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A B S T R A C T

This paper presents a method that performs classification of thousands of operating conditions w.r.t. power
system voltage stability by using decision trees. The proposed method uses a new and flexible classification
criterion that allows to identify operating conditions that are near or within the region for which the system is
voltage unstable, and more importantly, that can consider operational requirements. The method creates both
training and test data sets when building and validating the decision trees. To minimize computational burden, a
sampling method is proposed, this method exploits the Saddle Node Bifurcation conditions to explore the op-
erational space used to train the decision trees. Case studies were performed using the IEEE 9-bus system for
several operating conditions and different network configurations. This paper also proposes the use of time
domain simulations to assess the prediction accuracy of decision trees. Decision trees were created for network
configurations involving outage of the line were tested on test sets and also using time domain simulations
results from PSS/E. The ability to classify the degree of voltage stability of a multitude of operation conditions
could be useful to aid operators in selecting and applying preventive measures to steer away the system from
unstable conditions or conditions that are close to breaching operational requirements w.r.t. voltage stability.

1. Introduction

1.1. Motivation

During the recent years the challenge brought by the ongoing en-
ergy transition has led electric utilities to operate closer to their oper-
ating-limits which has made voltage instability a major concern for
power systems. One of the great challenges for electric utilities and
regional transmission organization is being able to meet system-wide
voltage security. Voltage stability is the ability of a power system to
sustain acceptable voltage at all buses under the normal condition after
being subjected to a disturbance [2]. Voltage instability usually occurs
in power systems that are heavily loaded or faulted or has shortage of
reactive power.

Broadly speaking, two types of situations may lead to voltage in-
stability. The first type is associated with the demand not being met by
the available generation due to transmission or reactive power limita-
tions. This situation may result from unexpected large load increase
and/or an earlier weakening of the system, such as low voltages and
increased losses. The second type of incident is a major event affecting
the generation or transmission system in such a way that the demand,

which is the pre-fault consumption, cannot be satisfied with the avail-
able generation or transmission capacity.

Voltage Stability Indices (VSI) were developed to deal with the first
type of situation. These indices help to foresee unacceptable effects of
load increments. Moreover, this anticipation capability along with in-
herent delay (in some cases) of load increments (because of the type of
behavior of certain loads) gives the operator some time to take remedial
actions such as switching capacitor banks, changing the generator
voltage set points, etc. However, the picture is quite different for vol-
tage instabilities that can follow major incidents such as outage of a
large capacity generator that is producing its maximum rated power or
the disconnection of heavily loaded transmission lines. The time left to
take remedial actions for the second type of situation is relatively
shorter than the first. This short time is very important and early de-
tection of a critical state can prevent the system from collapsing.

These above considerations motivate the development of ap-
proaches that can help in early identification of voltage instability and
suggest remedial actions to bring back the system to stable state.
Machine learning techniques like Decision Trees (DTs) can offer useful
tools to handle the early identification of voltage instability by per-
forming off-line analysis of thousands of potential operating conditions
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ahead of time.

1.2. Literature review

Identification of the voltage stability boundary (VSB) plays a vital
role in the reliable operation of a power system. Although the voltage
stability margin depends on numerous possible system stresses in
practical real-time applications, only several selected stress directions
are computed and checked in practice, especially, real-time static or
dynamic security assessment (DSA) tools. However, with the increasing
variability and uncertainty in today’s power systems, it is becoming
increasingly clear that the stability margin assessment should be
broadened to multiple stresses covering various sources and ranges of
uncertainty and variability. Therefore, an accurate and fast estimation
of the available voltage stability margin is of paramount importance for
the secure operation and control of electric power systems.

