
IET Energy Systems Integration

Research Article

Fault detection method in subsea power
distribution systems using statistical
optimisation

eISSN 2516-8401
Received on 28th July 2019
Revised 9th February 2020
Accepted on 23rd February 2020
E-First on 13th March 2020
doi: 10.1049/iet-esi.2019.0080
www.ietdl.org

Hamed Nademi1 , Luigi Vanfretti2, John Pretlove1

1ABB, Industrial Automation Division, Oslo 0603, Norway
2Rensselaer Polytechnic Institute, Department of Electrical, Computer and Systems Engineering Troy, NY 12180, USA

 E-mail: nademihamed@gmail.com

Abstract: Developing automation solutions that enable remote communications, monitoring and control for subsea applications
are key steps in designing subsea power distribution systems. These systems require fast local control to protect the multiple
electrical loads and the capability of transferring prompt real-time trip signals. This study introduces a data-driven distributed
fault detection and identification algorithm to monitor multiple subsea loads. The proposed scheme is divided into three steps.
First, a stochastic hidden-Markov model (HMM) is developed to model the dynamic evolution of different potential conditions of
multiple subsea loads. Simultaneously, the second step computes a model of the transition probability between the current
operating condition and the potential response of an individual load. In the third step, using real-time measurements, the HMM
is updated to predict an unobserved degradation of the load's current condition. This is achieved through an integrated
perturbation analysis and sequential quadratic programming method. An assessment of case studies on subsea AC power
system is presented, which includes different subsea motor loads for compressors and pumps. Results show robustness against
uncertainty in measurement noise and changes in equipment mean time between failures, providing enhanced reliability.

1 Introduction
For subsea applications, power from shore technology presents the
lower capital investments along with several practical benefits
when compared with the existing installations with local
generation. In addition, the importance of reduced environmental
emissions (both CO2 and NOx) is receiving increasing attention in
recent years. One alternative for subsea power applications to
address these concerns is the implementation of the concept of
subsea factory, which brings subsea processing and production.
This concept brings substantial demands on the reliability and
built-in redundancy, uptime and safety of the technology for
distributing, delivery and control of subsea power systems.
However, there are substantial challenges that oil/energy
companies and main technology suppliers need to overcome [1–3].
Potential solutions need to find adequate trade-offs because: (a)
cost efficiency (capital and operational expenditures) and recovery
rates, (b) sustainability and risk and (c) reliability and flexibility.

A typical subsea electrical installation consists of subsea loads
for pumping, gas compression and pipeline direct-electrical heating
(DEH) applications [3, 4]. In this kind of power system, the main
goal is to keep the subsea power distribution stable by isolating
only faulted components while keeping the rest of the equipment in
operation. To do so, one of the main functions of the condition
monitoring system is to detect faults in a timely manner and with
reasonable accuracy, even in the presence of system uncertainty
and noisy measurements.

There is a risk for failures among controllers and the power
components, for example, between controller and power switching
devices (insulated-gate bipolar transistors, thyristors, integrated
gate-commutated thyristors etc.). These kinds of risks are common
and relatively acceptable in many industrial applications; however,
they can be devastating in standard subsea power equipment.

1.1 Literature review

In [5], randomised algorithm is proposed to be integrated with the
data-driven optimisation-based monitoring strategy for local faults
detection in multiunit chemical processes. Multivariate statistical
methods for data-driven process monitoring have gained significant

attention, especially for decentralised monitoring purposes [6–8].
Concurrently, study of latest methods based on machine-learning
techniques to distinguish actual system state changes from false
changes is presented in [9]; however, this has not been applied to
power systems. These techniques and other methods are unable to
be effectively applied for non-linear fault detection because of their
limitation to cover up the status of an original process variables.
Thus, deployment of these concepts in real practical applications is
questionable due to requirement of substantial computation efforts.

