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for Big Data Generation
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Abstract—The letter proposes an algorithm for big data
generation based on realistic selection of a set of contingencies
for power systems described by undirected graphs. Every contin-
gency is created by eliminating a certain number of elements in
the system represented by graph edges. The number of elements
as well as the distance between elements of the contingency is ran-
domly selected according to a geometric probability distributions
based on historical data. The duration of a fault that starts the
contingency as well as the time intervals between elements of the
contingency are chosen by sampling from a gamma distribution.
In addition, the absence of islands in the system is assessed by
analyzing the connectedness of the graph with deleted edges,
which is quantified by computing the number of zero eigenvalues
of the Laplacian matrix of the resulting graphs. The algorithm
is validated on the Nordic 44-bus power system.

Index Terms—Big data, contingency, gamma distribution, ge-
ometric distribution, graph connectedness, Laplacian matrix.

I. INTRODUCTION

APPLICATION of machine learning (ML) methods are
becoming more widespread in different fields of science

and engineering, including power systems. The effectiveness
of ML methods depends on quality and amount of data used
for training and testing. These data can be accumulated from
measurements and/or synthetically generated using physics-
based models that have been validated with respect to measure-
ments of a real system. Power system data generation using
such models usually includes the time-domain simulation of
a limited set of contingencies. The set of contingencies tend
to consist of n−1 contingencies, excluding generator outages
[1], [2]. In rare cases, typical n − k contingencies are added
to the set [3].

In this letter we propose a systematic approach to auto-
matically design realistic single and multi-event contingencies
based on the probability of a number of events in a contin-
gency, as well as the probability of how far the next event
is located with respect to the previous events in a multi-
event contingency. To guarantee that the result of applying
contingencies do not degenerate the power network into sepa-
rate islands, the network connectedness is tested using graph
theory. In addition, graph theory is used to verify that at
least one generator remains connected after a contingency is
applied. To make contingencies realistic, the duration of the
short-circuit, as well as, time between the following events in
a contingency is sampled from a probability distribution.
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Fig. 1. Chronological structure of a contingency.

II. PROPOSED METHOD

Chronologically a contingency consists of a fault, the fault
clearing time, the outage of faulted element 1, time interval
to the outage of element 2, and further elements of a n − k
contingency (see Fig. 1).

A. Fault sampling
Fault sampling consists of fault clearing time sampling, fault

type sampling, and fault location sampling.
A typical value of a fault clearing time is 5 cycles of a 60-

Hz sine wave, while the shortest fault clearing time is about
3 cycles [4]. The maximum time that a circuit-breaker can
remain closed under the short-time withstand current is 30
cycles or 0.5 seconds [4]. Using this information, a gamma
distribution that models a probability of the fault clearing
time deviations from the shortest fault clearing time of 3
cycles is parameterized. The idea is to design the spread of
the final probability density function, so that the confidence
interval bounds of at least 95% correspond to minimum and
maximum fault clearing time. This interval corresponds to the
3σ bound according to the Vysochanskij-Petunin inequality for
a unimodal distribution. Thus, the final distribution function
with the aforementioned properties is the gamma distribution
f(x) = βαxα−1e−βx/Γ(α), where α = 1.36 is the shape
parameter, β = 0.18 is the rate parameter, Γ(α) is the
gamma function. The obtained probability density is shifted
by 3 cycles that correspond the minimum fault clearance time
(Fig. 2a). For this probability density function the range of
fault clearing time from 3 to 30 cycles covers 98.4% of the
distribution.

The type of a fault is sampled based on the probability of a
single-phase fault of 70%, the probability of a two-phase fault
of 20%, and the probability of a three-phase fault of 10% [5].

For a generator the fault location is set to be at the terminal
bus. For a transformer the fault is uniformly selected among
its terminal buses. For transmission lines the location of the
fault within the length of a line is sampled using a uniform
distribution.

