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A B S T R A C T

This paper presents the results from the iTesla offline workflow for a given set of contingencies applied to Nordic
44 power system model and are verified against the results from a similar workflow implemented separately
using Python/Matlab that uses PSS/E analysis function. 21 (20 ‘N-1’ and 1 ‘N-2’) contingencies were created on
the Nordic 44 power system model and was executed on 2928 snapshots (April to July 2015). This verification is
only performed for the (static) steady state stability assessment results of the offline workflow. The generated
decision trees (DTs) by the iTesla platform were verified for different network operating conditions. It was
observed that the generated DT’s are consistent for the given set of operating conditions. It would be beneficial to
check how the rules generated from DT’s with four months of data (April to July 2015) vary from the rules
generated with one year of data (2015). The verification approach adopted provides a useful means to test and
verify dynamic security assessment (DSA) tools’ with an independent implementation of some of the tools’
functions, this can be of value to other DSA tool developers.

1. Introduction

1.1. Motivation

The deployment of renewable energy sources increases network
forecast uncertainty, making it difficult to accurately assess grid se-
curity levels during operation. The secure integration of generation
from renewable energy sources (RES) into today’s power systems re-
quires an appropriate assessment of the security of the system in near
real-time. The uncertainty associated with RES makes it unfeasible to
tackle this problem via a brute-force approach, i.e. it is impractical to
execute detailed static and dynamic simulations for all possible security
problems.

An approach is to combine offline and online applications assessing
different phenomena (steady-state violations determined by power flow
computations or instabilities through dynamic simulations) with un-
certainty. This allows bridging the gap between risk-based methods and
traditional deterministic approaches, by introducing the concepts of
probability and impact associated to the contingencies as well as the
uncertainty of the energy consumption forecast and of the power pro-
duction of RES.

Using this approach, the iTesla1 project developed a platform for

static and dynamic security assessment. The computations are per-
formed with two complementary offline and online workflows. The
offline workflow builds security rules and uncertainty models for use in
the online workflow. Online, the security rules are applied to plausible
grid operation states within the uncertainty margin of the forecasted
network state, in order to identify the contingencies for which control
actions are needed, while limiting the number of dynamic simulations
to be performed online.

1.2. Literature review

The tools developed in [1,2] were able to manage several analysis
applications within a single environment using a deterministic ap-
proach. Research projects have also dealt with the issue of security-
assessment tool integration [3]. However, full integration of methods,
models, tools, and analytics within a single platform is desirable.
Computations based on different models may be inconsistent; the var-
ious outputs become fragmented, difficult to interpret and synthesize
into a meaningful and actionable form. Therefore, it is becoming crucial
to exploit an integrated environment that can manage different tools:
static and dynamic analyses, contingency filtering and ranking, margins
and control actions computation, and effective synthesis and
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visualization of results.
The uncertainty of future power systems operating conditions due to

RES integration and introduction of the electricity market causes two
main effects: on one side, the need for techniques to perform an online
dynamic security assessment (DSA) [4], and on the other side, new
tools performing a probabilistic assessment of the operational risk are
becoming necessary to exploit power systems flexibility [5,6]. The
proposed iTesla platform combines traditional deterministic and prob-
abilistic risk-assessment tools effectively and can fulfill the require-
ments.

1.3. Contribution

In this paper, the results from the iTesla offline workflow for a given
set of contingencies applied to Nordic 44 power system model [7] are
verified with the results from a similar workflow implementation se-
parately using Python/Matlab that uses PSS/E’s analysis functions.
While this verification is only performed for the (static) steady-state
stability assessment results of the offline workflow, to the authors’
knowledge, this is the only paper proposing means for cross-validation
of iTesla platform functions, or any other DSA’s functions. The aim of
this paper is also to contribute to the body of knowledge by proposing
new means to test and validate DSA tools [8,9], which if imitated by
DSA tool providers, can help in gaining confidence and credibility in
the tools’ functions and results.

2. Background

The iTesla platform is an open source and modular software that
supports operators in power system security assessment from several
hours ahead of operation up to near real time. The platform also de-
termines and quantifies their efficiency when they are needed. The
iTesla platform can consider the uncertainties affecting power injec-
tions, such as non-dispatchable RES and loads, and the dynamic be-
havior of the grid, thanks to a filtering approach that takes advantage of
machine learning techniques. The computations are performed in two
complementary workflows, namely the offline and the online work-
flows (see Fig. 1). The offline workflow builds (1) security rules and (2)
uncertainty models for use in the online workflow: the security rules are
applied to plausible states in the “uncertainty domain” of the forecast
under analysis, to identify the contingencies for which control actions
are needed, while limiting the number of accurate network simulations
to be performed online. Both workflows include different computation
modules, each fulfilling a specific technical function such as power flow
(PF) computation or time-domain (dynamic) simulations.

