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ABSTRACT Knowledge of the synchronous machines’ control input signals and internal states can provide
valuable insight to system operators for assessing security margins and the stability of the power system. For
example, during disturbances in a stressed power system, it can be of great value to monitor the performance
of the machine’s control system, e.g., the response of the field voltage, mechanical power, and the field
current. As there are often no real-time power plant measurements available to power system operators,
internal states, and unknown inputs of generator units would need to be estimated from synchrophasor
measurements. This paper proposes a new estimation algorithm, the nonlinear extended recursive three-
step smoother (NERTSS), to simultaneously estimate the states and the unknown inputs of the synchronous
machine using data from phasor measurement units. These quantities can then be used to monitor the
performance of the machine’s controls. The case studies presented in the paper compare the estimation
performance of the NERTSS with the extended Kalman filter with unknown inputs (EKF-UI) when noisy
synchrophasor measurements are used. The simulation results show that the proposed estimation method
compares favorably with respect to the EKF-UI in terms of the achieved estimation accuracy.

INDEX TERMS Synchronous generator, Kalman filters, phasor measurement units, power system operation,
state estimation, unknown input estimation.

I. INTRODUCTION
A. MOTIVATION
The task of operating a transmission system includes ensuring
that the electrical network remains within its required opera-
tional limits and that it is stable even under disturbances. The
monitoring of the system, as carried out by transmission sys-
tem operators, traditionally uses supervisory control and data
acquisition (SCADA) systems to acquire data and reconstruct
the voltages and power flows of the grid for a single snapshot
over a pre-defined time-window. However, the snapshots
provided by a SCADA system are taken asynchronously
in a time-scale from seconds to minutes. This means that
dynamic events that evolve between SCADA snapshots can-
not be accurately captured and presented to operators. Time-
synchronized phasor data provided by phasor measurement
units (PMUs) can provide the temporal resolution needed
to capture these dynamic events. There also may exist a

need to estimate quantities that lie outside the transmission
system itself to ensure the stability of the entire grid. For
example, the states and inputs of synchronous machines are
of importance when considering a power system’s stability.
In [1], it is shown that a power systems can a undergo voltage
collapse that is precipitated by the enforcement of over-
excitation limits of synchronous machines. Therefore, a good
estimate of the time remaining before the over-excitation
limiter becomes active could be used as a constraint for the
corrective actions that can be applied after a contingency.
In this case, the field voltage and field current estimates
would need to be calculated from PMU data using state and
input estimation methods due to the unavailability of real-
time power plant measurements to the operator. Tracking the
unknown inputs can also be used to monitor the controller
performance of themachine’s turbine governor and excitation
system.
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B. LITERATURE REVIEW
Much research has been devoted to the possibility to use syn-
chrophasor measurements, that is synchronized data obtained
from PMUs, for estimating the state of the power sys-
tem between SCADA snapshots. The scope of this paper
is the state and input estimation of synchronous machines
and this literature review is therefore focused on this
subject.

Reference [2] used neural networks to estimate the
internal states of the machines. Mandal et al. [3] pro-
posed the extended Kalman filter (EKF) to solve dynamic
state estimation problems in power systems. In [4],
Ghahremani and Kamwa proposed an EKF to estimate the
internal states of synchronous machines, which in the same
paper was combined with a simultaneous estimation of the
unknown inputs as the extended Kalman filter with unknown
inputs (EKF-UI). The estimation model in the original
EKF-UI formulation was only valid when connected to
an infinite bus. The EKF-UI was therefore further devel-
oped in [5] with an augmented state vector such that the
internal machine angle could be estimated from terminal
quantities. It is known [6], [7] that the EKF can suf-
fer performance degradation if the Jacobian matrices used
for linearization are sensitive to errors in the state esti-
mates or other inputs. An alternative approach using sta-
tistical linearization was used by the unscented Kalman
filter (UKF) in [8], which was further developed in [9]
for the estimation of the unknown inputs as an unscented
Kalman filter with unknown inputs (UKF-UI). Reference [9]
also investigated a cubature Kalman filter with unknown
inputs (CKF-UI), which requires less tuning than
the UKF-UI. Reference [10] used a particle filter to enhance
the accuracy when estimating the states but this approach
requires additional computational time compared to UKF
and is also dependent on the measurement of the mechanical
power. Reference [11] provides a comparative study of syn-
chronous machine state estimation algorithms, but the study
is limited to state estimation only, i.e. it does not consider
unknown inputs.

In the automatic control community much research has
been devoted to minimum variance state estimation of sys-
tems without feed-through of the unknown inputs, starting
with the Kitanidis filter in [12] and later by the descrip-
tor Kalman filter in [13]. The general, linear discrete-time
case was solved in [14] using an innovations approach
to derive optimal filters for an equivalent unknown input-
decoupled system. The extended recursive three-step filter
(ERTSF) of [15] combined the unknown input-decoupling
with unknown input estimation, which was then adapted to
nonlinear systems in [16] as the nonlinear extended recursive
three-step filter (NERTSF).

This paper proposes a new method to simultaneously esti-
mate unknown inputs and non-linear states, in which the
nonlinear estimation of the NERTSF is combined with the
smoothing algorithm of [17], to achieve better estimates of
states and unknown inputs.

C. CONTRIBUTIONS OF THIS PAPER
The main contributions of this paper are the following,
(i) A new estimation method, the nonlinear extended

recursive three-step smoother (NERTSS), and a new,
alternative estimation model for the purpose of simul-
taneously estimating the states and unknown inputs of
synchronous machines.

(ii) The use of Monte Carlo simulations to inves-
tigate the performance of the EKF-UI and the
NERTSS algorithms to synchronousmachine’ state and
unknown input estimation using noisy synchrophasor
measurements.

(iii) Proposing potential applications of simultaneous state
and unknown input estimation for real-time control
system performance monitoring.

The remainder of this paper is organized as follows,
Section II details the estimation algorithms including the new
NERTSS method proposed in this paper, in Section III the
estimation models for the considered synchronous machine
are presented, Section IV details the noise modeling used
by the numerical experiments conducted in Section V,
Section VI discusses the computational performance and
gives example of possible practical applications. Finally,
Section VII summarizes the main conclusions from this
work.