The voltage stability boundary surrounds the region of feasible and
stable operating points in power system parameter space. These oper-
ating points cannot cross the VSB without losing their stability [4]. The
voltage stability region (VSR) is a safe region for guaranteeing local
stability at the equilibrium under slow parametric variations [5]. Vol-
tage stability conditions are usually considered as power flow feasibility
conditions; and the VSB is associated with singularity conditions of the
power flow Jacobian matrix and saddle-node bifurcation (SNB). Re-
ferences [4] and [5] provide a comprehensive discussion on feasibility
boundaries and regions in state and parameter space in the power
system domain and summarize some recent development on the stabi-
lity analysis of large-scale systems. Some publications that address the
voltage stability problems include [6–9].

The traditional methods for calculating SNBs traditionally employ
iterative procedures. An extensive review of these methods is provided
in [10]. The two commonly used iterative methods are Continuation
Power Flow (CPF) and Direct methods [11]. The purpose of CPF is to
find a series of power flow solutions for a given load/generation change
scenario [12]. The CPF method provides reliable convergence due to its
predictor-corrector approach but is computationally intensive. Direct
methods were proposed for assessing the VSB, in which augmented
power flow equations are solved [13–16]. These methods provide the
left or right eigenvectors corresponding to the zero Jacobian matrix
eigenvalue at the point of voltage collapse. Direct methods are sensitive
to the initial guess, i.e., the initial guess affects the speed of con-
vergence and may even cause divergence of the iterative process [16].
This iterative process requires a considerable number of calculations to
find a single VSB point. To obtain the full VSB, the computational effort
becomes prohibitively significant for large-scale power systems. Com-
putational time becomes critically important for real-time analyses,
massive contingency screenings, and time domain simulations.

Machine learning techniques, such as Decision Trees (DTs), clus-
tering algorithms, neural networks and statistical methods have been
considered for voltage stability assessment [17,18]. These methods can
create/use a model, which is based on the knowledge of the operator
decision or historical data. The DT is a white-box model that can be
applied when functioning/working of a system is unknown or complex,
but there is plenty of data available. These models do not explicitly
model the physical system but establish a mathematical relationship
between many input-output pairs measured from the system. The
mathematical relationship is a model of the system, which can be
computed numerically from the measurements or simulated outputs.
The accuracy of the model may vary depending on accuracy of the si-
mulated outputs replicating the behavior of original system. The in-
vestigation of DTs for voltage security assessment sparked interest in
the early 90s. The DT based approach for power system security as-
sessment was presented in [19,20]. Due to the wide deployment of
PMUs in the recent years, real time security assessment combining DT
and synchrophasor measurements became possible [21–27].

1.3. Paper contributions

This paper proposes the use of DTs for voltage stability assessment,
which in turn can aid in deriving preventive actions that can be given as
recommendations to system operators or automatic load shedding
schemes. The idea behind this approach is to enlarge and generalize the
existing security boundary method of “stable” and “unstable” region to
classify the operating space based on the distance from the nearest
Saddle-Node Bifurcation (SNB). This approach, along with DTs trained
on the load parameter space for voltage security assessment, offers the
following contributions:

• To propose a new classification criterion that enlarges and gen-
eralizes the existing security boundary method of “stable” and
“unstable” regions to classify the operating space based on the dis-
tance from the nearest Saddle-Node Bifurcation (SNB); thus, al-
lowing to consider operational requirements w.r.t. voltage stability.

• To propose a sampling approach that reduces computational burden
by exploiting Saddle Node Bifurcation conditions when exploring
the operational space used to train the decision trees.

• To propose a “workflow” (i.e. algorithm) based on the two previous
points above to create a database with power flow outputs of several
operating points for different network configurations and use them
to train the decision trees.

• To propose a new approach in testing the prediction accuracy of
decision trees w.r.t. random time domain simulation outputs (vol-
tage magnitude, active power consumption at load buses).

2. Voltage stability assessment and operating condition
classification using decision trees

A Decision Tree (DT) is a form of inductive learning. For a given
data set, the objective is to build a model that captures the mechanism
that gave rise to the data. The process of constructing the model is a
“Supervised learning” problem because the training is supervised by an
outcome variable called the target. Decision Trees are grown through a
systematic method known as recursive binary partitioning; where the
successive questions with yes/no answers are asked in order to partition
the sample space [19].