2.1. Offline workflow

The offline workflow builds a database of historical and simulated
network conditions that are used to compute security rules, which will

serve to characterize future operating conditions as secure or unsecure.
The process follows the triptych anticipate – analyze – classify as shown
in Fig. 2.

Anticipate: To compliment historical data, a large number of ad-
ditional plausible network states isbuilt (sampled), using the his-
torical data. Uncertainties such as demand or wind power produc-
tion are also modeled
Analyze: for each sampled network state, dynamic simulations are
performed to quantify the impact of various contingencies (over-
loads, transient instability, etc.).
Classify: machine learning algorithms are used to compress the
results from the analysis stage into a set of security rules (threshold
values) discriminating secure from unsecure network states. These
rules are used by the online platform to quickly classify unseen
network states as safe/unsafe against a contingency.

2.2. Online workflow

During operation, the network forecasts are complimented with an
uncertainty margin (loads, RES) and the iTesla online workflow allows
to perform a fast security assessment within this margin. First, plausible
network states are sampled within the margin of uncertainty of the
forecast, and then, the states are checked against the security rules
computed offline, characterizing them as secure/unsecure.

For potentially unsecure network conditions, an additional but get
limited number of dynamic simulations are performed and analyzed. If
needed, curative/remedial actions are generated in order to assist the
network operator. Further details about offline and online workflow of
iTesla platform can be found in [10] and [11].

3. Application of the offline workflow to the Nordic44 power
system model

The outputs from the offline workflow of the iTesla platform for a
set of contingencies applied to the Nordic 44 power system model are
verified against the results obtained from a similar workflow im-
plemented separately using Python.

3.1. Nordic44. Power system model

The Nordic-44 Bus test system is an equivalent representation of the
Nordic grid (Sweden, Norway and Finland) as shown in Fig. 3. and was
originally implemented in PSS/E and Modelica [7,12]. It consists of 44
buses, 61 generators with various control systems (exciter, turbine,
governor and stabilizer), 67 transmission lines (420 kV and 300 kV) and
43 loads. The regions shown in this model are defined according to the
Nordic electricity market bidding regions. The entire historical market
data for 2015 was matched w.r.t the powerflow results for this model
and the details can be found in [7]. These snapshots are provided in
CIMv14, Modelica and PSS/E (Siemens PTI) files. The software devel-
oped to generate these snapshots are also provided in [6].

To perform a meaningful assessment, it was necessary to match and
consolidate the historical market data to the physical description of theFig. 1. iTesla workflow.

Fig. 2. Offline security assessment workflow.
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power network. Note that the aim here was to set a “base case”, from
which multiple snapshots of real measurements records could be
mapped to the quantitative response from computations on a physical
model of the grid, which include both steady-state and dynamic system
response features.

The following steps are involved in the creation of the multiple
snapshots of the Nordic 44 model as illustrated in Fig. 4.

A. The raw data was downloaded from Nord Pool webpage to MS-Excel
files, 1 and 2 in Fig. 4.

B. A Python script computes the power flow with the constraint of
minimizing the error between the power through the lines between
the bidding regions. The method implemented in the python script
performs several checks (e.g. convergence, limits etc.), and after
completing these tasks, it computes the error between the Nord Pool

measurement records and those obtained from the python script
computations on the Nordic 44 model, 3 in Fig. 4.

C. The obtained PSS/E snapshots contain the power flow solutions that
give the best match to the historical data from Nord Pool, 4 in Fig. 4.

3.2. Steady-state indexes for post-contingency classification

After performing a dynamic simulation for a specific contingency,
an appropriate post-contingency severity index is determined in order
to classify the impact of the contingency. To do so, a set of scalars
(namely severity indexes), provide a measure of how severe the con-
tingency is. The proposed indexes have been developed to satisfy re-
quirements of fast computation (because several contingencies must be
evaluated for each operating condition) and synthesis accuracy (pro-
vide a good measure of how severe the contingency is for different type
of instabilities). These indexes therefore help to classify different time-
domain simulations, this classification determines if a contingency will
result in a safe operating condition or if there are mild or severe viola-
tions to specified operation criteria. The requirements mentioned be-
fore and the need for a simple methodology, differentiates the indexes
proposed here to those described in [13,14] and [15].