Predictive equipment maintenance is the core for high-power
supply systems in industrial and oil and gas applications, to
mitigate service loss in case of occurring a failure, especially in
subsea environment, where the device accessibility is hard. The
existing technology is heavily dependent on static fault detection
algorithms and there are great demands for such schemes to
leverage the understanding of the failure dynamics, e.g. cascaded
failures in the subsea power distribution network. Consequently,
there is a great interest for prognosis techniques in predicting the
evolution of a fault that leads to major failures in subsea systems.
This makes it possible to predict impending faults and their
duration.

The existing fault detection methods heavily depend on
thresholds and residual trace analysis. In practice, threshold (ratio)
methods impose conservative limits or can be easily deteriorated
by possible errors leading to improper system assessment that does
not correspond to the failure condition [10–12]. However, these
techniques are inefficient and cause practical issues in the fail-safe
operating system, for example, in terms of motor faults and smart
grid faulty condition. The remaining gap for most of the proposed
solutions is the current state of the device/equipment is assessed, in
which ignoring their history operation information.

These issues are addressed in published literature with emphasis
on subsea power grid, e.g. in [13] a control system for subsea wells
detects ground faults for isolating the affected subsea power lines.
This method includes four relays operatively connected to the
positive/negative voltage power bus bars. In [14], a mixed power
transmission line comprising two or more sections with at least one
overhead section and at least one underground section uses
activation an auto-recloser relay integrated within an intelligent
electronic device (IED) located at a substation, a junction. The IED
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is connected to the measurement equipment that may be current/
voltage or other electrical parameter sensed from mixed line.
Similar concepts are also introduced for an offshore gas production
proving the feasibility of utilising IED-based numerical relay for
overcurrent detection [15]. These methods detect a travelling wave
(peak width of the travelling wave, rise time and a discharge time
of the first peak) from the signal received from measurement
equipment. The travelling wave is created due to the fault in a
section/or more sections of the mixed power transmission line. In
[16], the fault location is determined through distributing fibre
optic sensor along the path of power cable, especially to detect the
current discharge location. The operating principles of this solution
are based on the expected propagation speed of pulses in the power
cable. The submarine power cable for, e.g. wind turbine power
generation is the focus of what is claimed for.

In [17, 18], a good overview on the state-of-the-art
methodologies considering the fault detection in subsea
applications is reported. Note that the invention in [17] deals with
faults occurring at the subsea cable used in the DEH; however, this
solution is equally applicable to other types of subsea power
cables.

The evaluation of current practice associated with fault
detection and identification strategies with focus on subsea control
modules is patented in [19], where asset conditions are
continuously monitored to provide a substantial reduction of
production downtime as a result of equipment failures and health
and safety risks. In this work, a new method that monitors collected
sensor data from subsea control system is discussed to identify an
impending equipment abnormality.

In [20], a hidden-Markov model (HMM) is utilised to determine
a transformer fault model. The model is utilised to determine the
dissolved gas concentration. The current health state of the
transformer fault model is then tested in health state data. However,
this publication does not address its use in transformers within
subsea applications.

For the application of interest, there have not yet been reported
solutions in the literature based on the proposed HMM.

1.2 Contributions of this paper

This paper addresses statistical analysis based on a HMM for
investigation of dynamic characteristics of multiple loads for
powering electric machinery on the seabed. It gives an approach
for predicting the condition monitoring status of key components
placed in pressurised, submerged subsea power grid. In various
subsea power loads, when an incorrect diagnosis happens, the
devastating effects lead to considerable expense because of
inspection, repair or forced outage.

Many control and protection solutions rely on running state of
the subsea loads and have low tolerance against early alarm
dynamic functionality of them or even from subsea loads service/
maintenance standpoint. Therefore, the knowledge of the states
(current and future) of the subsea loads, e.g. motor pump/
compressor is a valuable asset for safe operation and to reduce
maintenance efforts.

It is necessary to develop a methodology that enables capturing
of a ‘complete picture’ of the subsea load condition for the sake of
reliability improvement, which laying out the main contribution of
the present paper in the following consecutive sections.

