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Abstract—Power systems exhibit voltage collapse at saddle-
node bifurcation (SNB), which is a static bifurcation. However, it
has been proved that before reaching SNB, which also represents
the maximum loadability of the system, voltage collapse can
occur due to oscillatory behavior of the system caused by Hopf
bifurcations in stationary branch of the solutions. This two-part
paper introduces a dynamic state feedback control law which
guarantees the elimination of Hopf bifurcations before occurrence
of the SNB. Part I is devoted to the mathematical representation
of the detailed system dynamics, investigation of Hopf bifurcation
and SNB theorems, and state feedback controller design. For the
purpose of dynamical analysis, stable equilibrium of the system is
obtained. Then the control system is designed with the objective
of preventing the voltage collapse before the SNB, such that the
structural stability of the system is preserved in the stationary
branch of the solutions. The controller aims to relocate Hopf
bifurcations to stationary branch of solutions located after SNB,
so that the possibility of voltage collapse is eliminated from
normal operating region of the system. To obtain a detailed
nonlinear model of power systems, saturation phenomenon has
been integrated in the nonlinear dynamics of a three node power
system. In order to evaluate the performance of the proposed
controller, bifurcation analysis has been performed in Part II
using single-machine and multi-machine test systems.

Index Terms—Bifurcation theory, Hopf bifurcation, nonlinear
dynamics, synchronous generator saturation, state feedback con-
trol, voltage collapse.

I. INTRODUCTION

Power systems are one of the most complex physical
systems. The complexity is not only originated from large
number of equations describing the system behavior, but also
in the nonlinearity of equations. Nonlinear nature of the system
is because of the highly nonlinear dynamics of synchronous
generators, and also the dynamic loads of the system. Similar
to all the dynamical systems, power systems are described
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by sets of differential equations, complexity of which is
contingent upon modeling precision of the system.

One of the main objectives of dynamical studies in power
systems is the prevention of catastrophic failures.Such failures
might lead to destructive blackouts in the power systems
[1]. Furthermore, the security issues regarding future power
systems have been comprehensively studied in [2].

Saturation is a nonlinear phenomenon and it could lead
to unexpected variations in operating modes of the system.
Incorporation of the saturation provides a more accurate dy-
namical model in both sub transient and transient operating
modes of the power systems. However, this incorporation is
a computationally expensive task, since saturation is a local
phenomenon in synchronous generators. To this end, analytical
modeling of the saturation is required. In the previous studies
many modeling methods have been introduced [3], [4]. The
saturation model introduced in [5] is employed for the dynam-
ical studies of this paper. Since saturation is a highly nonlinear
phenomenon, robustness against parameter variations and ac-
curacy of the saturation model are key factors, especially for
the purpose of bifurcation analysis that the system experiences
various modes of operation and bifurcations.

Several approaches towards the investigation of voltage
collapse have been introduced in the literature [6]–[8]. A
theoretical approach towards investigation of voltage collapse
mechanism is presented in [6]. It has been shown, by using
center manifold theorem, that occurrence of the saddle-node
bifurcation (SNB) leads to voltage collapse in the system.
However, the SNB is a static bifurcation, and dynamic bifur-
cations also can lead to voltage collapse as discussed in [8].
According to [8], it has been shown that dynamic bifurcations,
most importantly Hopf Bifurcation, can lead to collapse of the
system before the occurrence of SNB. Furthermore, chaotic
behavior caused by the periodic orbits emerged from Hopf
bifurcations is observed in [7], [9]. In addition to [7]–[9], in
[10] a numerical study has been performed on two test cases.
It has been concluded that in more realistic power system
models, the observation of dynamic bifurcations leading to
chaotic dynamics is more probable.

Control of dynamic bifurcations in the power systems equi-
libria contributes to the prevention of voltage collapse before
reaching the SNB. Many studies have been carried out to
eliminate Hopf bifurcations. In [11], FACTS devices have been
effectively utilized for elimination of dynamic bifurcations
and chaos in power systems. Effectiveness of FACTS devices



on control and elimination of Hopf bifurcations have been
further investigated in [12], [13]. Application of classical
control methods in systems with severe nonlinearities is also
a challenging task. In [14], local bifurcation control problems
are defined and employed in the study of the local feedback
stabilization problem for nonlinear systems in critical cases. In
[15], a model-based control strategy based on the global state
feedback linearization has been employed for elimination of
chaotic behavior from a model power system. However, the
saturation phenomenon is not considered and the proposed
control law is static. According to [16], dynamic state feedback
control law with incorporation of washout filters effectively
contributes in elimination of the undesired Hopf bifurcations.
In [17], a static state feedback control law with polynomial
functions is introduced. However, the proposed control laws
are able to control only one Hopf bifurcation.

In order to obtain a comprehensive dynamical model of the
power systems, the saturation phenomenon is considered. To
the best of authors’ knowledge, integration of saturation in
the power systems dynamics for the purpose of bifurcation
analysis and control, has not been investigated in the previous
studies. Moreover, previous studies focused on controlling
only one Hopf bifurcation. Note that the system nonlinearities
is considerably increased by taking saturation into account.

In this two-part paper, a dynamic state feedback control
law is proposed which guarantees the elimination of Hopf
bifurcations before occurrence of SNB. The proposed dynamic
state feedback controller is motivated by a controller proposed
by Wang and Abed in [16] for bifurcation control of a chaotic
system. Furthermore, the nonlinear nature of saturation is
included in a power system model consisting of a synchronous
generator, dynamic load, and an infinite bus. The general
framework of this paper is illustrated in Fig. 1. As depicted
in Fig.1, first, the dynamical equations of components in
the power system under analysis are derived and assembled.
The saturation model is included in the assembly phase. The
system is represented by a system of Differential Algebraic
Equations (DAEs), and algorithms for bifurcation analysis
of DAE systems are used. However, it is possible to derive
the Ordinary Differential Equations (ODEs) representing the
system of DAEs and to use ODE methods for bifurcation
analysis. The approach used in Part I is to assemble a model
of ODEs, while in Part II the generic application to a multi-
machine system is done by assembling a DAE model. Because
the methodology does not depend on the model representation,
the choice of an ODE or DAE representation depends mainly
in the modeling effort involved. In the case of an ODE
representation, as done in Part I, this is more challenging as
power system analysis tools mostly use DAE representations,
so explicit ODE models have to be developed for scratch. Next,
the equilibria structure of the system is derived by finding the
stationary solutions of the system (either ODE or DAE), and
a stable equilibrium is chosen for initiation of the bifurcation
analysis. From the results of the bifurcation analysis, Hopf
bifurcations (HBs) and Saddle-node bifurcation (SNB) are
detected. In case there are two Hopf bifurcations, the control
design would include two control gain vectors for effective
relocation of Hopf bifurcations. Otherwise one control gain
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Fig. 1. General framework of the proposed nonlinear state feedback controller
for Hopf bifurcation control

