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Abstract: Higher operational requirements in cyber–physical microgrid system stress the electrical system and may push it to
the edge of stability. Therefore, prognosis of the imminent failures is vital. Accessing stray electromagnetic waves of power
components helps in power system protection and non-intrusive prognosis of electric components faults in a cyber–physical
microgrid environment. This study implements a cyber–physical approach associated between the electromagnetic waves
radiated by components in the microgrid and the communication structure. To verify the same, the entire system is implemented
on a real-time lab-based microgrid environment. The major problem with the stray electromagnetic waves is receiving
appropriate fields. This is resolved by placing magnetic coil antennas at optimal distances and monitoring the radiated
electromagnetic waves and their harmonics. Quick response code recognition technique is used to recognise the source and its
corresponding healthy mode while harmonic analysis through artificial neural network helps to find the type and origin of faults.
This would be an artificial intelligence-enabled system which self-optimises and acts according to the patterns. The proposed
monitoring system can be utilised in any cyber–physical microgrid system especially those located in extreme/remote areas.

1 Introduction
Microgrids are a miniature version of a modern power grid that is
being used and expressed as a single self-reliant entity operating as
a subset of the area electric power system at distribution-level
voltages with access to end-user loads, local generation sources,
electricity delivery and control, and protection systems. Microgrids
are smaller in size and number of assets where communication
networks are a vital part of microgrid. Since communication and
power systems co-exist their analysis is an indispensable part of
microgrid operations. The typical aspect of microgrid is its
utilisation of renewable energy resources in the prime position such
as wind turbines and Photovoltaic(PV) cells [1, 2]. After a careful
study of the renewable energy generation systems, it is observed
that electrical part which needs monitoring is either a machine or a
converter.

The eventual power grid is a multifaceted cyber–physical entity
where conventional power system technologies are interleaved
with new power system elements, control system components, and
varied communication mediums and protocols. Interfacing these
technologies might lead to an unanticipated operational behavior.
Hence there is a need to detect and prevent such cyber intrusions
and to provide a fall back service in the event for control residing
and adversaries. Therefore, an appropriate test platform is required
to evaluate the performance of these systems [3–6].

The electric components used in critical infrastructure such as
power microgrids are influenced by various stresses and
unexpected downtime even for a brief period due to machinery
faults become challenging to counterbalance. Hence, a robust
monitoring system is required to improve the life span of the
components and lower the maintenance cost.

The traditional approaches used for fault detection in power
components include thermal monitoring, torque monitoring, noise
monitoring, and vibration monitoring. These methods have been
widely used and have proven to work well under steady load
conditions. However all these techniques make use of sensors that
are machine specific and their corresponding monitoring is
intrusive, i.e. requires to be in the system and may even require
human meddling to monitor it

Recent analysis tools used in condition monitoring of
components include motor current signature analysis, fast Fourier
transform (FFT), wavelet analysis, and artificial intelligence (AI)
[7]. Motor current signature analysis (MCSA) is a well-known
technique in fault recognition. It senses an electrical signal
containing current components that are direct by-product of unique
rotating flux components. Any anomalies in the operation of the
machine modifies the harmonic content of supply current [8].
Wavelet analysis or transform decomposes voltage and current into
waves for fault diagnosis. This method is quick and effective
however it is complex and requires a lot of computation. It is
observed that combined MCSA and Wavelet technique yields the
better results over FFT [9, 10]. The AI has a broad classification
over these methods. Artificial neural networks (ANNs), fuzzy logic
or neuro-fuzzy systems, and genetic algorithm are a few AI-based
methods [11, 12]. They are suited for machine applications where
the relation between current and speed is non-linear [13]. These AI
techniques are being extended as a decision-making tool to MCSA
results for condition monitoring and fault detection of machines
[14–16].

In this paper, an electromagnetic sensor-based condition
monitoring system in a renewable power generation facility that
includes PV and wind sources is proposed. An array of magnetic
coil antenna is deployed to detect radiated field from multiple
optimum locations around the machine and converter
simultaneously. The coils capture the fields radiated from the
machine at different angles, considering the generic need of non-
intrusive monitoring, and thus making the system flexible. The
captured electromagnetic stray fields are then used as an input to
the frequency response analysis block where the harmonic
signature of these fields are analysed to detect the fault with the
help of ANN. ANN based algorithms rely on impedance
information for pattern recognition and their most important
advantage is that it does not need to be reprogrammed, thereby
being able to perform such tasks where a linear program would
fail. With the combination of cyber–physical communication and
trained ANN, a database would be established based on healthy
conditions recorded at disparate coil locations, with different loads,
switching frequency, and machine frequency to monitor the real-
time system. Popular faults such as unbalanced phases and short

IET Cyber-Phys. Syst., Theory Appl.
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

1



circuits are applied to the system during training phase so that in
future system would have the capability of fault prognosis. This
capability is validated through experimental set up and the results
are analysed.