II. METHODS FOR UNKNOWN INPUT AND STATE
ESTIMATION
For estimation purposes, it is convenient to use state-space
models that are formulated in discrete time. A simple method
of transforming continuous time models to discrete time is by
applying Euler’s forward method, in whichthe state equations
f (x(t), d(t), u(t)) and the output equations g(x(t), d(t), u(t))
are sampled with a small sampling time Ts, giving a discrete-
time state-space representation

xk+1 = fk (xk , dk , uk )+ wk , (1)

yk = gk (xk , dk , uk )+ vk , (2)

where the process noise wk and the measurement noise vk
were both assumed to be additive. The noise sequences wk
and vk are both assumed to be uncorrelated, zero-mean and
white sequences and having the covariance matrices Qk ≥ 0,
Rk ≥ 0, respectively.

A. THE EXTENDED KALMAN FILTER WITH UNKNOWN
INPUTS (EKF-UI)
The idea behind the EKF is that the evolution of a nonlinear
system can be approximately described by a linear time-
varying system obtained by successive linearization around
the current state estimate x̂k|k at time instant k . For com-
pactness of notation, the explicit conditioning of variables,
e.g. k|k in the subscripts, is omitted when the conditioning is
obvious from the context. For the classical EKF, an approx-
imate estimator for the state xk is recursively given by the
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calculation of (3)-(7) at each time instant k:

x̂k+1|k = fk (x̂k|k , uk ), (3)

x̂k|k = x̂k|k−1 + Kk
[
yk − gk (x̂k|k−1, uk )

]
, (4)

Kk = Pk|k−1CT
k

(
CkPk|k−1CT

k + Rk
)−1

, (5)

Pk|k = (I − KkCk)Pk|k−1, (6)

Pk+1|k = AkPk|kATk + Qk , (7)

where Ki is the Kalman gain and where Ak , Ck are, respec-
tively, the following matrices of partial derivatives:

Ak =
∂fk (xk , uk )

∂x
|xk=x̂k|k , (8)

Ck =
∂gk (xk , uk )

∂x
|xk=x̂k|k−1 . (9)

The EKF described by (3)-(7) assumes that: 1) only
the states xk and noise (vk ,wk ) are unknown; 2) the
functions fk and gk are known; and 3) the partial deriva-
tive matrices (8), (9) can be obtained exactly or approx-
imated numerically. In synchronous machine applications,
these three assumptions may fail to hold. For example,
some elements of the input vector uk , e.g. the bus volt-
age magnitude Vt , influence the state function fk (xk , uk ),
but may only be available as noisy measurements. Further-
more, the mechanical power Pm and the field voltage Efd
are typically not available outside the power plant and have
to be estimated. Using the algorithm proposed in [18], an
EKF-UI for synchronous machines was proposed in [4].
It should be noted that the variety of EKF-UI used in [4]
assumes no direct feed-through of unknown inputs as stated
in [19]. For comparative purposes, this paper uses the
EKF-UI algorithm as given in [19]. The elements of the input
vector uk in (3)-(9) that are not known will in the following
be denoted by dk . In the EKF-UI, the unknown inputs dk−1
and the states xk are estimated recursively at time instant k
using (3)-(5), (7)-(9) and

Sk =
[
GTk−1C

T
k R
−1
k (I − CkKi)CkGk−1

]−1
, (10)

û∗k−1|k = SkGTk−1C
T
k R
−1
k (I − CkKi)

×

(
yk−gk (x̂k|k−1, uk )+ CkGk−1û∗k−2|k−1

)
, (11)

Pk|k = (I − KkCk)
(
Pk|k−1

+Gk−1SkGTk−1 (I − KkCk)
T
)
, (12)

where Gk−1 is the matrix of partial derivatives of the state
equation fk (·) with respect to the unknown inputs dk−1 given
by

Gk−1 =
∂fk (xk , dk , uk−1)

∂dk
|xk=x̂k−1|k−1,dk=d̂k−2|k−1

, (13)

at time k − 1. Because there is no direct feed-through,
d̂k−1|k−2 will be used for the linearization in (13).

B. THE NONLINEAR EXTENDED RECURSIVE
THREE-STEP FILTER (NERTSF)
NERTSF was proposed in [16] as a non-linear extension
of the filtering algorithm of [15] and assumes that there is
no direct feed-through between the unknown inputs and the
outputs. In contrast to the EKF-UI, the NERTSF performs
the unknown input and state estimation in the reverse order,
by first estimating the unknown inputs dk−1 before estimating
the state xk . The three steps of the NERTSF algorithm are
summarized in the remainder of this subsection and the reader
is referred to [16] for a more detailed exposition:
Step 1: Time update at time instant k:

x̂k|k−1 = f (x̂k−1|k−1, d̂k−1|k−1, uk−1), (14)

Pxk|k−1 = Ak−1Pxk−1|k−1Ak−1 + Qk−1, (15)

where Ak is given in (8) and Pxk|k is the state error covariance
at time k and the unknown input distribution matrix Gk−1 is
given by (13).
Step 2: Generate the decoupling unknown input estimate:

R̃k = CkPxk|k−1C
T
k + Rk , (16)

Sk = CkGk−1, (17)

Pd̂k|k = (STk (R̃k )
−1Sk )−1, (18)

Mk = (STk R̃
−1
k Sk )−1STk R̃

−1
k , (19)

d̂k−1|k = Mk

(
yk − g(x̂k|k−1, d̂k−1|k−1, uk )

)
, (20)

where Ck is given by (9) and Gk−1 by (13). After performing
Step 2, the a-priori predictions in (14), (15) are updated
using the substitution d̂k−1|k−1← d̂k|k , because the state and
output equations may be highly non-linear.
Step 3: Estimate the unknown input-decoupled states:

Kk = Pxk|k−1C
T
k R̃
−1
k , (21)

Lk = Kk + (In − KkCk )Gk−1Mk , (22)

9k = R̃k (Lk − Kk )T , (23)

x̂k|k = x̂k|k−1 − Lk
(
yk − g(x̂k|k−1, d̂k−1|k , uk )

)
, (24)

Pxk|k = Pxk|k−1 − Lk R̃kL
T
k − Lk9k + (Lk9k )T , (25)

Pxdk = −P
x
k−1|k−1A

T
k−1C

T
k M

T
k . (26)

The equations (14)-(26) define the NERTSF recursion, pro-
vided that initial estimates of the states x̂0|0, unknown
inputs d̂0|0, and the initial state error covariance Px0|0 are
given.