vector would be sufficient. In this study, Hopf bifurcations
are relocated from stationary branch of solutions before SNB,
to stationary branch located after SNB. Hence, the dynamic
state-feedback controller would require the equilibria branch
of the system. After the control design, the corresponding
state for which the state-feedback control has been designed
is updated and system stability is ensured until reaching SNB,
which is the physical stability limit of the system. The main
contribution of this paper is three-fold:
• A dynamic state feedback control law has been intro-

duced which guarantees the elimination of Hopf bifurca-
tions before occurrence of saddle-node bifurcation (SNB).
In other words, voltage collapse is prevented before
reaching the SNB to preserve the structural stability of
the system.

• The control law relocates Hopf bifurcations to stationary
branch of solutions located after the SNB.

• The saturation phenomenon is integrated into the non-
linear dynamics of the power systems. This integration
provides a more detailed dynamical behavior representa-
tion of the power systems, i.e. bifurcation characteristic
of the system is affected by the saturation phenomenon.

The rest of this paper is organized as follows. In Section II,
dynamic modeling of power systems is investigated. Further-
more,the inclusion of saturation phenomenon is introduced
and a high order dynamical model is obtained. In Section III,
differential algebraic equations are discussed and the system
dynamics are reduced to obtain ordinary differential equations.
Section IV provides a detailed introduction of bifurcation the-
ory with corresponding theorems. In Section V, the dynamic



Fig. 2. The single-machine system model used for this study [20]

Fig. 3. The multi-machine system model used for this study [18]

state feedback controller which is used for elimination of Hopf
bifurcations from stationary branch of solutions is introduced.
Section VI concludes the part I of the paper. Mathematical
proofs of the theorems are provided in the Appendices.

II. POWER SYSTEMS NONLINEAR DYNAMICS

In this section, nonlinear dynamics of power systems is ob-
tained. In fact, there are different approaches towards modeling
the dynamics of power systems. In single-machine dynamics
for incorporation of saturation phenomenon in nonlinear dy-
namics of power systems, the electric current model of the
synchronous generator dynamics is employed. In this model
the system of differential equations for currents of synchronous
generator are used. Integration of saturation is performed, and
nonlinear dynamics of synchronous generator are obtained.
The structures of the systems under study are presented in
Figs. 2 and 3. The dynamical modeling of the multi-machine
systems is provided in [18]. Also, the data used for modeling
of different elements of the system are provided in part II [19].

A. Synchronous Generator Dynamics

Traditional approach for magnetic saturation modeling of
salient-pole synchronous machines is based on the assumption
that the degree of d-axis and q-axis saturations are the same.
Since q-axis is not accessible in practice, the d-axis magnetiz-
ing curves were used and in fact accuracy of modeling proved
to be poor; particularly for the case of salient-pole machines
[5]. In the following method, which is based on steady-state

Fig. 4. Synchronous generator and Poynting vectors [21]

operating data, it is proved by simulations that the Reciprocity
Condition has no significance in modeling of synchronous
generator in transient and steady-state modes of operation [5].
Here, analytical model of saturation is presented.

1) Analytical Saturation Model: The salient-pole syn-
chronous generator is modeled in d-axis and q-axis via Park’s
Transformation. A typical generator consisting of two wind-
ings in d-axis and one winding in q-axis, is depicted in
Fig. 4 including the corresponding Poynting vectors [21].
The direction of the currents in Fig. 4, are derived from
the direction of the magnetic and electric fields in Poynting
vectors.

First, the saturation characteristics relating the magnetizing
currents in direct and quadrature axes of generator to syn-
chronous inductances should be calculated. The d-axis and
q-axis magnetizing currents in per-unit are as{

imd = −id + imf + iD
imq = −iq + imf

(1)

where iD and iQ are the damper winding currents in corre-
sponding axes. The saturation characteristics which are mod-
eled by the polynomial functions of two variables, are obtained
as [5] 

Ld =
m∑
j=1

(j + 1)ij−1
md

m∑
k=1

cjki
k+1
mq + C1

Lq =
m∑
j=1

ij+1
md

m∑
k=1

cjk(k + 1)ik−1
mq + C2

(2)

where m is a positive integer representing the order of
polynomial functions. In addition, cjk, C1, and C2 are the
polynomial coefficients.

By neglecting the reciprocity condition, (2) could be sim-
plified without reducing the accuracy of the model.

Ld =
m∑
j=0

ijmd

n∑
k=0

ajki
k
mq

Lq =
m∑
j=0

ijmq
n∑
k=0

bjki
k
md

(3)

Also, ajk and bjk, are the polynomial coefficients. The gen-
erator parameters can be found in [5].

2) Incorporation of Saturation in Synchronous Generator
Dynamics: The direction of the stator currents are considered



to be out of the terminals. Accordingly, matrix form of voltage
equations is obtained as [5]

dψ
dt = v −Ri + e, (4)

where:

ψ = [ψd, ψmf , ψD1, ψq, ψQ1]
T
,

v = [vd, vf , 0, vq, 0]
T
,

i = [−id, imf , iD1,−iq, iQ1]
T
,

e = [ωrψq, 0, 0,−ωrψd, ]T ,
R = diag (Rs, Rf , RD, Rs, RQ) .

(5)

Also, motion equation is expressed as

dωr
dt = 1

2H (TL + ψqid − ψdiq), (6)

where H denotes the inertia constant and TL is the externally
applied mechanical torque.