1.3 Paper organisation

This paper is organised by five sections as follows: a brief
overview of the subsea power systems, its requirements and
demands for advanced fault detection methods are discussed in
Section 2. Section 3 presents the detailed proposed fault detection
algorithm for typical subsea AC power transmission and
distribution system. The effect of unobserved system states on fault
monitoring and protection applications is also discussed in Section
3. An exemplary case studies including different subsea loads with
degraded operation modes are analysed in Section 4 along with an
impact of phasor measurement units (PMUs) measurement errors.
Finally, the outcome and findings of the proposed method are
drawn in Section 5.

2 Background
To meet the challenges listed above, Joint-Industry Project (JIP)
including ASEA Brown Boveri (ABB) [21–23], Equinor ASA
(formerly Statoil), Total S.A and Chevron Corp. was established to
develop subsea power transmission, distribution and conversion
technologies at greater distances, in deeper waters and in harsher
environments. The technology is being designed to operate in
water depths up to 3000 m, transmission distances up to 600 km
and power levels up to 100 MW. These new technologies will
enable subsea processing that requires large amounts of power for
applications such as subsea compression, subsea oil boosting etc.
These technologies are an enabler for oil companies’ vision of the
subsea factory and are key elements in the all-electric subsea
processing facility distributing power on the seabed. It would
provide the flexibility to take power from shore when feasible,
freeing up the often-limited space on topside installations or
ultimately giving the alternative to produce oil and gas without any
topside installation.

A high-level objective for subsea applications is to design the
equipment so as to minimise production downtime and number of
retrievals for subsea processing, possibly powering the subsea grids
vision (see Equinor ASA vision [24]).

3 Mathematical modelling of a fault detection
configuration
3.1 Problem statement and subsea AC power transmission
and distribution structure

The current focus of the next generation of subsea power systems
is with 50/60 Hz AC transmission and distribution system. A
typical single-line diagram of ABB subsea power distribution AC
system as shown in Fig. 1, where the power can be supplied from
either any available topside installation or from shore. 

The subsea power system shall supply three-phase electric
power from shore/topside to a subsea distribution and power
conversion system with multiple subsea power consumers. The
system consists of two subsea switchgears (A and B), in which
each switchgear supplies four different subsea loads/consumers:
one motor compressor (with variable-speed-drive and input
transformer), one motor pump (with variable-speed-drive and input
transformer), one subsea uninterruptible power supply (UPS) and
one cable oil pipeline for DEH. For the sake of simplicity, this
paper excludes the UPS and DEH loads. Table 1 specifies the
parameters and ratings for the system of interest. 

In the present time, variable-speed-drive units for offshore
compressor and pump applications are located at atmospheric
pressures either onshore or on a platform with long variable-
frequency step-out cables feeding the loads. These technologies are
essentially limited to few numbers of dedicated loads, determined
by, e.g. available space and riser slots on a platform. Electric and
power electronic components will be placed in a harsh environment
with dielectric liquid and pressurised to ambient pressure at the
seabed. Consequently, in case of loss of power to subsea loads or
loss of production, continuous health monitoring of the subsea
loads is of great importance to predict the next state ahead of
equipment as well as loads.

There is no known concept for a reliable and robust detection
method of failures, particularly cascaded failures based on their
physical dynamics in multiple subsea loads in existing condition
process monitoring. To overcome the lack of technology, the
intention of the proposed scheme is to suggest a novel failure
detection concept with inclusion of three main characteristics.

Sensitive: With the help of this method, potentially some of the
missing info/data for equipment states is compensated through
measurements sequence, in which characterises the cascaded
failures/abnormalities. This technique is, therefore, resilient to the
measurement errors/noise unlike conventional readings performed
by PMUs.

Robust: Integrating temporary and spatial information on
interactions among multiple loads connected to the same
switchgear. Thus, an indistinguishable status of the equipment state
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is being identified, whereas it is not possible by means of static
measurements such as PMUs.

Flexible: To be functioned effectively in early diagnosis and
pre-warning stage when the subsea loads are in potential risks.

3.2 Principles of the proposed fault detection and prediction
scheme based on Markov model

As a solution to the existing issues, this work explores feasibility of
a HMM which is a stochastic modelling approach that is widely
employed in industrial applications. HMM is often utilised for
expressing dynamic evolution of processes between multiple
potential states [25]. The running state of an individual subsea load
is split into three stages so as healthy state, dynamic pre-failure
state and faulty situation. At the same time, the calculation model
is constructed by including the transition probability in the
recursive condition between dynamic evolution processes of failure
for an individual load.