C. THE NONLINEAR EXTENDED RECURSIVE
THREE-STEP SMOOTHER (NERTSS)
For the linear case [20], it is established that the unknown
input estimate d̂k−1|k (20) given by the ERTSF is the one-
step delayed minimum variance unbiased (MVU) estimator
of dk−1 and that the ERTSF decouples the estimated input
dk−1|k from the estimated state xk|k . In the non-linear case,
due to the various approximations that are used to make the
problem tractable, the decoupling will not be exact and no
guarantees can be given about the estimator being MVU.
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If the covariance matrix Pdk−1|k of the unknown input esti-
mate is large then the resulting input estimate d̂k−1|k will be
uncertain. Attempting to reduce this variance, a smoothed
estimate of the unknown input d̂ sk−1|k is made by combin-
ing forward and backward filtering estimates of d̂k−1|k . The
smoothed estimate thus incorporates the information gained
from subsequent estimates to update an earlier estimate.
Direct implementation of the backward filter would require
an inversion of the dynamic equations. This can be be avoided
by performing the smoothing step as a backward pass using
the estimates obtained from forward filtering. State estima-
tors that combine forward and backward passes in this way
are known as Rauch-Tung-Striebel (RTS) smoothers. Using
an RTS smoother for unknown input estimation was first
proposed in [17], where it was named the Updated Linear
Input and State Smoother (ULISS), as a further development
of the estimator given in [21].

To perform state and unknown input estimation this paper
proposes the NERTSS, in which the one-step smoothing
backward pass from the ULISS is combined with the forward
pass from the NERTSF. The NERTSS first performs a for-
ward pass using the NERTSF algorithm (14)-(26) and then
performs the backward pass of the ULISS algorithm [17].
To explain the backward pass of ULISS, the joint distri-
bution of xk and dk is defined by the Gaussian distribu-

tion N
(
Xk ; X̂k ,PXk

)
where PXk =

[
Pxk Pxdk|N
Pdxk Pdk

]
, and where

Xk = [xTk dTk ]
T . Using the same standard assumptions as

for extended Kalman filtering, the joint filtering distribution
p(xk , dk , xk+1|y0:k , u0:k ) is approximated by a Gaussian dis-
tribution:

N
([

Xk
xk+1

]
;

[
X̂k

x̂k+1|k

]
,

[
PXk|k J̄k
J̄Tk Pxk+1

])
(27)

where J̄k = [J̄T1,k J̄T2,k ]
T with elements consisting

of the covariances J̄1,k = Cov (xk , xk+1) and J̄2,k =
Cov (dk , xk+1). Using J̄k and Pxk+1, the covariance of the
state estimate at k + 1, the Kalman smoother gain Jk can be
obtained from the maximum likelihood of the joint filtering
distribution as

Jk = J̄k
(
Pxk+1

)−1
=

[
PxkA

T
k + P

xd
k G

T
k

Pdxk A
T
k + P

d
kG

T
k

] (
Pxk+1

)−1 (28)

where Pxdk =
(
Pdxk

)T
is given by (26). The Kalman smoother

gain Jk is then used to update the mean and covariance of the
filter estimates recursively, given estimates up to N = k + L,
as:

X̂k|N =
[
x̂sk
d̂ sk

]
=

[
x̂k
d̂k

]
+ Jk (x̂k+1|N − x̂k+1|k ) (29)

PXk|N = PXk|N + Jk (x̂k+1|N − x̂k+1|k )J
T
k , (30)

where the partial derivatives and the filter means and covari-
ances were obtained by doing a forward filtering pass of
the NERTSF algorithm (14)-(26). Note that if N = k + 1

is chosen, then the smoothed estimate d̂ sk|k+1 will not be
more delayed after the current time k than the forward-
filtered estimate d̂k|k+1. Hence, a smoothing sequence of
length L = N − k = 1 is chosen to ensure that the unknown
input estimates of dk−1 are not delayed more than one-step,
which can be a desirable property for some applications.
For online estimation purposes, this paper proposes to use
only the filtered state estimates x̂k|k and not the smoothed
state estimates x̂sk|k in order to avoid a delay when esti-
mating the states. By allowing larger delays L, input esti-
mates with lower variance may be obtained because the
estimates would then be conditioned on more measurement
points [22]. As stated above, smoothed state estimates x̂sk|k+L
can also be obtained with this method, but they would be
delayed with at least one sample since L ≥ 1 and may
therefore be of less interest for real-time applications. The
proposedmethodwill therefore, because it is targeting on-line
applications, output the filtered state estimates x̂k|k and the
smoothed unknown input estimates d̂ sk−1|k at the current time
instant k .

III. SYNCHRONOUS MACHINE MODELING FOR
ESTIMATION
The differential equations that describe the behavior of syn-
chronous machines are often conveniently expressed in the
dq0-domain by applying Park’s transformation. This paper
considers a fourth-order model that is formulated in the pha-
sor domain. The principles will be valid for any machine
model-order and more detailed estimation models can there-
fore be constructed. For the purpose of obtaining analytic
Jacobians with respect to the states, the paper assumes that
there is no saturation. Furthermore, the armature resistance is
assumed to be negligible, Ra ≈ 0. By denoting the machine’s
bus voltage phasor as V̄t = Vt 6 θVt and the internal machine
angle as δi = δ − θVt , the machine is described by the
following four state equations:

ẋ1 = ω0x2, (31)

ẋ2 =
1
J
[Pm − Pe − Dx2] , (32)

ẋ3 =
1
T ′d0

[
u2 − x3 − (xd − x ′d )

(x3 − u1 cos(δi))
x ′d

]
, (33)

ẋ4 =
1
T ′q0

[
−x4 − (xq − x ′q)

(x4 − u1 sin(δi))
x ′q

]
, (34)

where x is the state vector and the u is the vector of inputs
given as

x =
[
δ 1ω e′q e′d

]T
, (35)

u =
[
Efd Vt Pm

]T
. (36)

The active power Pe and the reactive power Qe exchanged
between the machine and the network are given
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by

Pe =
Vte′q
x ′d

sin δi −
Vte′d
x ′q

cos δi + V 2
t

x ′d − x
′
q

2x ′dx
′
q

sin 2δi, (37)

Qe =
Vte′d
x ′q

sin δi +
Vte′q
x ′d

cos δi − V 2
t

(
cos2 δi
x ′d
+

sin2 δi
x ′q

)
,

(38)

respectively, using the generator convention for the direction
of the power flows. The state variable 1ω is the rotor speed
deviation from nominal speed and all quantities in (31)-(38)
are assumed to be on the per unit-scale, except the angles
which are assumed to be in radians. Note that for salient-
pole machines e′d = x4 = 0 and x ′q = xq, which implies
that (34) will be zero and therefore the state e′d can either
be removed from the model or be replaced by the equivalent
sub-transient state e′′d . For a description of the synchronous
machine parameters for different winding configurations and
their typical values, the reader is referred to [23].