In order to avoid an algebraic loop in dynamical analysis,
currents are chosen as state variables. In II-A1, analytical
modeling of saturation was introduced. Flux linkages are
expressed as ψ = Li. Also, it was shown that inductances
are functions of magnetizing currents. Consequently, time
derivation of ψ, which is needed for restatement of equations
in terms of currents, could be expressed as [5]

dψ
dt = (L + LD) didt , (7)

where L represents the matrix of static inductances and LD

is the matrix of dynamic inductances. Mutual inductances of
d-axis and q-axis are calculated as{

Lmd = Ld − Lls
Lmq = Lq − Lls

(8)

where Ld and Lq are calculated in (3). Hence, the dynamic
inductances matrix is derived as [5]

LD =

[
∂Lmd
∂imd

G33
∂Lmd
∂imq

G32

∂Lmq
∂imd

G23
∂Lmq
∂imq

G22

]
. (9)

In (9), G33, G32, G23 and G22, are unit matrices. According
to previous derivations, state equations with currents as states
can be expressed in the following form [5]:

di
dt = (L + LD)−1(v −Ri + e). (10)

Equation (10), represents synchronous generator dynamics
with inclusion of saturation dynamics. It also contains 5 states
of dynamics. Rotor angle of the generator and equation of
motion give another two states of the system as

dδ
dt = ωb(ωr − 1),
dωr
dt = 1

2H (TL + ψqid − ψdiq).
(11)

It should be mentioned that all equations are in per-unit.
Detailed dynamics of a small power system including one dy-
namic load consists of 9 differential equations, 7 of which are
dynamics of synchronous generator. The system of equations
forms a system of differential algebraic equations. The other
two equations, which describe load dynamics, are introduced
in the following.

B. Nonlinear Load Dynamics

Dynamic load consists of an induction motor, in parallel
with a static load. The differential equations describing its
behavior are as [6], [20]{

P = Pld + P0 + p1θ̇L + p2V̇L + p3VL
Q = Qld +Q0 + q1θ̇L + q2VL + q3V

2
L

(12)

In this load model, angle and amplitude of load bus voltage
are considered as states.

C. Algebraic Equations of System

Here, algebraic equations of the system are presented.

v̂t = (vd + jvq)e
j(δ−π2 )

î = (id + jiq)e
j(δ−π2 )

θ = δ − π
2 + tan−1(

vq
vd

)

P = vlid sin (−θl + δ) + vliq cos (−θl + δ)
+vly2em cos (−θl + Φ2)− vl2y2 cos (Φ2)

Q = vlid cos (−θl + δ)− vliq sin (−θl + δ)
−vly2em sin (−θl + Φ2) + vl

2y2 sin (Φ2)
PG = vdid + vqiq
QG = vqid − vdiq

(13)

The algebraic equations provide the basic formulations to
eliminate the algebraic variables of the system, as nonlinear
functions of the states of the system.

III. DIFFERENTIAL ALGEBRAIC MODEL OF SYSTEM

The differential and algebraic equations expressed in previ-
ous sections form a system of differential algebraic equations
(DAE). In this study, DAEs are assumed to be smooth. The
system is expressed in general terms as

ẋ = f(x, y, µ),
0 = g(x, y, µ),

(14)

where x is the vector of state variables, y denotes the vector of
algebraic variables, and µ is the free parameters of the system.
The system is defined by (14), is considered theoretically prob-
lematic, since the system of algebraic equations may contain
singular points. According to [22], at any singular point, the
constraint manifold of the system, which is a vector field
satisfying the algebraic section of the equations, cannot be well
defined. For the purpose of nonlinear analysis, it is convenient
to reduce the differential algebraic model of the system to
autonomous ordinary differential equations. This is done by
employing Implicit Function Theorem, which is explained
below. Henceforth, D denotes the derivative operator.

Theorem 1 (Implicit Function Theorem). Let F be in
C1(Ω;Rm) where Ω ∈ Rn × Rm is an open set. Also, let
(a, b) denote a point in Ω such that ∂F∂y (a, b) is invertible, and
F (a, b) = 0. Then, there exists an open set H ∈ Rn which
contains a, and an open set Y ∈ Rm satisfying the following.
• For all x ∈ H, there exist a unique y = f(x) ∈ Y such

that F (x, f(x)) = 0.
• f(a) = b, Also, f : H → Y is of class C1 and we have:

Df(x) = −
[
∂F
∂y (x, f(x))

]−1

m×m

[
∂F
∂x (x, f(x))

]
m×n , ∀x ∈ H.

(15)



If the Jacobian of algebraic equations is non-singular, then by
Implicit Function Theorem g(x, y) can be inverted locally and
substituted ẋ = f(x, y) in (14). For the system introduced
in (14), consider a point (x, y, µ) for which the algebraic
Jacobian gx(x, y, µ) is nonsingular. According to Theorem 1,
a locally unique smooth function F exists with the following
form with no algebraic variables:

ẋ = F (x, y, µ). (16)

In dynamics introduced in (10) and (11) substituting vd
and vq from (17), eliminates the algebraic variables. Hence,
the system can be expressed by a set of ordinary differential
equations (ODEs).

vd = (sin (−Φ1 − θl + δ) cos (Φ1) y1vl
+ sin (Φ1) cos (−Φ1 − θl + δ) y1vl
+ sin (Φ1) iq + cos (Φ1) id)(y1)−1,

vq = −(sin (−Φ1 − θl + δ) y1vl sin (Φ1)
− cos (Φ1) cos (−Φ1 − θl + δ) y1vl
+id sin (Φ1)− cos (Φ1) iq)(y1)−1.

(17)

Equation (17), is the solution to the algebraic part of the
system, which is replaced in ODEs of the system to eliminate
algebraic variables of the system. In other words, using the
equations above, the algebraic variables of the system are
eliminated and the system of DAEs is transformed to a system
of ODEs describing the dynamics of the system.

A. Reduced Jacobian Matrix and Equilibria of the System
For a fixed value of µ, the stationary solutions of (14) which

also are the equilibria of the system, are expressed as

f(x, y, µ) = 0,
g(x, y, µ) = 0.