The rest of this paper is organised as follows. In Section 2
current condition monitoring techniques of cyber–physical systems
are discussed. Section 3 is the system description, detailing each
unit of the arrangement. Section 4 presents hardware
implementation that details the technical specification and
requirements and Section 5 shows the results obtained using
experimental set up. Finally, Section 6 states the conclusion of this
paper.

2 Monitoring techniques for cyber–physical
systems
The diagnosis methods utilised in the industry can be classified
into four categories: signal-based diagnosis, model-based
diagnosis, machine-theory-based analysis, and simulation-based
analysis [17]. The specific methods, used in each category, are
listed in Table 1. 

Different fault identification techniques results are utilised in
industry. The fault finding in the power components, particularly of
electric machines, is relied upon to provide cautioning of imminent
failures, diagnosis, and planning data for future preventive
maintenance.

Fig. 1 shows the conjunction between energy system and
modern network systems. Electric machines and power electronic
converters and drives at various platforms such as vehicles, vessels,
aircrafts, buildings, roads, or in a power system can be supposed to
be mostly connected to a dedicated sensor or a sensor network.
These detected signs include vibration, current, voltage, and speed.
These are then sent to a nearby or remote microcontroller or
computer system where the controller performs singular system
control, entire system administration, or monitoring. 

However there has been numerous researches regarding
condition monitoring over conventional power system
infrastructure, but there is no comprehensive research on smart grid

platform [19–23]. There is a need of a non-intrusive technique
which has a low maintenance cost and shorter downtime, that has
the capability to predict the fault, locate it, and suggest a way out.
A self-sustained technique can be highly desirable especially in the
microgrid area which is operating in real time.

3 Proposed system description
To achieve a proper fault prognosis in the smart grid platform, a
new condition monitoring technique is proposed. The data
collection is performed in a non-intrusive way by using the stray
field sensors. The electromagnetic stray fields are then fed to the
data acquisition system using the wireless communication and a set
of algorithms are applied on collected and sampled data set to
identify the fault signature. Table 2 compares the proposed and the
conventional condition monitoring methods in terms of the
characteristics such as being intrusive or non-intrusive,
maintenance cost associated with them, corresponding downtime,
fault prognosis or diagnosis, and self-sustainability. The proposed
technique seems the most viable of all the methods being used or
were conventionally used. Fig. 2 illustrates the typical scheme of
the proposed system. Each part of the system is explained
individually in the next subsections. 

3.1 Stray field collection

An array of magnetic coil antennas is placed at different locations
to capture the radiated magnetic field. To have the suitable position
of these passive loop antenna, two parameters have been identified
to be useful: angle index (α) and distance index (d). Therefore, this
set of receiving coils can be utilised for any size of machine with
various levels of voltage and other characteristics.

The magnetic coil is placed at the optimum location to measure
the magnetic flux intensity. This flux intensity is then used for
frequency analysis to comprehend the results and extract the fault
harmonic information. It is also important to note that the magnetic
coils used are in accordance to the MIL-STD 461 specification for
low-frequency magnetic field testing. The passive loop antenna is

Table 1 Condition monitoring techniques used in industry
[17]
Strategy
category

Specific methods

signal-based fault
diagnosis

mechanical vibration analysis, shock pulse
monitoring, temperature measurement, acoustic
noise analysis, electromagnetic field monitoring

through inserted coil, instantaneous output
power variation analysis, infrared analysis, gas
analysis, oil analysis, RF emission monitoring,
partial discharge measurement, motor current
signature analysis (MCSA), statistical analysis

of relevant signals
model-based fault
diagnosis

neural network, fuzzy logic analysis, genetic
algorithm, AI, finite element (FE) magnetic

circuit equivalents, linear-circuit-theory-based
mathematical models

machine-theory-
based fault
analysis

winding function approach (WFA), modified
WFA, magnetic equivalent circuit

simulations-based
fault analysis

FE analysis, time-step coupled FE state space
analysis

 
Fig. 1  Convergence of energy system and modern network system [18]

 

Table 2 Condition monitoring techniques comparison
Intrusive/non-intrusive Maintenance cost Downtime Prognosis /diagnosis Self -sustained

Temperature Monitoring intrusive high hours–days diagnosis no
RFEM non-intrusive low minutes–days prognosis no
MCSA non-intrusive low minutes–hours diagnosis yes
EFM intrusive high hours–days diagnosis no
Proposed non-intrusive low minutes–hours prognosis yes
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applicable for an extensive array of magnetic field-testing
applications [24–26].