An index is a scalar, vector, a matrix of numbers indicating specific
properties, in this case, of the steady state stability of a power system.
To assess a given operating condition under different contingencies,
simulation outputs can be analyzed to determine if a particular con-
tingency will result in an acceptable operating condition. The indexes
are used to classify the condition of the system as safe or unsafe through
specific operational criteria. The two static indexes are the overload and
the under/over voltage index, which are summarized below. Further
details about these static indexes is available in [16] .

3.2.1. Overload index
The time series of active and reactive power in the transmission

network just after an outage has occurred can be calculated from si-
mulation outputs. These calculations can be used to compare against
the capacities of different devices in order to observe if the calculated
post-fault time series of active and reactive power through the lines
exceeds the capacity of any component in the network. If one or more
components of the network are overloaded, the overload index can be
used to measure the associated severity of the overload. The equation
describing this index is
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where fx is the overload performance index for the operating point x, Nl

is the number of transmission lines, Smean,i and Smax,i are the average
and maximum power flows of the ith line, respectively, wfi is a weighting
factor for each transmission line, which can be defined by the best
judgment of the system operator, for instance wf=[1,1,…,1] for uni-
tary weight in all the lines. Finally, p is an exponent to reduce masking
effects, which means that a high value of the exponent will scale the
effects of an overload resulting in a higher index value. Definitions of
each parameter is given in Table 1.

The final value of the over load index fx is a scalar, and its inter-
pretation is as follows:

= →
> →
> > →

f
f
f

1 All lines are within the limits
1 At least one line has violated its limit

1 A severe violation has occurred

x

x

x (2)

3.2.2. Under/Over voltage index
Following a disturbance in the power network, e.g. a line outage,

the power flow through the transmission lines is affected causing
changes in other variables of the system. For instance, voltages across
the system can be depressed or increased. Data from a simulation will

Fig. 3. Nordic 44 model mapped to the bidding zones of the Nordic Pool.

Fig. 4. Consolidation of the Nordic 44 snapshots.

Table 1
Overload index parameters.

Variable Description Dimension Units

fx Actual overload index Scalar –
Nl Number of transmission lines Scalar –
Smean Mean apparent power flow R1×Nl MVA, p.u.
Smax Max apparent power flow R1×Nl MVA, p.u.
wf Weighting factor of lines R1×Nl –
p Exponent Scalar –

Table 2
Under/over volatge index parameters.

Variable Description Dimension Units

vx Under/over Voltage index scalar –
Nb Number of buses scalar –
vinit Nominal voltage (pre-fault) R1×Nb V, p.u.
vmean Mean voltage (post-fault) R1×Nl V, p.u.
vmax Max. voltage allowed in bus R1×Nl V, p.u.
vmin Min. voltage allowed in bus R1×Nl V, p.u.
wv Weighting factor of buses R1×Nl –
q Exponent scalar –
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contain such information and can be used to determine if any device
has violated the acceptable operational limits. For the case of bus vol-
tages, it is possible to measure the severity of the violations (under and
over operational limits) as follows:

∑ ⎜ ⎟= ⎛
⎝

− ⎞
⎠

=
−

=

v wv
v v

v
v

v v
Δ

,Δ
2x

i

N

i
init i mean i

i

q

i
i i

1

, , max, min,
b

(3)

where vx is the performance index for the operating point x. It indicates
if any bus in the system has surpassed the operational limits. Nb is the
number of buses to be analyzed, vinit,i is the initial voltage at the ith bus
before any disturbance has occurred (pre-fault value), vmean,i is the
average voltage of the post-fault data at the ith bus. wvi is a weighting
factor of the ith bus, which can be defined by the best judgment of the
system operator, for instance wv=[1, 1, …, 1] for unitary weight in all
buses. vmax,i and vmin,i are the upper and lower voltage limits for the ith

bus, respectively and q is an exponent to reduce masking effects, which
means that a high value of the exponent will scale the effects of vio-
lations in the voltage limits resulting in a large index value. Definitions
of each parameter is given in Table 2.