(18)

Let J denote the Jacobian matrix of the system (14), which
is in the following form:

J =

[
fx fy
gx gy

]
. (19)

By linearization of (14) around the equilibrium, the stability
of the equilibriums can be determined from eigenvalues of the
Jacobian matrix: [

∆ẋ
0

]
= J

[
∆x
∆y

]
. (20)

Based on Theorem 1., if gy is non-singular, ∆y can be
eliminated by substitution of algebraic variables in differential
equations. Hence, the linearized system can be represented as

∆ẋ =
[
fx − fyg−1

y gx
]

∆x. (21)

From (21),

A = Fx =
[
fx − fyg−1

y gx
]
. (22)

A is the Jacobian matrix of (16), and the Schur complement1

of the gy in the unreduced Jacobian matrix [22]. Therefore, A

1For matrix A represented in the block form of

[
A11 A12

A21 A22

]
, Schur

complement corresponding to A22 is determined by:
A/A22 = A11 −A12A

−1
22 A21.

is the reduced Jacobian matrix of the system. Stability of the
equilibria in stationary branch of solutions, derived from (18),
are determined by the eigenvalues of the reduced Jacobian
matrix of the system. Eigenvalues of (16) are obtained from
roots of the polynomial shown in (23).

A− λI = 0, (23)

where A denotes the reduced Jacobian matrix evaluated at
a specific equilibrium obtained from (18). Stable equilibrium
point (SEP) of a dynamical system, is defined as an equi-
librium at which all the eigenvalues of the Jacobian matrix
obtained from (23) have negative real parts.

IV. BIFURCATION THEORY

Bifurcation is defined as the qualitative change in behavior
of a deterministic dynamical system, caused by quasi-static
variations in one or more parameters of the system. There are
several types of bifurcations. In this section, local bifurcations
in stationary branch of solutions are introduced. Consider the
following dynamical system

ẋ = F (x, µ). (24)

By variation of µ, at a specific point namely µ0, the system
experiences bifurcation and loses its structural stability [23].
µc represents the bifurcation value. Saddle-node bifurcation
theorem is given below.
Theorem 2. (Saddle-Node Bifurcation Theorem) Assume that
(24) has an equilibrium at µ = µ0. The following conditions
hold for this equilibrium:
• DxF (p, µ0) denotes the Jacobian of F with respect to x

with a single eigenvalue 0, right eigenvector v, and left
eigenvector w. Moreover, DxF (p, µ0) has k eigenvalues
with negative real parts and n− k − 1 eigenvalues with
positive real parts,

• 〈w,DµF (p, µ0)〉 6= 0,
• 〈w,DxxF (p, µ0)(v, v)〉 6= 0.

Then there is a smooth curve of equilibria in Rn×R, passing
through (p, µ

0
) and tangent to Rn × {µ0} at (p, µ

0
). Hence,

the SNB occurs at (p, µ0).
Here, the Hopf bifurcation theorem is stated.

Theorem 3. (Hopf Bifurcation Theorem) Consider (24) with
the following properties:
• For µ→ 0, there exists an equilibrium at the origin with

DxF (0, µ) =

[
α −β
β α

]
(25)

for smooth functions α = α(µ), β = β(µ) with α(0) = 0
and β(0) 6= 0. Note that DxF (0, 0) has complex conju-
gate eigenvalues shown as ±βi;

• α′(0) > 0;
• For

F (x, y, µ) =

[
αx− βy + g(x, y, µ)
βx+ αy + h(x, y, µ)

]
(26)

the first Lyapunov coefficient calculated as

a = −1
16β [(gxxx + gxyy + hxxy + hyyy)β + gxy(gxx
+gyy)− hxy (hxx + hyy)− gxxhxx + gyyhyy].

(27)



Note that a 6= 0 at (x, y, µ) = (0, 0, 0).
The Hopf bifurcation occurs with the following properties:

1) If a > 0, there is a supercritical Hopf bifurcation. For
µ ≤ 0 the origin is stable and attracts all nearby orbits,
while for µ > 0 the origin is unstable and there is
a stable periodic orbit that attracts all nearby orbits
except for the origin.

2) If a < 0, there is a subcritical Hopf bifurcation. For
µ < 0 there is an unstable periodic orbit; the stable
equilibrium at the origin attracts only points inside the
orbit, while for µ ≥ 0 the origin is unstable and no
orbits stay close to the origin.

Given that the primary source of chaos could be attributed
to emergence of periodic orbits by Hopf bifurcations in
power systems, elimination of Hopf bifurcations preserves the
structural stability, and prevents the system collapse before
violating the physical limits [23], [24].

A. System Dynamics

From II-B and II-A2, the state variables of the single-
machine system could be introduced as

x = [id, imf , iD1, iq, iQ1, ω, δ, vl, θl]
T
. (28)

Also, free parameters used for bifurcation analysis for the
single-machine system are:

µ = [Pld, Qld]
T
. (29)

As for the case of multi-machine system, the state variables
are as [18]:

x =
[
δ1, ω1, E

′

q1 , δ2, ω2, δ3, ω3

]T
. (30)

Also, free the parameter used for bifurcation analysis in this
case is:

µ = λ. (31)

where λ represents the load of the system. It should be
noted that for the purpose of control performance evaluation,
the above-mentioned dimensions of dynamics for the multi-
machine system is sufficient.
Hence, the system is defined by following form of DAE:

ẋ = F (x, µ). (32)

V. DYNAMIC STATE-FEED BACK CONTROLLER FOR HOPF
BIFURCATION CONTROL

In this section, a dynamic state feedback controller is
proposed for anti-control of Hopf bifurcations. The objective
of anti-control of Hopf bifurcation is to design a controller
by which the qualitative behavior of the system could be
modified, and a desired bifurcation characteristic for the
system could be achieved. One of the most commonly used
anti-control methods, is to create bifurcations at specific and
desired locations on stationary branch of solutions. This leads
to changes in qualitative behavior of the system. By creating
bifurcations at appropriate locations with suitable control
methods, the qualitative behavior of the system could be
modified [17], [25]. One of the widely accepted methods for

anti-control of Hopf bifurcations is the state feedback control
method. The proposed dynamic state feedback controller, does
not alter the equilibria structure of the system which is an
essential characteristic for bifurcation control objectives [26].