This paper proposes to determine a fault location and timing of
the loads outages by already placed/available data acquisition
system or voltage/current measurement devices. Fig. 2 illustrates
overview of the proposed HMM for operation mode and failure
detection purposes. Henceforth, the Markov-based chain is
developed for modelling the unobservable evolution of the subsea
load equipment status. The obtained subsea power system
measurements from load side are then derived an output process of
the HMM. It implies that unobserved states of the load devices are
estimated according to the identified output process of the HMM
model. However, other prevalent approximation algorithms such as
particle filtering as explained in [26] can be used to estimate an
unobserved status state, depending on the physical characteristics
of failure dynamics.

This work uses solution according to an integrated perturbation
analysis and sequential quadratic programming (IPA-SQP) method
for the validation analysis purpose.

In this section, the modelling steps to establish the intended
HMM is described. In general, the HMM is formed by the
following principles as:

(i) Number of states in the model denoted by N.
The individual states are noted by {1, 2, …, N}, and the specific

state at time instant t is noted as qt.
(ii) A sequence of observations or measures for each state, M that
is stated via

V = v1, v2, …, vM (1)

A state transition probability matrix denoted by A = {aij}, where aij
is interpreted as the conditional probability for transition of
individual state at time instant t to one-step-ahead state at time t + 
1

ai j = P qt + 1 = j qt = i , 1 ≤ i, j ≤ N

where 0 ≤ aij and ∑ j = 1
N ai j = 1.

(iii) An observation probability distribution matrix is represented
by B = {bi(k)}, where 1 ≤ k ≤ M and bj (k) = P(ot = vk, |qt = j).
(iv) An initial row vector for expression of the distribution of
different states is determined by π = {πi}

πi = P q1 = i , 1 ≤ i ≤ N (2)

At this stage, to establish the HMM model, the following
parameters are defined as follows: N, M together with the
probability matrices/vectors of A, B and π. To find these
parameters, we use the notation of λ, where we have

λ = function A, B, π (3)

For computing the P(O|λ), implying the probabilities summation to
identify the state sequences up to the last observation state, we
have

Fig. 1  Schematic representation of conceptual subsea power distribution
AC system with multiple loads

 
Table 1 Technical specifications of the studied subsea
power grid
Parameters Value Parameters Value
onshore/grid voltage 132 kV nominal system

frequency
50 Hz

subsea transmission
cable voltage/length

110 V/140 
km

VSD output frequency 150 Hz

switchgear rated
voltage

30 kV VSD output voltage/
rated power

6.6 kV/15 
MVA

switchgear to VSD
step-out distance

150 m VSD to subsea load
distance

50 m

VSD system
probability of 5 year in
service

≥80% circuit-breaker
probability after 2500
open/close cycles in

no load

90%

 

Fig. 2  Overall architecture of the proposed HMM for operation mode/
failure detection
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P(O λ) = ∑
i = 1
t = 1

N
T − 1

πi bi ot (4)

where the IPA-SQP algorithm provided in flowchart in Fig. 3,
which is utilised to maximise the observation probability of the
load status. Here, Ot is representing the given set of observation
sequences until time instant t. At the present time, the method
requires to determine the highest probability quantity as

δt i = max P(qt = i Ot = λ) (5)

with some mathematical efforts we can define the following
expression to find the state qtamong N-hidden states for
maximising (5), thus:

arg max P(qt = i Ot = λ) = arg max ∑
j = 1
t = 1

N
T − 1

δt i ai j bj Ot + 1 (6)

Furthermore, to obtain the reliable values of state sequences along
with the argument tracking that maximise (6) per each interval t
and j, the iterative procedure based on IPA-SQP is implemented.

