
(

zna zna − 1 … z 1
)
∈ Rna+1,

and  

a(z, θζ) =
∏ni

i=1

(

z2 − 2e− ζiωn,ihcos
(

ωn,i

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ζ2
i

√

h
)

z + e− 2ζiωn,ih
)

…

…
∏nr

j=1

(
z− sign

(
zj
)
e− ωr

n,jh
)
,

The analytical expressions of the partial derivatives are defined as: 
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and

with 

∂a(z, θζ)

∂ωn,i
=

{
f1(θζ), for i = 1,…, nr ,

f2(θζ), for i = nr + 1,…, nr + ni,

and 

∂a(z, θζ)

∂ζi
= f3

(

θζ

)

, for i = nr + 1,…, nr + ni.

having 

f1(θζ) =
∏ni

i=1

(

z2 − 2e− ζiωn,ihcos
(

ωn,i

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ζ2
i

√

h
)

z + e− 2ζiωn,ih
)

×

…
∏

nr
k=1

k∕=i

(
z − sign(zk)e− ωr

n,kh )
×

…
∂

∂ωn,i

(
z − sign(zi)e− ωn,ih

)
,

f2(θζ) =
∏

ni
k=1

k∕=i

(

z2 − 2e− ζkωn,khcos
(

ωn,k

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ζ2
k

√

h
)

z + e− 2ζkωn,kh
)

×

…
∏nr

j=1

(
z − sign

(
zj
)
e− ωr

n,jh
)
×

…
∂

∂ωn,i

(

z2 − 2e− ζiωn,ihcos
(

ωn,i

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ζ2
i

√

h
)

z + e− 2ζiωn,ih
)

,

f3(θζ) =
∏ni

k=1

k∕=i

(

z2 − 2e− ζkωn,khcos
(

ωn,k

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ζ2
k

√

h
)

z + e− 2ζkωn,kh
)

×

S. Boersma et al.                                                                                                                                                                                                                                



International Journal of Electrical Power and Energy Systems 129 (2021) 106640

14

…
∏nr

j=1

(
z − sign

(
zj
)
e− ωr

n,jh
)
×

…
∂

∂ζi

(

z2 − 2e− ζiωn,ihcos
(

ωn,i

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ζ2
i

√

h
)

z + e− 2ζiωn,ih
)

.

Appendix B 

The optimal procedure consists of two estimations. The final (combined) estimated model is evaluated following the steps:  

1. Pθ =
[∑m

i=1
(
P(i)

θ
)− 1 ]− 1 

[17].  

2. θopt = Pθ
∑m

i=1
(
P(i)

θ
)− 1

θ(i) [17].  

3. Construct Gopt using θopt. 

Here, m is the number of estimations, which in the optimal procedure in two. Furthermore, P(i)
θ is the covariance matrix of the parameter vector θ(i)

of estimation i. These matrices are given by the Matlab System Identification toolbox. Note that the above steps are also followed to evaluate the 
estimated damping coefficients from the optimal procedures. 

Appendix C. Supplementary material 

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.ijepes.2020.106640. 
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