The nodes are the points in a tree where a test is done on the at-
tribute; branches are the outcomes of the test that lead to another node.
There are three kinds of nodes: root node, internal node and leaf node.
The root node is the topmost node, internal nodes are in-between and
leaf node and end nodes. The completion of the test is decided by the
purity of each node. If a node attains a certain pre-defined level of class
purity (i.e. having only one type of output in that node), then the node
is terminated. In order to classify a new sample, the attribute values are
tested against the decision tree. A path is traced from root node to the
leaf node that holds the class prediction for that sample. A schematic
view of the DT is shown below in Fig. 1. The basic task in building a DT
is to repeatedly find an attribute to be tested on a node and then branch
to another node. The process of finding an attribute for testing and
branching is called splitting.

Fig. 1. Schematic view of a decision tree.
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The objective of a split in a tree is to reduce the impurity (un-
certainty) in the dataset w.r.t. class in the next stage, which can be
accomplished by calculating the information gain. This calculation is
done in two stages. First, the Entropy (ENT) of the dataset is measured
as

= − ∑ =
Entropy S p p( ) log ( )i

c
i i1 2 (1)where c is the number of classes, S

is the training data/instances, and p is the proportion of S classified as i.
The expected information gain is calculated by using ENT as follows

= − ∑ ∈
Gain S a Entropy S Entropy S( , ) ( ) ( )v values

S
S v

| |
| |

v (2)Where
= ∈ =S s S a s v{ : ( ) }v with v being the value of the attribute, Gain S a( , )

is the expected information gain obtained from the knowledge of the
attribute a.

A. Attribute selection for the DTs

In this paper, load active powers and voltages are considered as
attributes for splitting the data because they are one of the important
factors in assessing the voltage stability of the system. From the defi-
nition of voltage stability, it can be observed that systems inability to
cater the power demand of the load is one important factor that may
lead a system to voltage instability. Therefore, the chosen attribute
should be such that it can discriminate between different system con-
ditions. For example, the voltage of a voltage-controlled bus is a bad
attribute as it is tightly controlled, while voltages and angles of the
buses that are electrically distant from the generators (e.g. radially
connected loads with high impedance) are good attributes for classifi-
cation. Hence, load active powers and voltages are used as attributes to
build the decision trees that can aid the power system operator with
voltage stability assessment for different load power consumptions and
network configurations.

B. Workflow

Data is required to train and test a decision tree. The training set is
used to build the decision tree and the test set is used to check accuracy
of the decision tree. Depending on the availability of data, there are
various procedures as cross validation, leave one out and bootstrap to
use for model validity [21].

The workflow (i.e. algorithm) proposed in this work to build a de-
cision tree for the selected network is shown in Fig. 2. For each to-
pology, such as the base case and for different contingencies, a database
is created with the power flow results for different load power con-
sumptions. These databases are then used to train the decision trees that
are used to predict the voltage stability of the considered system using
measured load powers and voltages.

The advantages of using simulated data is the ease of obtaining a
variety of data within a very short span of time which is not the case for
real time data, for example when obtaining the response of the system
in case of a fault (which happens seldom in real system), and the low
cost and low risk environment that it provides to assess all possible
operation scenarios.

C. Inputs to train the DTs

The DTs are created w.r.t. every load bus for different network
configurations. The number of DTs created is therefore proportional to
number of load buses and topologies considered. The number of bran-
ches for a tree increases with an increase in data. Creating one tree for a
network configuration increases the size of the tree that further com-
plicates interpretation. Moreover, creating one tree for a network
configuration increases the computational burden and lookup time. For
these reasons every network configuration will have a tree w.r.t. every
load bus. Next, a Continuation Power Flow (CPF) is carried out for
different network configurations with several load variations that are
then used to train and test the decision tree for those network config-
urations.