The final step of the entire process is devoted to the learning of
the developed Markov model including unobserved states. To do
so, we need to develop an approximated model for state i at time
instant t as well as state j at one-step ahead, t + 1 according to the
available model in the previous state and the measurements
sequence. This probability is denoted by φt i, j  and formulated as

φt i, j = P qt = i, qt + 1 = j OT = λ (7)

The expansion of (7) can be rewritten as follows:

φt i, j = P Ot, qt = i λ ai j bj Ot + 1 P OT + 1 qt + 1 = j, λ
P OT λ (8)

Considering the original model

model λ = A, B, π

At the end of the described procedures, the estimated HMM after
training process, in which includes an unobserved load states with
finite measurement sequence can be given as below. This is
accomplished by IPA-SQP numerical algorithm as shown in Fig. 3

estimated model λ
^ = A^ , B^ , π̂ (9)

In which

π̂i = ∑
j = 1

N
φ1 i, j

a^i j =
∑t = 1

T − 1 φt i, j
∑t = 1

T − 1 ∑ j = 1
N φt i, j

b
^

j k =
∑i = 1

N ∑t = 1
T φt i, j

∑t = 1
T ∑i = 1

N φt i, j

For the further analysis, the procedure can be continued to
discriminate the failure with respect to how it is deteriorating the
operation of the affected load. Therefore, all the degradation states
are categorised into three-boundary limits as shown in Fig. 4: (i)
healthy state (green), (ii) reduced state (yellow) and (iii) severe
state (red). 

From common practice, certain PMU or other measurements
may not contain rich enough information for this monitoring

purposes; in other words, they may lack the needed observability of
the system's behaviour. This is even more severe in subsea power
distribution comprising multiple loads, while their status
configuration might provide similar measurements as other loads.
In many already existing solutions, where the traditional detection
schemes based on the instantaneous measurement are deployed,
and their weaknesses are more obvious during this situation to
distinguish the two states. From mathematical representation, it
means that even for two different hidden-states sequences, the
observation sequence gives the same values for both.

Fig. 3  Iterative procedure to estimate the HMM through initial and
unobserved states

 

Fig. 4  Graphical map of three-boundary modes versus measured system
variables for HMM model training
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In the flowchart shown in Fig. 3, the method uses the physical
dynamics of the failures instead to the transition probabilities
expression to overcome lack of observability. On the other hand, to
complete an estimated HMM, three steps need to be fulfilled as:

(i) Problem assessment.
(ii) Identification of state sequence matrix Q.
(iii) Learning process of HMM-derived model.

First step in the procedure is the investigation formulation, in
which deals with the generating probability of the observed state
sequences through used model. Second step is dealt with an
unveiled hidden (unobserved) state to adjust the observation
sequences. The final step is considering the parameters
optimisation for the model to provide robustness against noises or
errors in PMU readings; henceforth, enhancing the computational
burden as well.

The discussed solution proposes a direct optimisation-based
function fitting approach that uses an IPA-SQP solver to estimate
the unknown/unobserved states as part of HMM learning step (to
approximate the probability distribution effectively). However,
from the available literature such as [27], it is found out that the
other techniques such as particle filtering, expectation–
maximisation method, which is so-called Baum–Welch and so on
have been employed. With the help of integrating the dynamic
states of the loads into the HMM formulation, it provides the
handling of irregular and unobserved dynamic states. The iterative
algorithm of IPA-SQP helps training the HMM through exploiting
80% of data processed. To get more insight and details about IPA-
SQP solver, we see [28, 29].

4 Simulation of exemplary case studies
For simplicity, it is presumed that for the subsea power system
shown in Fig. 1, there are four different subsea loads containing
two compressors and two pumps that are supplied from subsea
switchgears A and B. The simulation study was performed with
subsea transmission cable of 110 kV, switchgear operation voltage
level of 30 kV and two pumping-compression trains with voltage
level of 6.6 kV and power 15 MW per each production train
connected to the switchgears A and B.