Analytical determination of conditions which lead to incep-
tion of a Hopf bifurcation, needs expressions of eigenvalues
of the Jacobian matrix to be derived. However, for high order
systems derivation of analytical expressions for eigenvalues
is a computationally infeasible task, or in some cases even
impossible. In order to avoid such analytical derivations, the
equivalent criteria for occurrence of Hopf bifurcation which is
introduced in [27], is employed.

A. Detection of Hopf Bifurcations

Let F : Rn+1 → Rn denote the nonlinear smooth
function representing the dynamics of n-dimensional system,
ẋ = F (x, µ), where x ∈ Rn and µ ∈ R. Assume that (xe, µe)
is an equilibrium of the system, i.e. F (xe, µe) = 0. Also,
let J(xe, µe) = ∂F

∂x |(x = xe, µ = µe) show the Jacobian
matrix of the system evaluated at this equilibrium. Equivalent
criteria for emergence of Hopf bifurcation is derived by the
coefficients of characteristic polynomial of Jacobian matrix as

P (λ;µe) = det(λIn − J(xe, µe))
= p0(µe)λn + p1(µe)λn−1 + ...+ pn(µe),

(33)

where In is n-dimensional identity matrix. The following
matrix is obtained by modifying (33).

Hn(µe) =


p1(µe) p0(µe) · · · 0
p3(µe) p2(µe) · · · 0

...
...

. . .
...

p2n−1(µe) p2n−2(µe) · · · pn(µe)

 ,
(34)

where pi(µe) = 0 for i ∈ Z− ∪ [n+ 1,∞]. The equivalent
conditions for emergence of Hopf bifurcation, stated in Theo-
rem 3, are derived as [27]

pn(µe) > 0, d(∆n−1(µ))
dµ 6= 0,

∆i(µ
e) = det(Hi(µ

e)) > 0, i ∈ {1, 2, · · ·n− 2} ,

∆n−1(µe) = det(Hn−1(µe)) = 0.

(35)

The set of conditions represented in (35), contributes to detec-
tion of Hopf bifurcations without the need to solve analytical
expressions of eigenvalues.

B. Hopf Bifurcation Control Law

Variations in system parameters could lead to the Hopf
bifurcations. Suppose that by these variations, two Hopf
bifurcations emerge in stationary branch of the solutions at
points (xe1, µe1) and (xe2, µe2), respectively. As it has been
mentioned in the introduction section, dynamic state feedback
controllers were only able to control one Hopf bifurcation
[16], [25]. In this study, the controller objective is to eliminate
two Hopf bifurcations. According to the previous studies,
the maximum number of observed Hopf bifurcations in the
stationary branch of solutions (before the SNB) of the power
systems is two [7]–[9], [20]. A control law is proposed to



modify the nonlinear behavior of the system by eliminating
Hopf bifurcations from stationary branch of solutions. The
control law u should relocate bifurcations in (xe1, µe1) and
(xe2, µe2) to (x̄e1, µ̄e1) and (x̄e2, µ̄e2), respectively. This relo-
cation alters the nonlinear behavior of the system. By choosing
an appropriate equilibria on locus of the fixed points of the
system for relocation of Hopf bifurcations, the bifurcations
can be eliminated before the SNB. General feedback control
law is formulated as

u = u(x, yc),
ẏc = h(x, yc),

(36)

where yc ∈ Rm is the m-dimensional (1 ≤ m ≤ n)
controller state vector [28]. The control law containing linear
and quadratic terms, can be formulated as

ui(xi, yci) = k1ixi + k2i(xi − x̄e1i )2 − liyci ,
ẏc = ui(xi, yci).

(37)

In (37), x̄e1i represents the equilibria at the first desired
Hopf bifurcation location (∀i ∈ {1, 2, · · · ,m}). K1 =
[k11, k12, · · · , k1m] and K2 = [k21, k22, · · · , k2m] are the
control gain vectors and L = [l1, l2, · · · , lm] is the constant
parameter vector. Without loss of generality, it can be assumed
that m control components are added to the first n state equa-
tions of the system. The controlled system can be expressed
as

ẋ = F (x, µ) + u(x, yc),
ẏc = h(x, yc),

(38)

where:

u(x, yc) = [u1(x1, yc1), u1(x2, yc2), · · · ,
um(xm, ycm), 0, · · · , 0]T ,

h(x, yc) = [u1(x1, yc1), u1(x2, yc2), · · · , um(xm, ycm)]T .
(39)

After adding the controller state equations, the dimension
of the controlled system is n+m. The controller preserves
the equilibria structure of the open-loop system, and the
equilibrium of the additional component, which is yeci =
(k1ix

e
i +k2i(x

e
i−x̄e1i )2)/li, is added to the equilibria structure

of the closed-loop.

Theorem 4 (Equilibria Structure Preservation Theorem). The
controller preserves the equilibria structure of the uncontrolled
system.

In addition, the stability of control law is guaranteed for li > 0,
by writing the control law in Laplace domain.

Theorem 5 (Controller Stability Theorem). the control law is
stable for all li > 0.

One of the major characteristics of the introduced control
law, is that control gain vectors K1 and K2 are employed
for relocation of Hopf bifurcations independently. In other
words, in the controlled system K1 is used for relocation of
one Hopf bifurcation, and it operates independently from K2.
K1 is sufficient for control of systems which undergo only one
Hopf bifurcation. For systems with two Hopf bifurcations, K2

is employed after analytical derivation of K1 and is used for
relocation of second Hopf bifurcation.

C. Analytical Calculation of Control Gain Vectors

For implementation of controller, control gain vectors
should be calculated. As mentioned above, control gain vector
K1 is independent from K2, meaning that for relocation of
one Hopf bifurcation there is no need to calculate K2. In
such case, the Jacobian matrix of the controlled system would
only contain the K1 gain vector resulted from the newly
added states to the system ( mentioned in (37) and (38)).
However, for relocation of two Hopf bifurcations, first K1

should be calculated and then based on the values of the
control gain vector K1, the second control gain vector K2 can
be calculated. This is due to the fact that in case of existence
of two Hopf bifurcations, the Jacobian matrix of the controlled
system should contain both control gain vectors for effective
relocation of Hopf bifurcations. In what follows, analytical
calculation of control gain vectors are described.