D. Sampling

Initially, SNB points are calculated using CPF [12]. The purpose of
CPF is to find a series of power flow solutions for a given load/gen-
eration change scenario. The CPF method provides reliable convergence
due to its predictor-corrector approach but is computationally in-
tensive. Therefore, in order to lessen the computation burden, this
paper proposes the use of a direct method to calculate the SNB points.
Direct methods are sensitive to the initial guess [13,14]. Consequently,
the SNB direct method is initialized by running a CPF routine once to
provide good initial guess [16]. Direct methods provide the left or right
eigenvectors corresponding to the zero Jacobian matrix eigenvalue at
the point of voltage collapse. The conditions for a SNB point are as
follows:

=

=

=

g y λ
g v
v

( , ) 0
0

| | 1
y (3)or

=

=

=

g y λ
g w

w

( , ) 0
0

| | 1
y
T (4)where v and w are the right and left eigen vectors.

In this paper, instead of running CPF method for all the operating
points to trace the unstable boundary, the CPF is executed to provide
good initial guess for the direct method. The direction of load variations
in CPF is fixed and it is along the load bus of interest (note that this
would be repeated for every bus of interest). Initially, the CPF method is
run for the load bus of interest (load P1 as shown by the blue star). The
CPF method finds the SNB bifurcation point. The direct method uses
this SNB and set direction as initial guess to calculate the eigen vectors
(as shown by the blue arrows). From here, the direct method is applied
sequentially in the same direction to calculate and trace the SNB
boundary (as shown by the blue arrows and the red stars). Thus, the
direct method calculates the boundary of SNB points as shown in the
Fig. 3. Using equations (3) and (4), the workflow Fig. 2. is modified to
sample a reduced number of operation conditions are obtained when

Fig. 2. Proposed workflow for the creation of decision trees.
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exploring the operational space used to train the decision trees, instead
of using the entire space.

In the proposed method, the CPF routine is executed only once
followed by a direct method to calculate the boundary of unstable
points. The runtime burden for using CPF routine to calculate the
boundary of unstable points for N operating points is given by
O Nn( )(where n is the number times the CPF simulations needs to be
executed). The computational burden for the propsed method is O (1)
because it runs CPF only once for one operating point followed by less
computationally intensive direct method that calculates the boundary
of unstable points. The same can be observed from Fig. 4 that as the
number of CPF routines increased, a runtine burden on O Nn( )(e.g.
N = 3 - for 3 operating points) is much higher than O (1). The operating
points for which CPF routine need to run will be in the order of hundred
or thousand based on the network. Thus, making the proposed method
computationally more efficient.

E. Voltage Stability classification for training the DTs

DT applications to power systems have been studied in [17–19].
According to [19,29], there is no standard universal approach for vol-
tage stability classification using DTs. The region of operation is clas-
sified to “stable” and “unstable”. The disadvantage of classifying the
region of operation to only “stable” and “unstable” is that if the system
is operating in the boundary of these regions, the decision tree trained
on this data identifies the current operating point in “stable” region. In
order to avoid this problem, the region of operation in this paper is
broadened and generalized, providing a classification in four regions.
They are the “stable within grid limits”, “stable outside grid limits”,
“marginally stable” and “unstable” regions. Initially, the Euclidean
distance is calculated for the given load operating point i w.r.t. load bus
a (considering loads at bus a, b, c….k) (Pai, Pbc…ki) from nearest un-
stable point (PanSNB, Pbc….knSNB) using

= − + − + + −Pa Pa Pb Pb Pk PkDistance ( ) ( ) ... ( )nSNB i nSNB i nSNB i
2 2 2

(5)
The margin is calculated as given by

=
+ + +

Margin Pa Pb Pk
Distance

. . .i i i
(6)

The nearest unstable point (PanSNB, Pbc….knSNB) is selected based on
the distance calculated to all the unstable point on the boundary, which
are obtained using the Sampling method discussed in Section II.D
above. Note that other methods that could be used for this purpose
[36].