B. Sampling the number of elements in a contingency
According to [6] the reliability criteria for a facility in the

Western Interconnection, the frequency of n-1 contingency
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Fig. 2. Probability distributions: a) probability density function of the fault
clearing time; b) probability mass function of the number elements involved
in a contingency.

is 0.33 per year, the frequency of n-2 contingency is 0.033
per year, and the frequency of n-k contingency is 0.0033 per
year. It is evident that probability of a contingency with an
additional tripped element is 10 times smaller. Therefore, the
probability of a contingency being n − k is derived in the
form of pk = (m − 1)/mk, where m = 10. This probability
distribution is identified as the geometric distribution with
infinite support. To limit the support by the total number of
elements n, the probability mass function is defined (1):

p(k) =


m−1
mk if k < n

1 −
n−1∑
i=1

m−1
mi if k = n

(1)

An example of the probability mass function (1) for a system
with 4 elements is shown in Fig. 2b.

C. Presence of generation
After a realistic contingency at least one generator has to

be connected to the system. To verify this condition using
graph theory, the power system is described by a multigraph
(a graph with parallel edges and loops). Specifically, in the
multigraph buses are represented by nodes, transformers and
lines are represented by edges, and generators are represented
by loops. An example of a multigraph with 4 nodes and 7
edges is shown in Fig. 3a. To verify that a multigraph has
at least one loop, the trace (the sum of elements on the main
diagonal) of an adjacency matrix A can be used. It shows how
many loops a multigraph has. Element Aij of the adjacency
matrix shows how many edges are between node i and node
j. The adjacency matrix (2) represents the multigraph from
Fig. 3. For example, the trace of matrix in (2) is equal to 2.

A =


1 2 1 0

2 0 0 1

1 0 0 1

0 1 1 1

 (2)

Thus, if generators are present in a system, the trace of
the adjacency matrix of the corresponding multigraph will be
positive.

D. Integrity of the system
In order for ML algorithms to learn the behaviour of a

power system as a whole, it is necessary to include only those
scenarios in which integrity of the system is not violated. To
assess that no islanding has happened after a contingency, the
connectedness of a multigraph can be verified. The property
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Fig. 3. An example of a multigraph.

of connectedness can be examined by analysing the Laplacian
matrix of a multigraph. The Laplacian matrix is defined as the
difference between the degree matrix and the adjacency matrix
L = D − A,where the degree matrix D is a diagonal matrix
whose elements Dii show the number of edges connected to
a node i. For example, the following degree and Laplacian
matrices represent the multigraph from Fig. 3a:

D =


4 0 0 0

0 3 0 0

0 0 2 0

0 0 0 3

 L =


3 −2 −1 0

−2 3 0 −1

−1 0 2 −1

0 −1 −1 2

 (3)

The number of zero eigenvalues of the Laplacian matrix
shows the number of subgraphs of a multigraph [7]. To
illustrate this fact, the eigenvalues of the Laplacian matrix in
(3) are 0.00, 2.00, 2.59, and 5.41. If edges 1-3 and 2-4 are
deleted, so that the multigraph has two subgraphs as shown in
Fig. 3b, the eigenvalues change to 0, 0, 2, and 4. Thus, if the
integrity of the system is not violated, the list of eigenvalues
of the Laplacian matrix has only one zero element.

E. Sampling the location of outages
When the number of elements of a contingency is identified

(Section II-B), the location of the first disconnected element is
sampled using uniform distribution. If a contingency includes
the outage of more than one element, the location of the
next disconnected element is defined based on the location
of the previous disconnected elements. When a branch of a
power system is tripped, the change in power flow is larger
in branches that are closer to the tripped branch. Therefore,
based on power flow change ratio as a function of distance
after a contingency [8], we propose to use the probability
distribution similar to (1) with m = 6 to sample the distance
between the location of the next disconnected element and
the location of previous disconnected elements. The distance
is described by the number of edges of a multigraph in the
shortest path between the node representing a terminal bus
of the next disconnected element and the nodes representing
terminal buses of the previous disconnected elements.