In (36), the mechanical powerPm, controlled by the turbine
governor system, and the field voltage Efd , controlled by
the excitation system, are in general not available as real-
time measurements outside the the power plant. If accurate
models of the control systems are known, the estimation
model could be extendedwith these controllers with the intent
to improve the estimates. However, the controllers can change
due to, for example, the activation of over-/under-excitation
limiters, varying parameters, or malfunctioning equipment.
Furthermore, even if the models are known, unknown input
estimation might still have to be used because the controllers
could have set-points that are unknown or have inputs that
are not available as measurements, e.g. the inputs to power
system stabilizers. For these reasons, this paper assumes that
only the synchronous machine’s parameters are known.

A. ESTIMATION MODEL USED BY EKF-UI
A complication of using the state vector (35) directly
in EKF-UI is that the machine angle δ is taken with respect
to a fictitious slack bus. This limitation was avoided in the
estimation model of [5], which proposed to extend the state
vector (35) with an extra state x5 = δi, the internal machine
angle. The internal machine angle δi is computed with respect
to the voltage phasor Vt at the machine’s terminal bus. As a
state equation for δi, the equation δ̇i = δ̇c is used by [5], where
δc is calculated [23] as

δc = tan−1
(

xqIt cos(φ)− RaIt sin(φ)
Vt + RaIt cos(φ)+ xqIt sin(φ))

)
, (39)

where φ = cos−1
(
Pt
Vt It

)
is the phase angle between volt-

age and current. The quantities that are needed in order to
calculate (39) are the PMU-measurements V̄t and Īt and
the machine parameters xq,Ra, which are assumed to be
known. To obtain observability of the second state x2, i.e.
the rotor speed deviation 1ω, an approximate measurement
of the rotor speed is needed. In [5], the estimated speed fr

of the q-axis internal voltage phasor Ēq = V̄t + jxq Īt is
used. This quantity can be calculated from measured pha-
sor quantities, obtained from PMU devices at the terminal
bus, and knowledge of the q-axis reactance of the machine.
Following the description in [5], the EKF-UI will for the
fourth-order synchronous machine model use the state vector
xk = [δ 1ω e′q e

′
d δi]

T , input vector uk = [Vt δc]T and the
output is yk = [Pe Qe fr ]T , where δc is calculated by (39)
and fr is the frequency of the q-axis voltage phasor Ēq given
by Ēq = V̄t + jxq Īt , where V̄t and Īt can be obtained as
PMU measurements at the machine’s bus [5].

B. PROPOSED ESTIMATION MODEL FOR NERTSS
The estimation model described in Section III-A has two
potential issues. First, the size of the state vector is increased
by one, such that the algorithmmust calculate more estimates
from a fixed amount of measurements. Second, the measure-
ment errors in uk , which is also augmented by an additional
measurement, may potentially degrade estimation perfor-
mance. The second issue arises from the use of the calculated
internal machine angle δc of (39), which can be sensitive to
measurement errors in Vt , It and φ.

To avoid these two potential issues, the estimation model
of [5] is reformulated to avoid using δc while still being
able to estimate δi. For this purpose, the first state of (35),
i.e. δ, is replaced by the internal machine angle δi. The inter-
nal machine angle δi is the angle in radians between the d-axis
of the rotor and the local bus voltage phasor V̄t , and evolves
over time by integrating the difference between the electrical
speed fe and mechanical speed ω. The state equation for x1
in (31) is therefore substituted with

ẋ1 = ω0 (x2)− 2π (fe − fn) (40)

where fe − fn is the deviation in Hertz of the electrical fre-
quency from the nominal value andω0 = 2π fn. Thus, the pro-
posed estimation model for the NERTSS uses [δi 1ω e′q e

′
d ]
T

as the state vector, uk = [Vt fe]T as the input vector, and
yk = [Pe Qe fr ]T as the output vector.

IV. NOISE MODELING FOR THE NUMERICAL
EXPERIMENTS
An important part of the experiment design is the choice
of noise sources to account for imperfect modeling of the
synchronousmachine and the imperfect measurements. In the
experiments, all noise sources are modeled as an additive
white Gaussian noise (AWGN) and being zero mean and
jointly uncorrelated. The following noise injections are made:
• Process noise attributed to modeling and discretiza-
tion errors by approximating the state function (1) by
fk (xk , dk , uk ). The process noise is taken into account
by injecting noise into the each state of the estimation
model. The noise sources are assumed to be uncorre-
lated AWGN that are each distributed by N (0, 10−10)
before time-discretization. The discrete-time covariance
is approximated as the continuous-time covariance mul-
tiplied by the the square of the simulation time-step.
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The variance of the considered process noise is therefore
slightly higher than the variance used in [9].

• Measurement noise attributed to modeling errors
by approximating the measurement function (2) by
gk (xk , uk ). The measurement noise is added to each
of the measurement equations of the estimation mod-
els. The noise sources are assumed to be uncorrelated,
AWGN and distributed byN (0, 10−10). The variance of
the measurement noise is two orders of magnitude larger
than the variance used in [9].