If (6) is less than a given percentage (e.g. 25%), then the region of
operation is classified as a “marginally stable” region. If the available
margin is greater than or equal to the given percentage (e.g. 25%) with
voltages at all the load buses being greater than a given threshold (e.g.
0.95 pu), then the region is classified as “stable within grid limits” re-
gion, otherwise it is classified as “stable outside grid limits” region. If
the given load operating point is the saddle node bifurcation point or it
exists further away from the given saddle node bifurcation point, then
the region is classified as being in the “unstable” region. The fact that
the margins can be customized depending on the power system and
how conservative an operator makes these criteria general. The classi-
fication criteria are visualized in Fig. 3. The given load flow outputs are
classified into the regions based on the conditions explained above. The
trained decision trees are tested with the test set and the accuracy of the
classification is calculated. Low accuracy in classification indicates that
the decision tree is not trained properly, and it is needed to be re-
trained.

3. Case studies and results

The main objective of the studies herein was to demonstrate the use
of decision trees for voltage stability classification. The proposed
workflow in Fig. 2 and the sampling method described in the previous
section was implemented in MATLAB. The reason for this choice is
because access to the model’s Jacobian to perform the SNB condition
computations is necessary. In addition, access to a CPF for the in-
itialization of the proposed sampling method was also necessary, and to
this end the CPF from PSAT [30], was used. This proposed approach
was tested on the IEEE 9 bus system. The time domain simulations of
IEEE 9 bus system were carried out for different loading conditions and
network configurations using PSS/E. The simulations in PSS/E were
automated by a Python script. Later, the machine learning toolbox
available in MATLAB was used to train and test the decision trees on
this simulation results obtained from PSS/E. Finally, a MATLAB script
was written to validate the created decision trees by generating random
load powers.

A. Test network:

The IEEE 9 bus system shown in Fig. 4 is used for case studies. The
power system data for the case study was in the formats used by PSS/E
and PSAT. Therefore, power system data (transmission line im-
pedances, transformer impedances, generator ratings and exciter types)
in both the simulation environments were verified manually and care
was taken to make the power flow converge to the same bus voltage
magnitudes and angles. With regards to load modeling, the following
choices were made:

• For all power flow and CPF computations, the loads are assumed to
have no dynamic components and are modeled as consuming con-
stant power under a constant power factor. However, for time do-
main simulations these loads were replaced with exponential re-
covery load models.

• Simulations were performed for different loading conditions w.r.t.
every load bus for different network configurations.
Simulated network configurations:

Fig. 3. Illustration of the applied method.

Fig. 4. Comparison of runtime characterstics of O Nn( ) and O (1).
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Power flow studies were conducted by varying the demand at the
load buses. These simulations were automated using a Python script.
Data was generated for different network configurations w.r.t. every
load. Apart from the base case where all the transmission lines are in
service, the following network configurations were also simulated:

a) Outage of line between Bus 4 and 5,
b) Outage of line between Bus 5 and 7,
c) Outage of line between Bus 4 and 6,
d) Outage of line between Bus 6 and 9,
e) Outage of line between Bus 7 and 8,
f) Outage of line between Bus 8 and 9.

For the above-mentioned network configurations, power flow si-
mulations were conducted for load variations w.r.t. every load, i.e.
w.r.t. load 5, load 6 and load 8. The DT for each network configuration
is trained on over 100,000 simulated operational points. The generated
data was stored in .mat files.

B. Results for voltage stability assessment using DTs:

The set of simulated load data points for the base case network
configuration is shown in Fig. 5. w.r.t. load 5, i.e. for a fixed change in
demand at load 6 and load 8, demand at load 5 is changed in small
increments. Positive load growth w.r.t all the loads (load 5, load 6 and
load 8) are considered to generate data. The load power at the bus 5 is
increased in fixed steps of 0.1pu along with the rest of the loads in the
system.

These points were split into a training set (65% of the data) and
testing set (35% of the data). Training and test sets are randomly se-
lected from the simulated data to discretize the formulation of decision
trees. The points in the testing set were then classified to regions, based
on the classification rules provided in the previous section. Fig. 6.
shows the data in Fig. 5. classified as per defined classification rules.
This classified data was used to create the decision tree for the base case
network configuration w.r.t. load 5.