3.2 Signal conditioning

The anti-aliasing filter warrants that all the captured analog signals
have same phase shift, i.e. the phase angle differences and
magnitudes of the signals remain unaffected [27, 28]. The stray
electromagnetic waves under test are prone to high-frequency
disturbances. Therefore, a low-pass filter is used to filter off the
unexpected high-frequency signals. Moreover, the filter should
have maximally flat (MF) characteristic, i.e. no ripples. The
simplest known rational function that gives MF Low Pass Filter
(LPF) characteristic is the Butterworth function which is shown in
(1).

B jω 2 = 1
1 + ω2n (1)

As shown in Fig. 3 after passing the obtained waves through the
anti-aliasing filter, they are subjected to amplifier that amplifies the
signal and cancels the noise. Noise cancellation is a type of optimal
filtering that involves producing an estimate of the noise by
filtering the reference input and then subtracting this noise estimate
from primary input that is a composed of signal and noise.
Therefore, the noise estimate should be exact replica of signal
noise. The strengthened signal is then sent through the wireless
unit. 

3.3 Cyber–physical communication

A microgrid is a small power system with a cluster of loads and
distributed generation (DG) sources operating together with DG
interfacing inverters, control/support devices, and power converters
within a certain area. This is where the cyber and physical worlds
meet.

The integration of cyber–physical communication in microgrids
introduces numerous benefits like real-time monitoring capability,
fault prognosis/diagnosis, and system wide visualisation [29].

3.4 Data acquisition

The electromagnetic stray fields that are measured on the grid can
be acquired using two techniques: as independent unit or within a
device such as a protective relay. To perform this function, the
national instrument PXI devices which are compatible with
LabVIEW software, are proposed to be used [30]. To investigate
the acquired data and analyse it, a trained processing unit with a set
of algorithms is described next.

3.5 Trained processing unit

Trained processing unit provides a set of algorithms which when
applied on data, yields the candidate frequency points and helps to
analyse the frequency response under all conditions, i.e. healthy or
faulty. The ANN is used to implement this function. It is necessary
to select proper inputs, outputs, and structure for the network and
train it with appropriate data. The important part is to adjust the
weights in such a way that application of inputs yields desired
results. Back propagation method is utilised for updating the
weights [31].

For the reference healthy conditions, quick response (QR) code
recognition is used, where for each component a unique QR code is
designated. When each QR code is scanned, it gives the set of
associated healthy conditions which are pre-recorded in the time
domain and are changed to frequency domain using FFT.
Furthermore, this response is studied for the candidate frequency
points, which are deduced by repetitive tests conducted for various
locations acting as an input data base for training the ANN. By
using the mathematical model developed in MATLAB Simulink,
ANN is trained, and the best performance is observed with 10
neurons in hidden layer. The real-time data of stray
electromagnetic waves is compared with the ANN database for

Fig. 2  Flowchart of the proposed system
 

Fig. 3  Filter and amplifier
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fault prognosis keeping a margin of 10% error with respect to the
healthy condition.

4 Hardware implementation
4.1 Microgrid

A lab-scale stand-alone microgrid including renewable energy
sources such as wind turbine, PV cells, and microturbine as energy
sources along with an energy storage device (battery), transmission
line emulator and both AC and DC loads is considered as the case
study. Synchronous machine and DC–DC converter, which are the
important components of wind energy conversion system and PV
system, are selected to perform the tests. Fig. 4 shows the case
study microgrid. 

4.2 Test setup

The experimental setup used for validating the proposed algorithm
is represented in Fig. 5. The synchronous generator used in wind
energy system is MJB160XA4 208 V 11.8 kW 60 Hz three-phase
generator driven by WEG 15HP 208 V 60 Hz three-phase
induction motor connected to autotransformer output terminals
through ESV752N06TX Lenz variable frequency drive to apply
real wind speed and emulate the wind turbine. PV panels are
emulated by Magna-Power XR series programmable DC power
supply which is connected to a 192 W 120 V resistive load through
SEMITEACH IGBT converter. 

4.3 Data acquisition and communication interfaces

The stray electromagnetic waves are captured using passive loop
sensor SAS-560 for a low frequency range of 20 Hz–2 MHz built
in accordance to MIL-STD 461 standard for low-frequency
magnetic field testing. This loop antenna has 36 turns encased in an
electrostatic shielded loop. The diameter of the loop is 13.3 cm and
has 10 ohms of DC resistance. Fig. 6 depicts the utilised passive
loop antenna, its diameter, and the distance to ground. 

The measured stray fields by magnetic coil antenna go through
the Butterworth filter to cancel the noises and then amplifier to
strengthen the amplitude of the recorded data. The wireless
communication module includes two particle photon series Wi-Fi
kits with 2.4 GHz bandwidth and 65 Mbit/s data transfer rates are
used as transmitter and receiver.