The final value of the over load index vx is a scalar, and its inter-
pretation is as follows:

= →
> →
> > →

v
v
v

1 All buses are within the limits
1 At least one bus has violated its limit

1 A severe violation has occurred

x

x

x (4)

3.3. Classification

We define the three classes in which time-domain simulations can
be classified:

= <ψ k1 safex o (5a)

< <ψ k1 mildx o (5b)

< >ψ k1 severex o (5c)

where ψx is a real integer representing one of the static indexes and k0 is
a real integer that represents the boundary which define the class of
time domain simulation as safe, mild and severe limit violation. Defining
the precise value of k0 is not simple, it is subject to the system under
analysis and the settings used in the static index such as limits and the
masking exponent. If for a given contingency the bounds of a static
index are within the safe (5a) or mild (6b) classification, further

Fig. 5. Classification of operating points based on indexes.

BXLIEL61ZGRA6_ACLS__TO__BXLIEP6_S_VL6_P

UNSECURE

< -201.57 MW ≥ -201.57 MW

DISTRY762_PT__TO__DISTRP6_S_VL6_P

SECURE

< -225 MW ≥ -225 MW

TAUTEL71TERR6_ACLS__TO__TAUTEP7_S_VL7_Q

≥ 13.77 MVAr < 13.77 MVAr

SECURE

SECURE

Fig. 6. Decision Tree for the considered contingency.

Table 3
List of contingency cases.

Number Description Type

1 Outage of one line between Hasle (5101) and Ringhals (3359) N-1
2 Outage of one line between Hagafoss (6001) and Sylling (5401) N-1
3 Outage of one line between Hagafoss (6001) and Kaggefoss

(5402)
N-1

4 Outage of one line between Blafall (6100) and Kvilldall (6000) N-1
5 Outage of one line between Hjalta (3100) and Grundfors (3249) N-1
6 Outage of one line between Ringhals (3359) and Hjalta (3100) N-1
7 Outage of one line between Ringhals (3359) and Malmo (8500) N-1
8 Outage of one line between Malmo (8500) and Oskarshamn

(3300)
N-1

9 Outage of one line between Oskarshamn (3300) and Forsmark
(3000)

N-1

10 Outage of one line between Forsmark (3000) and
Jarpstrommen (3245)

N-1

11 Outage of one line between Hjalta (3100) and Porjus (3115) N-1
12 Outage of one line between Trondheim (6500) and Rossaga

(6700)
N-1

13 Outage of one line between Kvilldal (6000) and Kristiansand
(5600)

N-1

14 Outage of one line between Geilo (5304) and Eidfjord (5305) N-1
15 Outage of one line between Geilo (5304) and Kongaberg (5103) N-1
16 Outage of one line between Geilo (5304) and Dagali (5102) N-1
17 Outage of one line between Dagali (5102) and Hasle (5101) N-1
18 Outage of one line between Geilo (5304) and Aurland (5301) N-1
19 Outage of one line between Hasle (5101) and Krogsberg (5103) N-1
20 Outage of one line between Oulu (7100) and Helsenki (7000) N-1
21 Outage of two lines between Tenhult (3200) and Hjalta (3100) N-2

-The number given in the brackets is the corresponds bus number in the PSS/E
model
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assessment of the simulation results is not required. On the contrary, if
the contingency is classified as severe (7c), the simulation results require
a deeper inspection, e.g. the application of a dynamic index. In this
form, static indexes serve to classify time domain simulations under
different contingencies.

3.4. Security rule generation

The simulation and index computation results are compressed into a
set of security rules that are used by the online workflow to quickly
classify unseen network states as safe or unsafe. Examples of a classifi-
cation is shown in Fig. 5. Note that a security rule is obtained for each
contingency and security phenomenon (overloads, transient stability,
etc.).

These security rules (boundary) are mapped against physical vari-
ables (active power, reactive power, voltage etc.,), which are pre-
dominantly influenced by the set of contingencies/security index pairs
considered. Security rules are expressed as DTs [17], which have the
advantage of being easy to interpret and suitable for integration as
linear constraints into optimization tools. These DTs are generated by
the “DataMaestro” software [18] that was integrated in the iTesla

Fig. 7. Validation workflow.

Fig. 8. Geographical location of the selected transmission line (red). (For in-
terpretation of the references to colour in this figure legend, the reader is re-
ferred to the web version of this article.)

Fig. 9. Monte Carlo Like Approach (MCLA) DT.

Fig. 10. Worst Case Approach (WCA) DT.

Fig. 11. Superimposed histograms of acceptable cases (green) and un-
acceptable cases (red) for the learning dataset. (For interpretation of the re-
ferences to colour in this figure legend, the reader is referred to the web version
of this article.)
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platform. These DTs help to characterize the power system security for
pre-defined contingencies and minimize the amount of network simu-
lations in the online workflow. An example of the decision tree created
for a given contingency is shown in Fig. 6.