• Instrument noise, due to imperfect PMU-measure-
ments, affecting uk which enters nonlinearly into both
state and measurement equations (1),(2). To account for
instrument noise, the IEEE C37.118.1-2011 standard
for synchrophasors [24] allows up to 1% total vec-
tor error (TVE) for voltage and current measurements,
respectively, for both P class and M class PMUs during
steady-state. These errors may be compounded by the
measurement transformer errors which are, depending
on the accuracy class of the instrument, restricted to
not deviate more than 0.3% and 1.2% [25]. Using these
deterministic accuracy bounds as a guideline, the errors
in the measured per-unit phasor quantities V̄ and Ī are
modeled by uncorrelated AWGN sources with their
respective magnitudes distributed as N (0, 10−6) (pu)
and phase distributed by the uniform distribution
on [0, 2π ] (rad). The quantiles of the considered current
and voltage noise distributions correspond to a case
when the respective measurements have an expected
TVE that is less than 1% for approximately 99.99% of
the samples when the current and voltage magnitude
are 1 pu, respectively. For frequency measurements fe,
note that the frequency error is not allowed to exceed
0.005 or 0.01 Hz depending on the accuracy class [24].
The paper takes the higher bound into account andmodel
the frequency measurement error as an AWGN source
with the distribution N (0, 10−6) Hz.

V. NUMERICAL EXPERIMENTS
The performance of the EKF-UI and NERTSS estimation
methods are numerically investigated by performing Monte
Carlo simulations for several different experiments.

First, the algorithms’ estimation is investigated in sev-
eral case studies using the fourth-order machine models
of the 60-Hz WSCC 9-bus test system as implemented in
PSAT [26]. Second, experiments are carried out investigate
the algorithms’ ability to estimate the states and inputs of
higher-order machine models having salient poles. These
latter case studies include the impact of electromagnetic
transients by using the simplified Hydro-Quebec system
as implemented in the Simulink Simscape Power Systems
toolbox [5].

The estimation models used by the EKF-UI and the
NERTSS are, respectively, described in Section III and kept
as order four regardless of the model order of the simulated
machine. The input and output vectors used by the estimation

methods are obtained using only noisy PMU measure-
ments V̄t , Īt and fe. The expressions for the time-varying
Jacobian matrices (8), (9) and (13), which are needed in both
EKF-UI and NERTSS, are assumed to be known analyti-
cally from differentiating the estimation models. However,
the numerical values of the Jacobian matrices are calculated
from themachine parameters, the noisy phasor measurements
and the state estimates. Thus, the numerical values of the
Jacobian matrices will differ from the true values. To ensure
fairness in the comparisons, the same Q and R matrices
were used for both methods by using the diagonal covariance
matrices R = Q = 10−5I where I are identity matrices of
appropriate sizes. The initial estimates of state and unknown
input, needed to start the recursion, are the true underlying
values perturbed by three standard deviations of the state
covariance matrix.

As in [5], a Kay-filter [27] applied over a window
of 1.5 cycles is used to calculate the rotor speed fr . The
assumed reporting rate of the PMU devices including the
rotor angle calculation algorithm is two samples per cycle,
i.e. 8 1/3 ms. Compared to [5], the assumed reporting rate in
this paper is lower by a factor of 12. The lower reporting
rate could make the estimation problem harder, because the
errors caused by linearizing the state equations grow when
the sampling rate is decreased. Note that, due to the high
reporting rate and the approximate unbiasedness of the esti-
mates, there is an opportunity to use averaging to reduce
the variance before presenting the unknown input estimates.
However, this paper presents only unprocessed estimates in
all figures and tables unless it is explicitly stated. For the
NERTSS algorithm, it should be noted that the paper only
presents the filtered state estimates and not the smoothed state
estimates in order to avoid a delay by one time-step.

The performance metric is the mean square error (MSE) of
the estimate ẑ[n] with respect to the simulated variable z[n],
defined as

MSE(ẑ) =
1
N

N∑
n=1

(
z[n]− ẑ[n]

)2
, (41)

where N is the number of samples. The reported
MSE values are calculated per estimated quantity as the
average of 100 Monte Carlo simulations with different noise
realizations. To test whether it is possible to reject the null
hypothesis that the average MSE of the two methods are
equal, Welch’s two-tailed t-test with a probability value of
p = 0.01 is used. This test assumes that the MSEs for both of
the methods are, respectively, normal distributed and allows
the two distributions to have unequal variances.

A. PERFORMANCE UNDER AMBIENT CONDITIONS
WITH STOCHASTICALLY VARYING LOADS
Case study V-A seeks to track the states and inputs of a
regulating generator as it is following the changes in con-
sumption during normal operation. The changes in active and
reactive power consumption at the load buses are modeled
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FIGURE 1. Case study V-A: Estimates produced by the EKF-UI (red) and
the NERTSS (black) and the true machine states and inputs (green).
(a) Internal machine angle δi . (b) Field voltage Efd . (c) Mechanical
power Pm.

with zero-drift Wiener processes having a variance of 0.01 pu
after time-discretization. The instantaneous net consumption
of power in the loads is therefore deviating from what was
anticipated in the planning stage and can be thought of as
the aggregate time-varying demand of the loads or as the
varying production of unschedulable distributed generation.
Fig. 1 shows, for a single simulation, the estimated states and
unknown inputs that were calculated by the two methods and
compares them with the true values. From Fig. 1, it is clear
that the NERTSS have a smaller MSE than the EKF-UI for
the internal rotor angle estimation as well as the mechanical
power and field voltage unknown input estimates. It can
also be seen that the unknown input estimates vary around

FIGURE 2. Case study V-A: Estimated outputs calculated from the EKF-UI
(red) and the NERTSS (black) estimates and the true machine outputs
(green). (a) Active power Pe. (b) Reactive power Qe.

TABLE 1. Case study V-A: Average estimation performance from
100 Monte Carlo simulations. The best average MSE values are
in bold if the result is significant with p = 0.01 using
Welch’s two-tailed t-test.

the true underlying values, showing that the estimates are
approximately unbiased.

Fig. 2 shows, for a single simulation, the active and reactive
power output of the machine when reconstructed using the
estimated states compared to the true values. It can be seen
that the active power is reconstructed by the NERTSS with
less error than the EKF-UI, while the accuracy is similar for
both methods when the reactive power is to be reconstructed.