Control gain vectors can be calculated analytically, accord-
ing to criteria mentioned in (35) and the Jacobian matrix of
the controlled system at the desired equilibrium to which Hopf
bifurcation has been relocated. Consider the controlled system
as

Ẋ = Fc(X,µ), (40)

where

X = [x, yc]
T ,

Fc = [F (x, µ) + u(x, yc), h(x, yc)]
T .

(41)

The Jacobian matrix of the controlled system, denoted by Jc,
can be formulated as [26]:

Jc(X,µ) =

[
J(x) +A(X) B(X)

C(X) D(X)

]
, (42)

where

J(x) = ∂F (x,µ)
∂x , A(X) = ∂u(x,yc)

∂x , B(X) = ∂u(x,yc)
∂yc

,

C(X) = ∂h(x,yc)
∂x , D(X) = ∂h(x,yc)

∂yc
.

(43)

Let J(x) denote the Jacobian matrix of the uncontrolled
system. Considering the control law described by (37), A(X),
B(X), C(X) and D(X) are derived as

A(X)(n×n) =

[
R 0(n−m)×(n−m)

0(n−m)×(m) 0(m)×(n−m)

]
,

B(X)(n×m) =

[
S

0(n−m)×(m)

]
,

C(X)(m×n) =
[
R 0(m)×(n−m)

]
, D(X)(m×m) = S,

(44)

where

R = diag(k11 + 2k21(x1 − x̄e11 ), · · · , k1m + 2k2m(xm − x̄e1m )),
S = diag(−l1, · · · ,−lm).

(45)

Hereafter, the analytical calculation of K1 and K2 are pre-
sented.



1) Analytical Calculation of K1: At µ = µ̄e1, which is the
desired location of first Hopf bifurcation, the equilibrium of
the controlled system is (x, yc, µ)|e1 = (x̄e1, k1ix̄

e1
i /li, µ̄

e1).
The matrix R can be found as

R = diag(k11, · · · , k1m). (46)

Hence the Jacobian matrix of the system only depends on
K1. The characteristic polynomial of Jacobian matrix of the
controlled system (Jc(X)) at µ = µ̄e1 is obtained as

P (λ; µ̄e1) = p0(µ̄e1)λn+m + p1(µ̄e1)λn+m−1 + ...
+pn+m(µ̄e1),

(47)

Application of criteria in (35), K1 is obtained by solving (48)

∆n+m−1(µ̄e1) = det(Hn+m−1(µ̄e1)) = 0, (48)

subject to

pn+m(µ̄e1) > 0,

∆i(µ̄
e1) = det(Hi(µ̄

e1)) > 0 (i = 1, 2, · · ·n+m− 2),

d(∆n+m−1(µ̄e1))
dµ |µ=µ̄e1 6= 0.

(49)

After calculation of the gain vector K1 , control gain vector
K2 can be calculated by a similar procedure.

2) Analytical Calculation of K2: Let K?
1 denoted the

calculated values of K1 from V-C1. At µ = µ̄e2, which is the
desired location of second Hopf bifurcation, the equilibrium
of the controlled system is (x, yc, µ)|e2 = (x̄e2, [(k?1ix̄

e2
i +

k2i(x̄
e2
i − x̄e1i )2)/li], µ̄

e2). The matrix R is obtained as

R = diag(k?11 + 2k21(x̄e21 − x̄e11 ), · · · , k?1m
+2k2m(x̄e2m − x̄e1m )).

(50)

Hence the Jacobian matrix of the system only depends on
K2. The characteristic polynomial of Jacobian matrix of the
controlled system (Jc(X)) at µ = µ̄e1 is obtained as

P (λ; µ̄e2) = p0(µ̄e2)λn+m + p1(µ̄e2)λn+m−1 + ...
+pn+m(µ̄e2),

(51)

With K1 = K?
1 obtained from V-C1, K2 can be obtained by

solving (52)

∆n+m−1(µ̄e2) = det(Hn+m−1(µ̄e2)) = 0, (52)

subject to

pn+m(µ̄e2) > 0,

∆i(µ̄
e2) = det(Hi(µ̄

e2)) > 0 (i = 1, 2, · · ·n+m− 2),

d(∆n+m−1(µ̄e2))
dµ |µ=µ̄e2 6= 0.

(53)

For implementation of control law in the introduced power
system in Section II, the following remarks are made:

Remark 1. In power systems, SNB is the incipient of
voltage collapse mechanism. Hence, no stable equilibrium
could be defined for power systems which is located after
the occurrence SNB.

Remark 2. In order to eliminate the Hopf bifurcations
leading to emergence of stable or unstable limit cycles in the
system, the Hopf points are relocated to the stationary branch
of solutions located after the SNB point. In other words,
without loss of generality, Hopf bifurcations are relocated to
the equilibria of the system which are not defined as the stable
operating points of power systems. Moreover, the stability of
the limit cycles emerged from this bifurcation would not be
of importance after relocation, since the system has collapsed
at the SNB, which occurs before emergence of limit cycles.

Remark 3. For relocation of Hopf bifurcations, a set of
feasible equilibriums on stationary branch of solutions located
after SNB have to be obtained. It has been proved that control
law does not alter the equilibria structure of the system.
However, the stability of the initial operating point of the
system obtained from (18), should be preserved as well. Set
of feasible equilibriums, denotes a set of points located on the
stationary branch of solutions after the SNB, that satisfy this
stability condition.

Remark 4. K1 is sufficient for relocation of Hopf bifur-
cation when only one Hopf bifurcation occurs in stationary
branch of solutions. In such case, K2 could be disregarded al-
together for the sake of simplicity of the designed controller. In
such case, the controller contains only a linear state feedback.

Remark 5. By dynamical integration of elements in each
bus, and solving the power flow (both of which are dependent
on the topology of the network), and following the algorithm
proposed for the design of controller, this method can be
applied to general power systems.