Two approaches are used to generate DTs in the offline workflow for
each contingency/security index pair. In the Worst Case Approach
(WCA), the set of candidate attributes of the DT can only be related
with computed power variables. While in the Monte Carlo Like
Approach (MCLA), the set of candidate attributes of the DT can also
consider other type of network variables (e.g. voltage). Further details
about these approaches is available in [10].

4. Validation of the results from offline workflow

The results from the iTesla offline workflow for a given set of con-
tingencies were applied to the Nordic 44 power system model and
verified against simulations performed using PSS/E. This validation was

carried out in the following methodology.

A. iTesla – Offline Workflow:
1. Simulation of contingencies
2. Identify the output reported by each index of interest
3. DT generation

B. Python+PSS/E:
1. Simulation of contingencies
2. Extract the output from PSS/E depending on index of interest

C. Cross Validation:
1. Cross validate the results from A and B

Fig. 12. Geographical location of the selected transmission line (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 13. Monte Carlo Like Approach (MCLA) DT.

Fig. 14. Worst Case Approach (WCA) DT.
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2. Analyze and contrast the created DT in A with the system re-
sponse observed from that contingency in B

This methodology was used to validate the (static) steady-state
stability assessment (Overload, Over/Under voltage indexes) of the
offline workflow.

4.1. Cross validation

21 contingencies were created and simulated using the Nordic 44
bus system in the iTesla platform. These contingencies were applied to
2928 snapshots and each snapshot indicates the operating point based
on the hourly data posted on the Nord pool from April 2015 to July
2015. The outputs from the contingencies were computed from a si-
mulation program available in the platform. The selected contingencies
contain transmission lines whose average loading is more than 65% of
their nominal rating. Table 3 lists the 20 ‘N-1’ contingencies and one ‘N-
2’ contingency used in the cross validation. These contingencies were
also created and simulated in PSS/E to compare the results to those of
the iTesla offline workflow as shown in Fig. 7.

Because of space constraints, the cross-validation workflow is ex-
plained in detail with one contingency and results of the remaining
contingencies is shown in Fig. 15.

4.1.1. N-1. Forsmark to Jarpstrommen
This transmission line is in SE2 region of Sweden as shown in Fig. 8.
For this contingency, the overload index in the platform reported

the overloading in 11 snapshots of the available 2925 snapshots. The
DTs generated from the offline workflow is shown in Fig. 9. and Fig. 10.
It can be observed from the figures that the size of DTs is same for both
approaches, but the MCLA DT clearly differentiates safe and unsafe
operating points; while the WCA DT classifies as safe operating points in
the unsafe region (green shaded region in the orange box in Fig. 10). So,
in the sequel, only the DT generated by the MCLA approach is con-
sidered.

A Python script was developed to automate the same process ap-
plied by the iTesla offline workflow. The power system simulations and
other computations in this case were performed by PSS/E. The results
from executing indicated overloading in 11 snapshots, which match the
results from the iTesla platform.

Next, the rules generated from the offline workflow of the iTesla
platform were verified by performing manual simulations in PSS/E and
it was found that the generated rule holds good for this contingency.
This was determined by checking that the reactive power flow on one of
the circuits is below 931.8255 Mvar.

This is consistent with the operational rule that shows that the
import flow of the region is limited. This import flow is heavily cor-
related with this variable as long as the underlying 420 kV topology
does not change. The rule’s performance is satisfactory when applied to
the learning dataset, as shown in the below Fig. 11.

4.1.2. N-1. Hagafoss to Kaggefoss
This transmission line is in Norway and it connects the NO1 and

NO5 regions as shown in Fig. 12. For this contingency, the overload
index in the platform reported the overloading in 45 snapshots of the
available 2925 snapshots.

The DTs generated from the offline workflow is shown in Figs. 13
and 14. It can be observed from the figures that the size of DT generated
by the MCLA approach is bigger than the DT generated by WCA ap-
proach. It should be noted that the MCLA DT clearly differentiates safe
and unsafe operating points in all the nodes except for one; while the
WCA DT classifies as safe operating points in the unsafe region (green
shaded region in the orange box in Fig. 14). So, in the sequel, only the
DT generated by the MCLA approach is considered.