To numerically assess the performance of the algorithms
during ambient conditions, 100 Monte Carlo simulations are
carried out and the average MSE is calculated for all simu-
lations for which the estimates are bounded. The results are
presented in Table 1 and show that both methods perform
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FIGURE 3. Case V-B.1: Estimates produced by the EKF-UI (red) and the
NERTSS (black) compared to the true machine inputs (green) for
(a) Field voltage Efd . (b) Mechanical power Pm.

well for the state estimation, keeping the estimation errors
small for all states. For the unknown inputs to the machine,
the NERTSS is performing better than the EKF-UI when it
comes to estimating both the mechanical power input as well
as the field voltage input.

B. PERFORMANCE TRACKING RAMPS AND STEPS
IN THE UNKNOWN INPUTS
Case study V-B carries out two experiments which investi-
gates the algorithms’ ability to track time-varying unknown
inputs. The reference signal consists of a ramp at t = 0 s that
increases the studied unknown input by 50% over 10 s, after
which it is held constant for 5 s before applying a negative
step that resets the input to its initial value. The Monte Carlo
simulation procedure, used to calculate the averageMSEs and
to carry out the significance tests, is the same as the one in
case study V-A.

1) RAMP AND STEP IN THE FIELD EXCITATION VOLTAGE
Case V-B.1 applies the reference signal to the field excitation
voltage Efd of the synchronous machine. The plots in Fig. 3
show that both algorithms track the input signals, i.e. the field
voltage and mechanical power, reasonably well for this dis-
turbance but that the NERTSS will do so with lower variance
than the EKF-UI.

Table 2 presents the average MSEs of the esti-
mates obtained from the respective algorithm using

TABLE 2. Case study V-B.1: Average estimation performance from
100 Monte Carlo simulations. The best average MSE values are in
bold if the result is significant with p = 0.01 using Welch’s
two-tailed t-test.

TABLE 3. Case V-B.2: Average estimation performance from 100 Monte
Carlo simulations. The best average MSE values are in bold if the result
is significant with p = 0.01 using Welch’s two-tailed t-test.

100 Monte Carlo simulations. The table shows that the
NERTSS was on average better than the EKF-UI when
estimating the unknown inputs, in particular the mechanical
power input to the generator. Furthermore, the NERTSS
give better estimates of the states compared to the EKF-UI,
except for the rotor speed where no significant difference was
observed.

2) RAMP AND STEP IN THE MECHANICAL POWER
Case V-B.2 uses the same reference signal as the one used in
case V-B.1, but the reference signal is in this case applied to
the mechanical power input to the synchronous machine.

Fig. 4 show estimation results of selected states and
unknown inputs compared to the their true values. Note that
the NERTSS method manages to track the inputs with a
relatively small estimation error and a low variance, while
the EKF-UI method has both higher estimation errors and
larger variance. The biggest contributor to the estimation
errors in case V-B.2 can be seen to be the oscillations in the
unknown input estimates that are induced by the step change,
this problem is common to both the NERTSS and the EKF-UI
and could be addressed by enhanced linearization techniques.
As can be seen in Table 3, the NERTSS algorithm performs
better than the EKF-UI for all estimated quantities.

C. PERFORMANCE DURING FAULT CONDITIONS
Case study V-C tests the algorithms’ ability to track the
transient behavior of the states and unknown inputs of syn-
chronous machines during fault conditions. The considered
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FIGURE 4. Case V-B.2: Unknown input estimates produced by the EKF-UI
(red) and the NERTSS (black) compared to the true machine inputs
(green). (a) Field voltage Efd , (b) Mechanical power Pm.

fault is a balanced three-phase-to-ground fault applied to the
buswhich connects themonitoredmachinewith the rest of the
grid. The fault is applied at t = 1 s and is cleared after 200ms.
The fault impedance is set to be Z̄f = j0.1 pu and the
simulations are carried out until t = 5 s, at which time the
oscillations in the states have almost completely disappeared.

Fig. 5 shows that during the fault both algorithms are
unsuccessful at tracking the unknown inputs during the fault,
while the NERTSS is able to estimate the rotor angle cor-
rectly. The failure of the EKF-UI to correctly estimate the
internal rotor angle during the fault is caused by the use
of (39), which is the steady-state value that may differ from
the true value during transients. Both methods give unknown
input estimates during the faults that are unsuitable to be used
directly for monitoring purposes. After the fault is cleared,
the unknown input estimates of the NERTSS is faster to
converge to the true underlying system’s response than the
EKF-UI, the latter of which exposes large oscillations when
estimating the mechanical power input to the synchronous
machine. The lack of estimation accuracy during faults is not
surprising and similar results for the EKF-UI were reported
in [5].

In Table 4, the average MSE obtained from 100 Monte
Carlo simulations are given. Table 4 shows that the NERTSS
performs better than the EKF-UI for all of the estimates.
However, the MSE of the unknown input estimates are very

FIGURE 5. Case study V-C: Estimates produced by the EKF-UI (red) and the
NERTSS (blue) compared to the true machine states and inputs (green).
(a) Internal rotor angle δi , (b) Field voltage Efd , (c) Mechanical power Pm.

large for both algorithms and is mainly due to the inaccurate
results during the fault.

D. INFLUENCE OF THE ESTIMATION MODEL ON THE
NERTSS’ ESTIMATION PERFORMANCE
Case study V-D performs a comparative study the two esti-
mation models presented in Section III by evaluating the
estimation accuracy when the estimation model is used by
the NERTSS. The experimental set-up of case study V-A
was used to calculate the average MSE obtained with the
respective estimation model. The results of the Monte Carlo
simulations are reported in Table. 5. As can be seen from
the average MSE, the new estimation model proposed in
Section III-B is the preferred option for usewith theNERTSS.
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TABLE 4. Case study V-C: Average estimation performance from
100 Monte Carlo simulations. The best average MSE values are
in bold if the result is significant with p = 0.01 using
Welch’s two-tailed t-test.

TABLE 5. Case study V-D: Average estimation performance depending on
the estimation model used by NERTSS from 100 Monte Carlo simulations.
The best average MSE values are in bold if the result is significant with
p = 0.01 using Welch’s two-tailed t-test.

When using the same estimation model, the NERTSS is
performing better than the EKF-UI for all estimates except
for the field voltage, which showed no significant difference
in accuracy between the two algorithms. These results show
that the improvement in estimation accuracy of the NERTSS
compared to the EKF-UI is partially due to the proposed
estimation model and partially due to the NERTSS algorithm.