F. Algorithm of the proposed approach
To summarize, the algorithm consists of steps that have been

introduced above. First, sampling of fault type (Section II-A),
fault location (Section II-A), fault duration (Section II-A) have
to be performed from the distributions that have been identified
above. After the fault characteristics are defined, the number
of outages has to be selected by sampling from the geometric
distribution (Section II-B). Next, the selection of which outage
occurs first is done uniformly. Then, the condition of number
of outages is checked. If the number of the elements of the
contingency is equal to one, the connectedness of the graph
which represents integrity of power system (Section II-D)
and presence of generation (Section II-C) are assessed. The
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Fig. 4. Analysis of 9,399 contingencies in the Nordic 44-bus system.

contingencies that do not fulfill this constraint are eliminated
as invalid. If the number of elements of the contingency is
more than one, the algorithm continues to select the next
element of the contingency with respect to the previously
selected ones. The next element is identified by sampling
the distance between the previous and the next elements
of the contingency using the geometric distribution (Section
II-E) defined from a uniformly selected terminal bus of the
previously selected elements. When the distance is sampled,
one can retrieve a list of the elements that are located at this
distance from the previously tripped elements. The next step
of the algorithm that follows is a uniform selection of the next
element to be tripped from a list of equidistant elements. The
process of selection of the next tripped element is repeated
in the loop until the number of tripped elements equals the
sampled number of elements that is done at the first step of
the algorithm.

III. CASE STUDY AND ANALYSIS

A. Verification of the proposed approach
To verify the proposed algorithm, a set of 10,000 contin-

gencies is sampled using the Nordic 44-bus system [9]. The
system has 80 generators, 12 transformers, 67 transmission
lines. Among 10,000 contingencies 9,399 contingencies are
valid (see Section II-C and II-D) and for which statistics is
presented in Fig. 4. Figure 4a shows the histogram of the
fault duration with the scaled-up distribution from Fig. 2a.
Thus, the sampled contingencies closely follow the continuous
distribution. In Fig. 4b a distribution of the type of fault
with normalized probability mass values matches the data
in Section II-A. In addition, a distribution of the number of
outages in a contingency with normalized probability mass
values (Fig. 4c) matches the probability mass values in Fig.
2b for n−1, n−2 and n−3 contingencies. The smaller number
for n− 4 contingencies is caused by the fact that some n− 4
contingencies cause islanding and are moved to the invalid set.

B. Analysis of the proposed approach with respect to existing
approaches

To demonstrate its advantages, the proposed approach for
contingency design is compared with the existing approaches

TABLE I
COMPARISON OF CONTINGENCY DESIGN APPROACHES

Approach In [2] Proposed
Number of outages only n-1 n-k, discrete distribution

Fault type only 3-phase all types
Fault location 20, 40, 60, 80 %, 0 - 100 %,
within a line discrete distribution continuous distribution

Fault clearing time 0.1 - 0.4 seconds, from 0.05 seconds,
uniform distribution gamma distribution

in terms of realistic characteristics of contingency sampling
and contingency uniqueness. Approaches in [1], and [3] use a
predefined set of n-1 and n-k contingencies correspondingly.
In the data that is generated using these approaches, the same
contingency is repeated multiple times, which can cause over-
fitting of machine learning algorithms. Another issue that can
be caused by including same contingencies into both training
and testing data, is an inaccurate assessment of machine
learning method performance. Indeed, if the algorithm have
seen the data in training data set, it will perform better seeing
the same data in the testing data set. However, there is no
guarantee that such performance can be generalized when
testing on unseen data. In contrast, the proposed approach
avoids these issues. The approach in [2] ensures contingency
uniqueness by randomly sampling the fault clearing time for
each contingency. Therefore, the comparison of the approach
in [2] and the proposed approach is shown in Table I. The
proposed approach provides more realistic sampling param-
eters for each category expanding the coverage of possible
scenarios. If some scenarios are not present in the data, the
algorithms will perform poorly on such scenarios. Avoiding
this issue is one of the major strengths of the proposed
approach.

IV. CONCLUSION

The proposed systematic approach for contingency design
allows to generate a large number of unique realistic contin-
gencies, which can be used to train machine learning models
for power system security assessment.
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