The results from executing Python+PSS/E workflow indicated
overloading in 40 snapshots. The remaining snapshots 5 snapshots were
checked manually and it was found that they have 99.99% loading due
to which it is not classified as overload.

Next, the rules generated from the offline workflow of the iTesla
platform were verified by performing manual simulations in PSS/E and
it was found that the generated rule holds good for this contingency.
This was determined by checking that the active power reactive power
flow on two circuits and reactive power generated from a generator.

This is consistent with the operational rule that shows that the
import flow of the region is limited. This import flow is heavily cor-
related with these variables as long as the underlying 420 kV topology
does not change.

The screenshot of iTesla platform in Fig. 15. shows the results from
the steady state stability indexes for all the 21 contingencies applied to
the Nordic 44 system.

It should be observed from Fig. 12 that only 2925 snapshots are
shown instead for 2928. This is because 3 snapshots expose overloads in
them even before the execution of contingency. So, the iTesla platform
executed only 2925 snapshots.

Finally, a percentage of matching was quantified to determine any
differences between the results from iTesla offline workflow and those

Fig. 15. Screenshot showing the results computed by iTesla offline workflow
for steady state index validation.

Table 4
Comparsion of results from iTesla offline workflow and Python+PSS/E.

Contingency iTesla
Overload

Python
Overload

Unmatched
Cases

% Matching

1 7 7 0 100.00
2 11 12 1 99.92
3 6 6 0 100.00
4 11 11 0 100.00
5 7 7 0 100.00
6 7 8 1 99.88
7 7 7 0 100.00
8 6 7 1 99.86
9 2379 2431 52 99.98
10 35 35 0 100.00
11 9 9 0 100.00
12 45 40 5 100.13
13 16 16 0 100.00
14 42 45 3 99.93
15 7 7 0 100.00
16 1023 1049 26 99.98
17 88 98 10 99.90
18 119 127 8 99.94
19 5 5 0 100.00
20 11 11 0 100.00
21 7 5 2 99.60
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obtained using Python+PSS/E, Table 4 provides the results.
It can be observed from the table that for some contingencies, the

number of overloads reported by offline workflow differs with the
number of overloads reported by Python+PSS/E workflow. These
snapshots were checked manually and it was found that the transmis-
sion lines are loaded to 99.99% and PSS/E did not flag them as over-
loaded. This discrepancy in the number of significant figures between
iTesla offline workflow and PSS/E was determined to be the main issue
with matching. It can also be observed from the above table that
average percentage of matching in results between iTesla offline
workflow and PSS/E is 99.6%. Thus, it can be observed that the results
from iTesla offline workflow are matching the results obtained from the
Python+PSS/E implementation for overload index. Similarly, the re-
sults from the over and under voltage indexes of the platform were also
verified using this methodology.

5. Future work

The methodology reported in this paper validates only the (static)
steady-state stability assessment functions (Overload, Over/Under vol-
tage indexes) of the offline workflow but not those of the dynamic
stability assessment (voltage stability, small signal stability and tran-
sient stability indexes). There are many challenges that need to be
addressed when performing a proper validation study for DSA. First,
both “application” and “functional” testing cases need to be developed
to provide a starting point for analysis. This will be reported in a
companion paper [19]. However, due to time limitations it was not
possible to explore the source of differences when computing the time
domain simulations using Dymola and PSS/E. The use of the testing
codes to validate the DSA functions of the offline workflow of the iTesla
platform will be subject of future work.

6. Conclusions

The results from the iTesla offline workflow for a given set of con-
tingencies applied to Nordic 44 power system model are verified
against the results from a similar workflow implemented using
Python+PSS/E. The generated DTs by the iTesla platform were ver-
ified for different network operating conditions. It was observed that
the generated DT’s are consistent for the given set of operating condi-
tions. However, it should be noted that DT’s can become more efficient
and consistent if they are trained on diverse scenarios (i.e. well-defined
contingencies and a large learning set). Hence, it would be beneficial to
check how the rules generated from DT’s with four months of data
(April to July 2015) vary from the rules generated with one year of data
(2015). This could help in validating the generalization capability of
the generated trees.

While the cross-validation performed in this paper only took into
account the (static) steady-state stability assessment results of the off-
line workflow, to the authors’ knowledge, this is the first paper pro-
posing such means for functional testing of DSA tools’ functions with an
independent implementation of the tools’ functionalities being tested.
This contributes to the body of knowledge on DSA, if similar efforts are

imitated by DSA tool providers, this can help in gaining confidence and
credibility in the tools’ functions and results.
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