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Abstract—This is the second part of a two-part paper pre-
senting a dynamic state feedback control law that guarantees
the elimination of Hopf bifurcations before the occurrence of
a saddle-node bifurcation (SNB). In Part I, the mathematical
representation of the system’s dynamics, Hopf and Saddle-Node
bifurcation theorems, and the state feedback controller design
were presented.

In this part, to illustrate the system analysis methodology,
control design, and to carry out performance evaluation of the
controller, both single-machine and multi-machine power systems
are analyzed. To highlight the effect of saturation phenomena,
bifurcation analyses are performed before and after detailed
modeling of synchronous generator saturation, for the single-
machine power system case. The multi-machine case is used to
illustrate the scalability and applicability of the method to generic
power networks.

Index Terms—Bifurcation analysis, Hopf bifurcation, sta-
ble equilibrium point, saddle-node bifurcation, saturation phe-
nomenon, stability analysis.

I. I NTRODUCTION

Voltage instability mechanisms have been widely studied in
the literature [1]–[8], with detailed analyses on bifurcations in
[9]. Based on these studies, it is concluded that collapse in
the voltage profile of the system can occur before reaching
the maximum loadability margin of the system, which is
the saddle-node bifurcation. This is due to the occurrence
of Hopf bifurcations in the stationary branch of solutions,
which introduce oscillatory behavior in system responses that
to system collapse [4], [5].

Catastrophic failures in the power system can cause de-
structive blackouts [10]. Moreover, the security challenges of
future power systems play a pivotal role in power system
stability [11]. In addition, studies have been made on the
prevention of voltage collapse due to the phenomena described
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above [12]–[14]. Most of these studies make use of FACTS
devices in order to eliminate Hopf bifurcations from system
responses. The application of classical control methods have
been investigated in [15]–[17], which are able to control only
one Hopf bifurcation in system. In [18] - the first part of
this paper - a dynamic state feedback control law has been
introduced to guarantee the elimination of Hopf bifurcations
before the occurrence of a saddle-node bifurcation (SNB). In
other words, the proposed method helps to prevent the voltage
collapse before reaching the SNB, by preserving the structural
stability of the system.

This paper, illustrates and analyses the performance of the
state feedback controller proposed in Part I [18] and the
effectiveness of the controller in terms of instability prevention
before the saddle-node bifurcation (SNB) is evaluated. The
remainder of this paper is organized as follows,

Secion II describes the implementation of the analysis
method in [18]. Sections III and IV perform bifurcation
analyses on two power networks under study, while Section V
illustrates the controller design and asses the performance of
the controller. Finally, conclusions are drawn in Section VI.

II. A NALYSIS METHOD IMPLEMENTATION

The analysis framework for the proposed nonlinear state
feedback controller is provided in Fig. 1. To implement the
proposed nonlinear state-feedback controller in Fig. 1 of [18],
two prototype implementations were carried out as sketched
in Figs. 2 and 3.

The first implementation, uses MATCONT [19] which is a
generic nonlinear dynamical systems analysis software, and
aims to illustrate the application of the proposed method
using a 3-node power system. First, the equations of the
dynamical model of the system are derived from equations
(10)-(13) of [18], and the parameters and constants used
herein are provided in the Appendix. Next, the ODE model
of the system is implemented using MATCONT’s syntax.
The stable equilibrium of the system is derived by solving
these equations while equating the derivatives to zero, and
checking the eigenvalues of the Jacobian matrix for each
derived equilibria. Solutions for equilibria are derived using
the fsolve routine in MATLAB , and the stability of the
equilibria through the eigenvalues of the Jacobian are checked
through customized code. After the derivation of the SEP,
the bifurcation analysis routine is initialized and executed



Fig. 1. General analysis framework of the proposed nonlinearstate feedback
controller for Hopf bifurcation control

Fig. 2. Implementation of the method for the single-machine system analysis

in MATCONT. The results of the bifurcation analysis give
the coordinates of the stationary branch of solutions, Hopf
bifurcations and also the Saddle-Node bifurcation. Next, these
results are used to compute the control gain vectors with the
method described in Section V.C of [18]. After the calculation
of control gain vectors, the controller is added to the dynamics
of the system, and the bifurcation analysis is performed again
to evaluate the performance of the controller in relocatingthe
Hopf bifurcations from stationary branch of solutions. This
implementation is depicted in Fig. 2.

Because the implementation in Fig. 2 was carried out in a
generic nonlinear dynamical systems analysis software, itis
difficult to scale the same implementation for multi-machine
systems. Hence, the implementation in Fig. 3 is carried out
using a power system specific tool, i.e. PSAT [20].

Fig. 3. Implementation of the method for the multi-machine systemanalysis

TABLE I
BIFURCATIONS OF THE SYSTEM W.R.T. ACTIVE LOAD NEGLECTING

SATURATION

Point Type EP HB SNB
Pld 0 0.462177 0.942336

TABLE II
BIFURCATIONS OF THE SYSTEM W.R.T. ACTIVE LOAD CONSIDERING

SATURATION

Point Type EP HB1 HB2 SNB
Pld 0 0.623944 1.018561 1.024110

III. B IFURCATION ANALYSIS OF THE SINGLE-MACHINE

TEST SYSTEM

In this section, bifurcation analysis on the single-machine
nonlinear dynamic power system is performed. To investigate
the effects of detailed saturation modeling, the system dy-
namics are analyzed with and without modeling of saturation
effects. MATCONT, a MATLAB package for numerical bifur-
cation analysis of ODEs is used for performing the bifurcation
analysis [19]. The bifurcation parameters of the system arethe
active and reactive power demands of the nonlinear load. Next,
the controller is designed with appropriate gains to relocate
Hopf bifurcations to equilibria located after the SNB.