The measurement data sets include the normal operation and the
faulty condition obtained via testing scenarios of the subsea load
trains. The shallow-water tests conducted by ABB in 2017–2018
with the operating conditions as outlined in [30]. The developed
model was trained and executed using those simulation
measurements to validate the theoretical findings. The
measurements are used as health indicators; henceforth, 900,000
acquired measurement data per each load device within an hour
considered. In total, 86,400,000 observations during 24 h operation
for all four load devices are obtained. On the one hand, with
21,600,000 observations per each connected load device
corresponding to the acquired measurements during full day
operation. All the current and voltage measurements obtained from

PMUs are normalised within range of [0, 1] for magnitudes and
[−π, π] related to phase readings.

The assessment is further continued by assuming the recorded
data for the subsea load train 1 is deteriorated due to degradation
compared with the remaining consumers. As a result, the sum of
degradation profiles for other three load devices is an input to
categorise all these measurements into N-degradation states that
will be the main source for learning/training of the developed
Markov model. In the next step, all observations related to the
affected load train 1, of which are different from the above-
mentioned training source, will be used as far as model verification
step is proceeded.

It is worth noting that the peak magnitude of the measurements
does not provide valuable index for identifying a degradation
mode. The iterative steps are now used at each time interval to
detect fault and categorise the fault happened in load train 1
associated with mode of degradation as we discussed before.

To get valid approximation of model λ1, we supposed to have
observation sequence of first load train to develop the new model
parameters as

V1 = vt − 3 vt − 2, vt − 1, vt, vt + 1

where the vt+1 is not known.
Based on the derived probability expression above, the

probability for V1 to remain in healthy mode at one-step-ahead of
the current time instant, P V1, qt + 1 = j λ

^
1 , which is called

boundary condition 1, is presented in Table 2 for first subsea load
train connected to the Switchgear A. 

It is confirmed that since the value for the Green boundary
(0.4462) is smaller than the second degradation mode, yellow
boundary, in which has the probability of 0.4534, the system status
state is predicted to be in healthy state. The assessment is
continued to figure out the probability of the observation sequence
of V1 to be kept in reduced-state mode, entitled boundary condition
2, for intended time t + 1, which has the probability value of
0.3216 for the same load train 1 connected to the switchgear A.
Considering the given values in Table 2, there is a large gap
between second degradation mode and the severe degradation,
implying the system remains in reduced state as it was desired.

Robustness analysis of the proposed approach has been
performed with respect to the measurement noise. To this end,
Gaussian noise was added to the observation states and probability
values are recalculated to obtain the maximum likelihood of the
currents/voltages. The results listed in Table 3 confirm an
acceptable accuracy for the estimation of the multiple subsea loads’
status under 10% measurement errors. 

Emerging subsea production systems are vulnerable to hidden
failures of some components interfering with subsea control
systems that can influence plant output production. These hidden
failures are not easy to detect, even during steady-state operation
and system disturbances can lead to protection relays unnecessary
disconnect equipment from service in response [31, 32]. Therefore,
to end the simulation study, the hidden failure probabilities are
accounted as an optimisation constraint to suppress its impacts on
the failure diagnosis to comply with manageable probability bands.
The consequences of hidden failures are thus embedded in the data
obtained from cascading outage scenario to produce such data for
simulation purpose. An illustrative case study is simulated, where
the reliability indices of probability, frequency/year and duration in
hours/year of the loss-of-load event are computed. To do so, in
both operating scenarios, with and without the contingency
inclusion resulting from hidden failures, outage happened due to
energisation of circuit-breaker trip mechanism of each load. In the
case of hidden failure contingency consideration, there are two
assumptions for circuit-breaker trip mechanism failure probability
as follows: case 1 = 4.22 × 10−4 and failure probability of case 2 = 
4.22 × 10−3.

Obtained results are provided in Table 4 indicating that the
protection system is deteriorated because of neglecting hidden
failures effect. As shown in Table 4, reliability indices decrease
when the failure probability of the circuit-breaker trip mechanism

Table 2 Probability computation of the observation
sequences in load train 1 connected to switchgear A
Operation mode
Subsea load 1 Healthy state Reduced state Severe state
boundary condition 1 0.4462 0.4534 0
boundary condition 2 0 0.3216 0.4903

 

Table 3 Probability computation of the observation
sequences in load train 1 connected to switchgear A
including 10% measurement errors
Operation mode
Subsea load 1 Healthy state Reduced state Severe state
boundary condition 1 0.5307 0.5418 0.0003
boundary condition 2 0.00008 0.6631 0.6680
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increased, case 2. To address this, hidden failure effects included in
the protection system design. Outcome confirms that the protection
system performance is enhanced by suppressing the hidden failures
resulting in more robust subsea condition monitoring system.