Remark 6. The control law is a dynamic state-feedback. In
systems with high complexity as power systems, not all states
are observable. The proposed method for relocation of Hopf
bifurcations, in general can be applied to any dynamical sys-
tem. Further, for application of this method in any dynamics,
the observability of the system states should be investigated.
It should be noted that in this work, the state-feedback control
law is not used for all of the states, but only for one state in
each investigated case, which has proven to be effective for
relocation of Hopf bifurcations. In the single machine 3-bus
system, only the first state of the system, which is the d-axis
component of the stator current, is used as the state from which
a feed-back is taken. Also for the multi-machine system, the
angle of one synchronous generator is considered as the state
which is controlled. In other words, there is no assumption that
all states are observable. The system is controlled using only
the feedback taken from one state, in each case. In general,
the proposed control method may be used for the observable
states of the system with full functionality. Since the stator
current and angle of the synchronous generator are measurable
at any time in practice, these states have been utilized for
the purpose of controller design in single-machine and multi-
machine cases, respectively.
The framework describing the overall process of designing the
controller and choosing the feasible equilibria for relocation
of Hopf bifurcations, is illustrated with details in Fig. 5.
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Fig. 5. General framework of the proposed nonlinear state feedback controller for Hopf bifurcation control

D. Controlled System Dynamics
As discussed in Section V-B, state equations of the con-

troller inputs are added to the system. Hence, the dimensions
of the controlled system is increased by the number of the
controller of states. Considering the dimensions of the power
system’s dynamics to be n, and the dimensions of the con-
troller to be m, the dimension of controlled power system
becomes n+m, and the dynamics and states of the single-
machine system would be,

Ẋ = Fc(X,µ),

X = [id, imf , iD1, iq, iQ1, ω, δ, vl, θl, yc1 , · · · , ycm ]
T
.
(54)

And for the case of multi-machine dynamics,

Ẋ = Fc(X,µ),

X =
[
δ1, ω1, E

′

q1 , δ2, ω2, δ3, ω3, yc1 , · · · , ycm
]T
.

(55)

Also, in differential equations mentioned above, free parame-
ters used for bifurcation analysis of the single-machine system
can be represented in terms of Pld and Qld as

µ = [Pld, Qld]
T
. (56)

And for the multi-machine system,

µ = λ. (57)

VI. CONCLUSION

In this paper, saturation phenomenon of synchronous gen-
erator has been integrated into nonlinear dynamics of power
systems. The purpose of such integration is demonstration of
rich and realistic nonlinear behavior of system. For inclusion
of saturation, an analytical model has been used which is
accurate in modeling the subtransient, transient and steady
states of system dynamics. The chosen method for modeling



saturation proves to be robust against variations of equilibria,
which is an important factor for the purposes of bifurcation
analysis. In addition, a dynamic state-feedback control law has
been proposed which relocates the Hopf bifurcations occurring
before the Saddle-Node bifurcation, to stationary solutions
which are located after the Saddle-Node bifurcation. Hence,
the control law guarantees the stability of the system before
SNB, eliminates the possibility of voltage collapse before
SNB, and an undesired oscillatory behavior from system
responses. After obtaining the nonlinear high dimensional
dynamics of the power system, bifurcation analysis will be
performed with respect to active and reactive power demands
of the nonlinear load. The second part of this paper [19], vali-
dates the performance of the proposed controller in elimination
of Hopf bifurcations.

ACKNOWLEDGMENT

The authors would like to acknowledge the valuable in-
puts, fruitful comments, and discussions of Prof. Konstantin
Turitsyn from Massachusetts Institute of Technology to this
article. The quality of this work is substantially improved by
his comments.

APPENDIX A
PROOF OF IMPLICIT FUNCTION THEOREM

In this appendix, the proof for Theorem 1 is provided. To
this end, first two preliminary Lemmas which are substantially
required before proceeding with the main proof, are intro-
duced.
Lemma 1. Let F : Rn → Rm be differentiable, T : Rk → Rm
be the linear function associated to a n × k real matrix M ,
and y be a fixed point in Rn. Then, the function G(x) =
F (y+ Tx),∀x ∈ Rk, is differentiable and satisfies DG(x) =
DF (y + Tx)M , ∀x ∈ Rk.

Lemma 2. Let F be in C1(Ω;Rn), and p ∈ Ω satisfying
Det(DF (p)) 6= 0. Then F restricted to some ball B(p; r)
with r > 0, is injective.

Proof of Lemmas 1 and 2 are given in [29].

Proof (Implicit Function Theorem). Defining Ψ(x, y) =
(x, F (x, y)), (x, y) ∈ Ω, will lead to:

Det(DΨ) = Det(

[
I 0
∂F
∂x

∂F
∂y

]
) = Det(∂F∂y ). (58)

where I is the identity matrix of order n and 0 the n×m zero
matrix. Thus, according to Lemma 2 it is concluded that Ψ is
injective and Ω = H′×Y , with H′ representing an open set in
Rn containing a, and Y showing an open set in Rm containing
b. It is proven that F (x, f(x)) = 0 subject to f(a) = b has a
solution f = f(x) of class C1 on some open set containing a
[29]. Differentiating F (x, f(x)) = 0 as

∂Fi
∂xk

+
∑m
j=1

∂Fi
∂yj

fj
∂xk

= 0. (59)

where 1 ≤ i ≤ m and 1 ≤ k ≤ n. Rewriting (59) in matricial
form gives

∂F
∂x (x, f(x)) + ∂F

∂y (x, f(x))Df(x) = 0. (60)

Let g(.) satisfy F (x, g(x)) = 0,∀x ∈ H, and g(a) = b. Hence,
Ψ(x, g(x)) = (x, F (x, g(x))) = (x, 0) = Ψ(x, f(x)),∀x ∈
H. The injectivity of Ψ implies that g(x) = f(x),∀x ∈ H. �

APPENDIX B
PROOF OF BIFURCATION THEOREMS

In this appendix, the proofs for Theorem 2 and Theorem
3 are provided. The preliminaries required for the presented
proofs, such as Lyapunov-Schmidt reduction are given in [30].