Training voltage stability assessment DTs:

For a network configuration, decision trees were created for varia-
tions w.r.t. every load. So, every network configuration of the IEEE 9
bus system has three decision trees. The MATLAB function fitctree in
the Statistics and Machine Learning Toolbox was used to create the
decision trees. It should be noted that the MATLAB machine learning
toolbox divides the training set data into training and cross validation
sets in order to deal with the overfitting problem [34]. This function
performs the following steps [34]:

1. Start with all the input data and examine all possible binary splits on

every predictor.
2. Select a split based best optimization criterion subject to minimum

leaf size constraint.
3. Impose the split
4. Repeat steps 1–4 recursively for the two child nodes

The function stops when it cannot make any more splits or if further
splits would not improve classification accuracy. The optimal value for
minimum leaf size was chosen by calculating the prediction error using
the kfoldloss function from the same toolbox. This function calculates
the error by checking the prediction of the decision trees on trained on
a percentage of the training set. For example, the training set is divided
to two sets with 75% and 25% data. The decision trees are trained on
the 75% of the data and tested on the 25% of data to calculate an error.

The imposed minimum leaf size versus the cross validated error for
base case network configuration is shown in Fig. 7. from where it can be
observed that the cross-validated error remains constant for the DT
w.r.t. load 5 for minimum leaf size greater than 8000. This helps to give
insight whether the training set has enough data points to train the DTs.
It can also be observed that the DTs w.r.t. load 6 and 8 have a constant
cross-validated error for minimum leaf size ranging from 3500 to 7500.
Based on this cross-validated error the function fitctree sets an optimum
value for minimum leaf size when training the DTs. When the leaf size is
less than the selected, it stops splitting the nodes. The created tree has
an average of 35 branches (size). The obtained size is the optimal size
based in the cross-validation error as shown in Fig. 7.

Testing voltage stability assessment DTs for base case network config-
uration:

The created DTs for different network configurations were tested on
the test set (35% of the data). The test set data was given as input to the
created DTs and these outputs were verified with the classificationFig. 5. Proposed classification criteria.

Fig. 6. Single Line Diagram of IEEE 9 bus system.

Fig. 7. Data of different loading conditions for base case w.r.t load 5.
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criteria used to create the decision trees. Based on the number of mis-
classifications by the created DTs, the accuracy was calculated the base
case network configuration w.r.t. load 5 is provided in

Table 1. The values that are given under the percentage in the table
are in the format of (estimated/actual). It can be observed from

Table 1 that two operating points in “unstable” region are mis-
classified as “marginally stable” region and one operating point in

“outside grid limits” region is misclassified as “marginally stable”. The
prediction accuracy is low in “outside grid limits” and “marginally
stable” region.

The classification accuracy of the decision tree for base case net-
work configuration w.r.t. load 6 is provided in

Table 2. It can be observed from the tables that the prediction ac-
curacy is low in “outside grid limits” region because seven operating
points are misclassified as “marginally stable”.

The classification accuracy of the decision tree for base case net-
work configuration w.r.t. load 8 is provided in Table 3. It can be ob-
served from the above table that the prediction accuracy is low in
“outside grid limits” region since seven operating points are mis-
classified to “marginally stable” region. It can be observed from Table 1,
Table 2 and Table 3 that even though there are misclassifications, each
DT has an average prediction accuracy of 99.9%.