For cyber–physical communication, the particle photon
arrangement remote modules have an effective ARM Cortex M3
microcontroller with a Broadcom Wi-Fi chip. It consists of 3.3
VDC switched mode power supply control supply, radio frequency
(RF), and a user interface. Electrical variables are measured from
external devices and send to the ARM CortexM3 as the data
collection unit. For wireless communication, the RF section of the
photon is a finely tuned impedance-controlled network of
components that optimise the efficiency and sensitivity of the Wi-
Fi communications [32].

The receiver end is then connected to PXIe-6356 national
instrument data acquisition device with sampling rate as high as
250 Mb/cycle through SC68A connector which send the data to
LabVIEW for fault diagnosis and classification. Wi-Fi
communication modules are illustrated in Fig. 7. 

5 Results
5.1 Test scenarios

The setup is tested by considering multiple scenarios based on
combinations of four different antenna locations (A, B, C, and D),
three switching frequencies of converter (2, 3, and 5 kHz), three
machine frequencies (59, 60, and 61 Hz), and five faults including
short-circuits and unbalanced currents. The stray magnetic fields
are collected in all scenarios and frequency response, i.e. amplitude
of harmonic orders up to 10 kHz are extracted by using Fourier
transform. Fig. 8 shows the locations considered for magnetic coil
antenna. 

The frequency responses are used to train the ANN. In this case,
two-layered feed forward ANN with one hidden layer and one
output layer is used. LogSig and PureLin activation functions are
utilised for hidden and output layers, respectively. From the total

Fig. 4  Microgrid case study configuration
 

Fig. 5  Experimental setup
 

Fig. 6  Magnetic coil antenna
 

Fig. 7  Sender and receiver Wi-Fi modules
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number of samples, 70% samples, i.e. 126 tests are used to train the
neural network and 30%, i.e. 54 tests are used to validate the neural
network. MATLAB function is used for random selection of
training and testing samples. To minimise the mean squared error,
gradient descend rule is applied.

5.2 Frequency analysis

The analysis of faults in power components with the help of FTT
relies upon following the frequency signature of electric current
waveform in each kind of fault which depends on the component's
working frequency and the supply frequency. Examining the
current at high rates within long periods of time is expected to
accomplish an exceptional spectral resolution, which requires
extensive memory space to store and process the current spectra.
Since every fault produces a series of harmonics in the current and
its subsequent magnetic field spectrum, some harmonic orders can
be selected as candidate orders generating a unique fault signature.
Fig. 9 shows the amplitude of the candidate harmonic orders as
percentage of fundamental machine frequency at four selected
positions to train the ANN. As shown in Fig. 9, only 17 out of the
total harmonic orders are selected since they provide the highest
relative error percentage compared to healthy condition at each
position. To diagnose the type of fault, 5 out of these 17 harmonic

orders including 11th, 51th, 101th, 135th, and 165th orders are
chosen. 

5.3 Validation

To validate the proposed fault prognosis framework, 30% of the
collected data, i.e. 54 tests results are utilised. Fig. 10 represents
the amplitude of the candidate harmonic orders for two sample
faults including an unbalanced load current and a phase to phase
short circuit fault at the synchronous machine. 

The proposed algorithm successfully predicts the faulty
conditions as well as type of the fault in both cases. The error
between the real-time captured amplitude of the candidate
harmonic orders versus pre-recorded healthy condition data are
being used by ANN to prognose the fault and its type. In both
cases, the frequency response for the highlighted candidate
harmonic orders (11th, 51th, 101th, 135th, and 165th), which are
the deciding criteria to perceive the kind of fault, indicates
significant differences when compared with healthy condition.
Since these harmonic orders, which are distinct in different type of
faults, are utilised to diagnose unbalanced current and short circuit
faults, the accuracy of microgrid fault prognosis will be acceptable.

6 Conclusion
In this paper, a non-intrusive condition monitoring framework with
the capability of electric components fault prognosis in a cyber–
physical microgrid is proposed. Stray electromagnetic waves of
machine and converter, which are indispensable parts of any
renewable energy-based microgrid setup, are measured and
wirelessly transferred to data acquisition system and further
algorithms are applied to recognise the faults and its type.
Candidate harmonic orders of stray electromagnetic field frequency
response are extracted to train the ANN. These candidate harmonic
orders, which can be gathered in only a small set of values, help in
substantiating the difference between the healthy and faulty
conditions. This makes the system not only quick and efficient but
also decreases the computational burden and memory
requirements. Hardware setup is implemented to verify theFig. 8  Positions of magnetic coil antenna in scenarios

 

Fig. 9  Frequency response of healthy and faulty conditions at
(a) Position A, (b) Position B, (c) Position C, (d) Position D
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functionality of the proposed algorithm in a lab-scale microgrid.
Experimental results comprehend the effectiveness of the
suggested system in fault prognosis.
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