On the basis of best available reliability estimates for the
equipment under development and with the known knowledge, e.g.
in [33], that Variable-Speed-Drive (VSD) failures attributed to
nearly 33% of entire subsea power system production
unavailability. Henceforth, primarily focus of reliability
enhancement is related to VSD system as one of the key
components to achieve the system availability target. It is assumed
that in the case of severe or critical failures, 0% production is
achieved, whereas in degraded mode 60% production capacity is
fulfilled. To perform this analysis, the drive system is broken up
into its components and the failure rates of these components are
defined based on available data from the manufactures and/or field
tests. Afterwards, the component failure rates are aggregated to
calculate the expected system failure rate and the overall system
reliability targets.

It is also beneficial to assess reliability improvement using
developed model by adding an extra equipment constraint on the
mean-time-between-failure (MTBF) values for a complete drive
system. The results from this analysis is very important to identify

critical equipment (in this example VSD) and provide input for
further reliability growth considering the equipment reliability
constraints such as failure rates variations. The comparative results
from traditional Markov model and the proposed one including the
effects of equipment reliability constraints for VSDs are provided
in Fig. 5. 

Degraded operation mode is primarily due to the thermal
protection or drive control system malfunctions. To name examples
leading to severe faults; short-circuit phenomena in power
semiconductor switches or DC-link capacitors inside inverter part
are most common. Analysis of degraded operation mode excluding
failure rate constraints in Fig. 5 shows that the traditional HMM
predicts drive system to fail on average twice per year. In the case
of severe failures, traditional HMM model estimates shut down of
a drive system once per year. Obviously, such an MTBF values are
too low for many applications including the studied system in this
work.

To better understand the effectiveness of the HMM-based
strategy to detect operating modes, performances of both the
proposed IPA-SQP optimisation and the widely used Viterbi
algorithm are compared, as shown in Fig. 6. In this evaluation, the
system operates in healthy state (mode 1) until complete failure
(mode 3) happens at t = 500 s. Since the failure occurred in the
single load train, the system must initially transfer to the degraded
state (mode 2) at t = 300 s prior to mode 3. This is the desired
operation profile. As a result of introducing the hidden state at t = 
200 s for duration of 150 s, the protection system perceived a
severe failure mode immediately utilising the HMM model based
on the Viterbi algorithm, showing poor robustness against system
uncertainty. From this study, it is seen that the proposed IPA-SQP
optimisation can mitigate the effect of the uncertainty in the form
of hidden states to detect the actual operation mode at t = 300 s.
Conversely, the Viterbi algorithm wrongly draws the power system
to mode 3 on introducing constraints into the load train of interest.

In early design process of condition monitoring system, it is
important to pay close attention to hidden failure contingency of
the protection mechanisms to enhance overall power outage
statistics. As a result, operational costs are reduced while
profitability and flexibility are increased.

5 Conclusion
The proposed method in this paper provides a robust condition
monitoring solution made possible through a statistical
methodology based on HMMs for identification of failure and
degradation status of individual loads. A typical subsea power AC
transmission and distribution system, comprised of four different
loads, was simulated to evaluate the proposed detection method.
Simulation results show that the proposed method enables a better
understanding of asset risks and improving the prediction
probability of the imminent fault in subsea load equipment to
prevent equipment failure propagation. This solution offers
robustness against uncertainty in measurement noise and changes
in equipment MTBFs, providing enhanced reliability. In addition, it
is briefly illustrated how the use of this method can extend the need
of maintenance by early load degradation prediction, making the
method suitable for condition-based maintenance applications. This
can provide valuable information to be utilised for asset
management and/or performance assessment as specified in
different international organization for standardizations.
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