Testing voltage stability assessment DTs for outage of line between bus 5
and 4:

The prediction accuracy of decision trees created for network con-
figurations involving outage of the line were evaluated on test sets and
using time domain simulations results from PSS/E. The time domain
simulations were run for t = 25 s and the change in network config-
uration was applied at t = 10 s. An example is shown in Fig. 8. and
Fig. 9. In all the time domain-simulations, all loads were modeled as
exponential recovery loads given by

= + +
−x P Pṗ

x
T s t

p

p
(7)where xp is the state variable for the load active

power, Ps and Pt are the static and transient real power absorptions,
which depend on load voltage as given in (8). Tp is the active power
time constant in

= =( ) ( )P P P Pands
V

V

α
t

V
V

α0 0s t
0 0 (8)where αs and αt are the static

and transient active power exponents and V 0 is the voltage at the load
bus from the load flow solution. Similar equations hold for reactive
power. The response of the load after the event (overshoot/undershoot)
depends on αt

1. The time taken to recover the load power consumption

Table 1
Accuracy of the created DTs w.r.t. load 5 on test set data for the base case network configuration.

Train/Test Stable Out of grid limits Marginally stable Unstable
Stable 100% (4434/4434) – – –
Out of grid limits – 99.96% (2706/2707) 1 –
Marginally stable – – 99.96% (8812/8819) –
Unstable – – 2 99.97% (64/66)

Table 2
Accuracy of the created DTs w.r.t. load 6 on test set data for the base case network configuration.

Train/Test Stable Out of grid limits Marginally stable Unstable
Stable 99.96% (3037/3036) – – –
Out of grid limits – 99.69% (2592/2600) 1 –
Marginally stable – – 99.88% (8121/812) –
Unstable – – 2 99.96% (51/53)

Table 3
Accuracy of the created DTs w.r.t. load 8 on test set data for the base case network configuration.

Train/Test Stable Out of grid limits Marginally stable Unstable
Stable 100% (3240/3240) – – –
Out of grid limits – 99.79% (3385/3392) 7 –
Marginally stable – – 99.89% (9191/9181) –
Unstable – – 3 99.95% (60/53)

Fig. 8. Data of different loading conditions for base case w.r.t load 5 classified
based on classification rules.

Fig. 9. Worst Case Approach (WCA) DT.

1 If =α 0t , there will be load undershoot. For the values of <α 0t , there will
be load overshoot and for the values of >α 0t , there will be load undershoot.
The undershoot for >α 0t is more than the undershoot for =α 0t .
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to the value (load power consumption) before the occurrence of the
event depends active power time constant.

To illustrate why this is relevant for the prediction accuracy ana-
lysis, an operating point chosen such that the system is heavily loaded is

considered below. When the outage of the line between bus 5 and 4
applied (see Fig. 8) the system becomes unstable (after the contingency)
at the end of simulation. Fig. 8. also shows that after the contingency
the load consumption at bus 5 is recovering to the pre-contingency load
power consumption with exponential recovery. The load power con-
sumption recovers to the pre-contingency load power consumption le-
vels, the voltage at the load buses reduces (from (8), when =α 1t then

= ( )P Pt
V

V
0

0 ) as shown in Fig. 8. As the load power consumption re-
covers, the voltage at the load buses drop leading to oscillations and
further making the system unstable. The load bus voltage magnitudes
for this contingency are shown in Fig. 9. The dynamic load model used
in this case study has the same properties as the load model used for
training the decision trees.

The details of prediction accuracy on the test set of the created DTs
w.r.t. load 5 for outage of line between bus 5 and 4 is given in Table 4.
Because the decision trees were created using power flow solutions, it
was tested on the time domain simulation outputs from PSS/E, with
simulations like those illustrated above, for cases involving a line
outage.

These decision trees were tested with the output from time domain
simulations in the following steps.

1. A set of random load power values were generated.
2. These load powers were applied on the base case network config-

uration.
3. Time domain simulations were simulated with these load powers on

the base case network configuration up to t = 10 s.
4. At the end of t = 10 s the change in network configuration was

applied and the simulation was continued up to 25 s. For example,
in the case discussed above, the time domain simulations were si-
mulated for 25 s with line outage between bus 5 and 4 at end of
t = 10 s.

5. Mean load consumptions values and voltages at the load buses from
t = 18 s to end of simulation (t = 20 s) were considered as input to
the trained DTs.