E. ESTIMATION FOR HIGHER-ORDER MACHINE MODELS
IN THE HYDRO-QUEBEC SIMPLIFIED SYSTEM
To conclude the case studies, the paper investigates the ability
of the NERTSS and the EKF-UI algorithms to use a simpli-
fied estimation model of order 4 when estimating unknown
inputs and states of a salient-pole synchronous machine with
a model order of 8.

Similar experiments were carried out for the EKF-UI in [5],
using the same Simulink model of the simplified Hydro-
Quebec 29-bus system. Therefore, the experiment set-up is
chosen to match that of [5] as closely possible. However,
this case study differs from those of [5] by considering noise
sources that are affecting the output of the PMU measure-
ments. Furthermore, the PMUs used in this paper are based
on phase-locked loops, which differs from the PMU imple-
mentation in [5].

Fig. 6 shows the simplified Hydro-Quebec system as it
is implemented in the Simulink environment, including the
block containing the PMUs and the rotor speed estimator,
and the blocks containing the estimation algorithms. The syn-
chronous machine MTL, whose unknown inputs and states

FIGURE 6. Case study V-E: (a) The simplified 29-bus Hydro-Quebec
system and the blocks containing the estimation algorithm, and
(b) implementation of the PMU, instrument noise and the
rotor speed estimator.

are to be estimated, is shown in the left part of Fig. 6,
connected to bus B5, where the PMUs measuring V̄t and
Īt are located.
The system is simulated with a time-step of (240 ×

60)−1s ≈ 69µs, which is considerably faster than the
assumed synchrophasor sampling rate of 24 samples per
cycle. The reporting rates of the PMUs and the rotor speed
estimator are all assumed to be 2 samples per cycle. The two
considered cases investigate the accuracy of the algorithms
when they are using simplified estimation models and noisy
PMU data as the system is subjected to faults.

1) A REMOTE THREE-PHASE-TO-GROUND
SHORT-CIRCUIT FAULT
In this case, a balanced three-phase-to-ground short-circuit
fault is applied to the lineCHM-SAG in the upper left corner
of Fig. 6 as Fault 1. This fault is electrically located far
away from the monitored machineMTL. Therefore, it should
be expected that the influence of the sub-transient dynamics
should be limited, since there is a comparatively large amount
of impedance between the machine and the fault [23].

Fig. 7 shows the selected estimated states and the estimated
unknown inputs for a noise realization. It can be seen from the
plot that both algorithms accurately estimate the internal rotor
angle δi even during the fault. In contrast, the unknown input
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TABLE 6. Case study V-E.1: Average estimation performance from
100 Monte Carlo simulations. The best average MSE values are
in bold if the result is significant with p = 0.01 using
Welch’s two-tailed t-test.

estimates are seen to be unreliable during the fault. After the
fault has been cleared, the field voltage estimate converges
very quickly to the true underlying value. When the algo-
rithms estimate the mechanical power input in the transient
time-period after the fault, both the NERTSS and the EKF-UI
exhibit oscillations that are damped out after a few seconds.
These are introduced as the algorithms try to compensate
for the difference between predicted and observed measure-
ments.

In Table 6, the calculated MSEs obtained from the Monte
Carlo-simulations are showing that the NERTSS has slightly
better accuracy than the EKF-UI for the state and unknown
input estimates in the case of a remote fault. Note that the
transient d- and q-axis voltages are not investigated in the
case studies for the simplified Hydro-Quebec system, as their
reference values are not directly available as states of the
eighth-order machine model.

2) A NEARBY THREE-PHASE-TO-GROUND
SHORT-CIRCUIT FAULT
In this case, the balanced three-phase-to-ground short-circuit
fault is located at the point of interconnection between the
monitored machine and its transformer on one side and
the rest of the grid on the other side, shown as Fault 2
in Fig. 6. The impedance between the fault and the machine is
comparatively small and the machine’s sub-transient dynam-
ics should therefore have a large impact on the states and
unknown inputs of the machine.

As can be seen in Fig. 8, the errors in the unknown input
estimates are large during the fault and immediately after the
fault has been cleared. Note that the EKF-UI algorithm tracks
the internal rotor angle better than the NERTSS during the
fault and slightly worse after the fault, which can be explained
by the inaccurate frequency calculation by the PMU during
the fault. After the fault is cleared, the field voltage estimates
converge to the reference signal and track the oscillations
well. In contrast, the mechanical power estimates exhibit
damped oscillations and high frequency noise during the first
few seconds after clearing the fault. This is partially due to
the part of the dynamics of the machine that is not taken
into account in the estimation model, which then noticeably
affects the unknown input estimates.

In Table 7, the average estimation errors are presented
and which show that the NERTSS performs slightly bet-
ter than the EKF-UI for most of the estimates. As was

FIGURE 7. Case study V-E: Estimates produced by the EKF-UI (red) and the
NERTSS (blue) compared to the true machine states and inputs (green).
(a) Internal rotor angle δi , (b) Field voltage Efd , (c) Mechanical power Pm.

observed from Fig. 8, the internal rotor angle calculation of
the EKF-UI, gives the EKF-UI and advantage over the
NERTSS when the frequency measurements from PMUs are
unreliable due to the fault. Note that the large estimation
errors during the under-fault conditions are the main contrib-
utors to the high MSEs. However, for the unknown inputs,
the relative accuracy of the two algorithms are similar even if
only the post-fault time period is considered.

VI. COMPUTATIONAL PERFORMANCE AND
APPLICATIONS
A. COMPUTATIONAL PERFORMANCE
For real-time applications, the computational cost of the
algorithms is important and the computation time should
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FIGURE 8. Case study V-E.2: Estimates produced by the EKF-UI (red) and
the NERTSS (blue) compared to the true machine states and inputs
(green). (a) Internal rotor angle δi , (b) Field voltage Efd , (c) Mechanical
power Pm.

TABLE 7. Case study V-E.2: Average estimation performance from
100 Monte Carlo simulations and calculated after the fault has been
cleared. The best average MSE values are in bold if the result is
significant with p = 0.01 using Welch’s two-tailed t-test.

be well below the reporting rate of the synchrophasor data.
The operations with most computational cost in EKF-UI and
NERTSS are the matrix inversions that need to be performed
at every time step. The covariance matrices that are inverted

are of comparable size for the two methods. It should there-
fore be expected that the NERTSS would have a similar
computational cost as that of the EKF-UI, as the NERTSS
only requires one extra matrix inversion per time step.