Proof (Saddle-Node Bifurcation Theorem). By a translation
in state space Rn and parameter space, we assume p = 0
and µ0 = 0. From 〈w,DxF (0, 0)〉 = 〈DxF (0, 0)Tw,u〉0. It is
observed that w is perpendicular to the image Im Dxf(0, 0).
Thus, the second condition of Theorem 2 gives

Im Dxf(0, 0)⊕Dµf(0, 0) = Rn. (61)

Also, the third condition of Theorem 2 gives

Dxxf(0, 0)(v, v) /∈ Im Dxf(0, 0). (62)

Hence,

Dxf(0, 0)x−N(x, µ) = 0, (63)

where N(x, µ) = f(x, µ) − Dxf(x, µ). Application of
Lyapunov-Schmidt reduction to (63) yields,

(I − E)N(y?z(y, µ), µ) = 0, (64)

where z? solves,

z −KEN(y + z, µ) = 0. (65)

According to (65), it can be obtained

Dyz
?(0, 0)−KEDxN(0, 0)(I +Dyz

?(0, 0)) = 0. (66)

Hence, Dyz
?(0, 0) = 0. Further,

Dµ((I − E)N(y + z?(y, µ), µ))|y=0,µ=0

= (I − E)(DxN(0, 0)Dµz
?(0, 0) +DµN(0, 0))

= (I − E)DµN(0, 0)
= 〈w,DµN(0, 0)〉.

(67)

which is nonzero by assumption. Considering y = ηv with
η ∈ R,

DηN(ηv + z?(ηv, µ), µ)
= DxN(ηv + z?(ηv, µ), µ)(v +Dyz

?(ηv, µ)v),
(68)

By differentiating again with DxN(0, 0) = 0 and
Dyz

?(0, 0) = 0,

Dηη((I − E)N(ηv + z?(ηv, µ), µ))|η=0,µ=0

= (I − E)(DxxN(0, 0)(v, v))
= 〈w,DxxN(0, 0)(v, v)〉.

(69)

which is nonzero by assumption. It is shown that the
reduced bifurcation equation satisfies the assumptions of
saddle-node bifurcation in one dimension, and the proof is
concluded. �



Proof (Hopf Bifurcation Theorem). By linearization at the
origin, the differential equations become

ẋ = α(µ)x− β(µ)y + g(x, y, µ),
ẏ = β(µ)x+ α(µ)y + h(x, y, µ).

(70)

where g, h and their first order derivatives with respect to
(x, y) disappear at the origin. Note that α(0) = 0, β(0) 6= 0
and by assumption α′(0) 6= 0. It is convenient to use polar
coordinates for the analysis purpose. By transformation of the
equations to polar coordinates the following is obtained

ṙ = α(µ)r + p(r, θ, µ),

θ̇ = β(µ)r + q(r, θ, µ).
(71)

where
p(r, θ, µ) = g(r cos(θ), r sin(θ), µ) cos(θ)

+h(r cos(θ), r sin(θ), µ) sin(θ),
q(r, θ, µ) = 1

r (h(r cos(θ), r sin(θ), µ) cos(θ)
−g(r cos(θ), r sin(θ), µ) sin(θ)).

(72)

Since g, h and their first order derivatives vanish at the origin,
the system is smooth. The equilibrium at the origin has been
blown up to a circle {0}×R×T. To proceed with the proof,
Poincaré first return map on R×{0} is studied [23]. By normal
form transformation of equations, the following is derived,

ṙ = αr +Re(c1)r3 +O(r4),

θ̇ = β − Im(c1)r2 +O(r3).
(73)

By time reparametrization,

ṙ = α
β r − ar

3 +O(r4),

ṙ = 1.
(74)

with a = Re(c1) − ( αβ2 )Im(c1) a smooth function of the
parameter. For µ = 0, a = Re(c1). It should be noted that
higher order terms are functions of r, θ and the parameter
µ. More detailed analysis concludes that a is in fact the first
Lyapunov coefficient. To find the periodic orbit, r is rescaled
to make the coefficient of the third order term equal to ±1.
Considering the specific case where c1 > 0,

ρ̇ = α
β ρ− ρ

3 +O(|ρ|4). (75)

Thus, ρ is defined as a function of θ. Writing the Taylor
expansion for the solution starting with ρ0 yields,

ρ(θ, ρ0) = u1(θ)ρ0 + u2(θ)ρ2
0 + u3(θ)ρ3

0 +O(|ρ|4). (76)

Considering (75) and (76) gives,

(αβ )u1ρ0 + (αβ )u2ρ
2
0 + ((αβ )u3 − u3

1)ρ3
0 +O(|ρ|4)

= u′1ρ0 + u′2ρ
2
0 + u′3ρ

3
0 +O(|ρ|4).

(77)

which gives,

u′1 = (αβ )u1,

u′2 = (αβ )u2,

u′3 = (αβ )u3 − u3
1.

(78)

Solving (78) for u1(0) = 1, u2(0) = 0 and u3(0) = 0 results
in,

u1(θ) = e(αβ )θ,
u2(θ) = 0,

u3(θ) = e(αβ )θ 1−e2(
α
β

)θ

2(αβ ) .

(79)

Thus, the return map ρ0 → ρ(2π, ρ0) is obtained as

ρ(2π, ρ0) = e2π(αβ )ρ0 − e2π(αβ )(2π +O(α))ρ3
0 +O(|ρ0|4).

(80)

By analysis of the map obtained in (80), a Hopf bifurcation
is found. This concludes the proof. �

APPENDIX C
PROOF OF EQUILIBRIA STRUCTURE PRESERVATION AND

CONTROL LAW STABILITY THEOREMS

In this appendix, the proof for Theorem 4 and Theorem 5
is provided.

Proof (Equilibria Structure Preservation Theorem) The equi-
libria of the system is derived by time derivatives to zero.

0 = f(x, µ) + u(x, y),
0 = g(x, y).

(81)

According to (39), it is concluded that for (81) to hold,

0 = u(x, y). (82)

Thus, the equilibria of the uncontrolled system are preserved
in the controlled system. �

Proof (Equilibria Control Law Stability) Let ui denote the
output, and the input zi is defined as

zi = k1ixi + k2i(xi − x̄e1i )2. (83)

Hence, the equations in Laplace domain are as

ui(s) = zi(s)− liyi(s),
(s+ li)yi(s) = zi(s).

(84)

The transfer function Gi is obtained as

Gi(s) = ui(s)
zi(s)

= s
s+li

. (85)

Since for li > 0 the system the poles of transfer function
Gi(s) are located at the left side of the s-plane, the stability
of the control law can be guaranteed for li > 0 [16]. �
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