6. The classification criterion was applied on these operating points to
verify them with the trained DTs classification.

7. The classification accuracy is calculated, and the outputs are plotted
to visualize the misclassified operating points.

8. Classification of time domain simulation outputs using classification
criteria and decision tree w.r.t. load 5 for outage of line between bus
5 and 4 are shown in Fig. 10.

It can be observed from Fig. 11. that misclassification occurs in the
boundary region because of the decimal values of the load powers and
voltages from time domain simulations. For example, if 0.25 is the
boundary value between two regions (“outside grid limits”, “marginally
stable”). It was observed that misclassification happened for the values
0.251, 0.252 … 0.254, etc., that are classified as “outside grid limits”
instead of “marginally stable”.

The purpose of this verification using dynamic simulations is to
determine the range of validity of our classification results, i.e. the
accuracy of the trained decision trees (that were computed using a
static analysis) when the system undergoes a contingency where the
load recovery mechanism can lead to lower voltage values than those
for which the training has been conducted. These results show that most
of the training can be carried out using the type of static analysis

Table 4
Accuracy of the created DTs for network configuration with outage of line between bus 5 and 4.

Train/Test Stable Out of grid limits Marginally stable Unstable
Stable 99.93% (1517/1516) – – –
Out of grid limits – 99.98% (250/246) – –
Marginally stable 1 4 99.92% (3922/3925) –
Unstable – – 2 96.42% (54/56)

Fig. 10. Active power consumption at the load buses for outage of line between
bus 5 and 4.

Fig. 11. Voltage magnitude at the load buses for outage of line between bus 5
and 4.

Fig. 12. Classification of time domain simulation outputs by classification cri-
teria and created DTs w.r.t load 5 for outage of line between bus 5 and 4. TD
indicates the use of Time Domain simulation for verification.
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proposed in the paper, however, at the boundary some misclassification
can occur when considering the system’s dynamic response. Hence, the
second purpose of this exercise is to show the limitations of the pro-
posed approach. Ultimately, to improve the prediction accuracy of the
decision trees would require the use time-domain simulation for the
training of the decision trees themselves, which would be computa-
tionally more expensive than the proposed approach herein. This is a
subject for future research.

C. KTH Nordic 32 bus test system:

In order to check the performance of this method on a bigger
system, it is tested on KTH Nordic 32 bus system as shown in Fig. 14. It
can be observed that the trained DTs predicted the states of the oper-
ating points with 99% accuracy. It can be observed from Fig. 12. that
the DTs incorrect prediction is confined to boundary regions. Increasing
the sampling of the data at the boundary region can reduce this pro-
blem but this will be the computational intense.

The performance of the trained DTs is shown below in Fig. 13. It can
be observed that the operating points in “Stable” region are predicted
with 100% accuracy but the operating points in “Outside grid limits”,
“Marginally stable” and “Unstable” regions are predicted with bit less
accuracy.

It can be observed from Fig. 15. that misclassification occurs in the
boundary region because of the decimal values of the load powers and
voltages. This misclassification can be reduced by increasing the sam-
pling in the boundary region.

4. Conclusions

The average accuracy of classification by the created decision trees
for random time domain simulations was 99.06%. It was observed that
most of the misclassified operating points lie on the boundary of re-
gions. Therefore, more operating points are required in the boundaries
of the regions when training the decision trees in order to reduce the
misclassification of operating points at the boundary.

The idea of this approach to use decision trees to classify the op-
erating regions (“unstable”, “outside grid limits”, “marginally stable”,
“unstable”) based on distance from the nearest SNB point has proved it
to be fruitful in training the DTs, providing excellent prediction accu-
racy. However, further study on a larger power system model is es-
sential to further identify any anomaly behaviors such as impact of
voltage control devices like FACTS devices, tap changing transformer or
any neglected conditions such as impact of intermittency of the re-
newable energy generation. The proposed time domain simulation-
based verification can be of great value for DT accuracy verification in
such cases.
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