To investigate the practical computational cost, the average
computational time for a single step of the NERTSS and the
EKF-UI, respectively, was calculated using 10,000 estimation
steps for each algorithm. The implementation of the EKF-UI,
developed in MATLAB for this work, was found to give an
average computational time of 2.6 ms per step. In compari-
son, the implementation of the NERTSS in MATLAB took
on average 7.2 ms per step. Thus, the computational cost is
lower for the EKF-UI. However, both algorithms can easily
complete a single step within a reporting rate of 2 samples per
cycle, consistent with the reporting rate of a modern PMU.

Software profiling of the NERTSS and the EKF-UI algo-
rithms revealed that both algorithms spent most of the time
evaluating the partial derivative matrices of the state and
measurement functions, note that these matrices are needed
for both the EKF-UI and the NERTSS. This partially explains
the observed difference in computation time between the
two methods because the NERTSS is evaluating the partial
derivative matrices twice per time step instead of once, which
the case for the EKF-UI. The partial derivative evaluation
could likely be made considerably faster by creating a more
light-weight implementation than the one that was used in the
experiments, which was written in the interpreted MATLAB
language and allows the user to modify parameters during
simulations. The numerical experiments of [9] showed that
the EKF-UI can be executed on a standard personal computer
at a rate that was two magnitudes faster than the considered
PMU reporting rate which, considering the similar computa-
tional cost, also supports the conclusion that the NERTSS can
be implemented to run in real-time.

B. APPLICATION TO FREQUENCY CONTROL
PERFORMANCE MONITORING
Monitoring the primary reserves of the power system is
important task in order to ensure that excessive frequency
deviations does not occur. In steady-state, the regulating
machines have a frequency response that is inversely pro-
portional the droop parameter R, which can be tracked with
relatively slow SCADA systems. To obtain a faster reporting
rate with lower latency, this paper proposes to use of PMU
data and the NERTSS algorithm to estimate the mechanical
power input Pm and the rotor speed ω of the generator.
These quantities can then be used to track the performance
of the primary frequency control loop. The higher update rate
compared to SCADA systems means that warnings to system
operators could be presented in a more timely manner if the
primary frequency reserves would deviate from the scheduled
amount.

An example under ambient conditions is shown in Fig. 9,
where the estimated points in the Pm-ω space are shown to
be close to the theoretical steady-state droop of the turbine
governor. It can be observed in Fig. 9 that the turbine regula-
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FIGURE 9. Application example VI-B: Frequency control performance
monitoring, the estimated operating points from the NERTSS
compared to the steady-state droop.

FIGURE 10. Application example VI-C: Field current tracking,
the estimates from the EKF-UI (red) and the NERTSS (black)
compared to the true value (green).

tor increases the mechanical power that the turbine delivers
to the generator when the rotor speed is decreased, which
in turn is caused by the increased loading of the system.
As these values are being estimated in real-time, the behavior
of the droop presents an opportunity for system operators the
observe the controllers’ performance. In Fig. 9, it can be seen
that the observed droop, calculated as a moving average over
a 10 sample window, is able tracking the theoretical steady-
state droop closely. If the observed droop is differing from
the scheduled steady-state droop, the deviation from the ideal
droop characteristic can be used to identify if the frequency
regulation of power plant units are inactive ormalfunctioning.

C. APPLICATION TO FIELD CURRENT MONITORING
As described in the introduction, another interesting use case
is keeping track of the field current If in the field winding
of the synchronous machine, which was suggested in [4].
Typically an over-excitation limiter is used to prevent the field
winding from over-heating from excessive field currents, and
anticipating the activation of such a limit can be of interest
for the stability assessment and/or to initiate a redispatch to
alleviate the over-excitation.

In Fig. 10, the real field current and its estimates are shown
for a scenario where the over-excitation limiter becomes
active at t = 15 s after a continuous load increase has
driven the field current up to the maximum allowed limit
I limf = 2.09 pu. It can be seen that both algorithms are able
to track the field current of the synchronous machine but the

NERTSS will do so with slightly better accuracy than the
EKF-UI in this scenario.

VII. CONCLUSION
This paper has proposed a new estimation algorithm,
the NERTSS, for tracking the states and unknown inputs
of synchronous generators in the power system. The
NERTSS combines the smoothing algorithm of the ULISS
with the non-linear filtering of the NERTSF. Estimation of
states and unknown inputs can be a useful tool for operators
to assess the control performance of the machine and thereby
identify potential stability problems.

The proposed NERTSS was for the considered cases in
the simulation studies shown to improve the overall estima-
tion accuracy of the unknown inputs, which is the focus of
this paper, compared to the EKF-UI. The improvement in
accuracy is due to the fact that the NERTSS, in addition to
the filtering step, incorporates the information gained from
two subsequent state estimates when estimating the unknown
input. The estimation accuracy of the NERTSS makes it a
promising estimation method for applications that need state
and unknown input estimation of synchronous machines,
e.g. for wide-area damping control purposes, proposed
in [5] and [28].

Since the NERTSS, the EKF-UI andmany other estimation
algorithms give both means and error covariances for the esti-
mated states and unknown inputs, more advanced develop-
ments of these algorithms should also include the uncertainty
of the estimated quantities as an output. Incorporating the
uncertainties of state and unknown input estimates into safety
margin calculations could be a useful way to propose accurate
and cost-effective actions to avoid stability problems and to
stay within operational constraints.

The proposed NERTSS algorithm does not incur any addi-
tional delay in the estimation of the unknown quantities if
used in the proposed on-line setting, but it can be also be used
in a delayed mode or in an off-line mode which would lead to
even better estimation accuracy. The addition of a backward
pass to the forward filtering is computationally inexpensive
as no partial derivatives are required.

The effects of saturation in synchronous machines should
also be included in more advanced estimation models by,
for example, approximating the resulting non-analytical Jaco-
bians by using sample-based techniques. The NERTSS algo-
rithm proposed in this paper is a promising starting point
for more refined estimators; off-line or delayed smoothing,
alternative linearization techniques, and iterated smoothing
are interesting topics for future research.
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