A. Bifurcation Analysis w.r.t. Pld

In this section, the nonlinear behavior of the uncontrolled
system w.r.t.Pld is investigated. Analysis has been performed
with and without modeling saturation. The results of the
analysis are provided in Tables I and II and Figs. 4 and 5.

First, the system without saturation modeling is investigated.
The results of the bifurcation analysis are presented in Table I
and Fig.4. In this case, the system undergoes only one Hopf bi-
furcation. Further increase in active power demand will cause
system collapse. Letζ(1)

L
denote the first Lyapunov coefficient

of the Hopf bifurcation, it occurrs atPld = 0.462177 and
is ζ

(1)
LH1

= −0.01389562. Becauseζ(1)
LH1

< 0, the resulting
limit cycles are stable and the bifurcation is supercritical.
Nevertheless, the fixed solutions of the system lose stability
because a of pair of conjugate eigenvalues cross the imaginary
axis, as shown in Fig.5.

The results of the bifurcation analysis when modeling satu-
ration are presented in Table II. It is observed that the system
undergoes two Hopf bifurcations and that any further increase
in active power demand will lead the system to collapse. With
the occurrence of Hopf bifurcations, limit cycles emerge. As it
is observed, the stationary branch of solutions is stable until the
first Hopf bifurcation occurs. The first Lyapunov coefficient
of the first Hopf bifurcation occuring atPld = 0.623944 is
ζ
(1)
LH1

= −0.01938673. Becauseζ(1)
LH1

< 0, the resulting limit
cycles are stable and the bifurcation is supercritical. However,
the system loses stability because of the pair of complex
conjugate eigenvalues cross the imaginary axis, as shown in
Fig.5.

For the second Hopf bifurcation occurring atPld =
1.018561 before the SNB, the first Lyapunov coefficient is
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Fig. 4. Bifurcation analysis w.r.t.Pld (Top: Neglecting Saturation. Bottom:
Considering Saturation)

ζ
(1)
LH2

= −0.05600226. Becauseζ(1)
LH2

< 0, this bifurcation
is also supercritical and the limit cycles that emerge from it
are stable. When the second Hopf bifurcation is reached, the
system re-gains stability in the stationary branch becausethe
same pair of eigenvalues that crossed the imaginary axis dueto
the first Hopf bifurcation, cross the axis again and stabilize the
system. In addition, it is observed that the eigenvalues cross
the imaginary axis two times and hence two Hopf bifurcations
occur. By further increasing the bifurcation parameter, itis
observed that the SNB occurs atPld = 1.024110 and that the
stationary branch of solutions loses structural stability. After
this point, no stable operating point could be found for the
system. The bifurcation diagrams and the eigenvalue loci of
the system for both cases are illustrated in Figs. 4 and 5.

Detailed saturation modeling provides a richer representa-
tion of the nonlinear behavior of the system. As depicted in
Fig. 4, when saturation is explicitly modeled in the dynam-
ical equations of the system, two Hopf bifurcations occur.
However, neglecting saturation leads to simpler dynamics,
as one Hopf bifurcation is not represented. Further, results
considering saturation show a0.081774 pu higher loadability
margin for the system. In other words, the system does
not collapse atPld = 0.942336, which is the active load
demand for which SNB occurs when saturation is not modeled.
Consequently, in addition to unrepresented bifurcations,the
loadability margins obtained from bifurcation analysis without
considering saturation are not accurate. Considering the satu-
ration phenomenon effectively contributes to the accuracyof
stability analyses and in devising voltage instability prevention
measures.

B. Bifurcation Analysis w.r.t. Qld

In this section, the nonlinear behavior of the uncontrolled
system w.r.t.Qld is investigated. analyses have been performed
with and without modeling saturation effects. The results are
provided in Tables III and IV and Figs. 6 and 7.

First, the system without saturation modeling is investigated.
The results of the bifurcation analysis are presented in Table
III. Bifurcation analysis results show no Hopf bifurcations in
the system dynamics. The system collapses atQld = 0.514804
which is the SNB point.
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Fig. 5. Eigenvalues of the system after bifurcation analysis w.r.t.Pld (Top:
Neglecting Saturation. Bottom: Considering Saturation)

TABLE III
BIFURCATIONS OF THE SYSTEM W.R.T. REACTIVE LOAD NEGLECTING

SATURATION

Point Type EP SNB
Qld 0 0.514804

The results of the bifurcation analysis w.r.t.Qld when
saturation is modeled are shown in Table IV. In this case, the
system undergoes one Hopf bifurcation. The stationary branch
of solutions is stable until the Hopf bifurcation occurs. The
first Lyapunov coefficient of the Hopf bifurcation occurringat
Qld = 0.717763, is ζ

(1)
LH1

= 1.612584. Hence the bifurcation
is subcritical. By further increasing the bifurcation parameter,
it is observed that the SNB occurs atQld = 0.720344 and
the stationary branch of solutions loses structural stability.
After this point, no stable operating point could be found
for the system. The subcritical Hopf bifurcation will lead to
unstable limit cycles, which cause voltage instability before
reaching the SNB. The bifurcation diagrams of the system
for both cases are shown in Fig. 6. As depicted in Fig. 6,

TABLE IV
BIFURCATIONS OF THE SYSTEM W.R.T. REACTIVE LOAD CONSIDERING

SATURATION

Point Type EP HB SNB
Pld 0 0.717763 0.720344
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Fig. 6. Bifurcation analysis w.r.t.Qld (Top: Neglecting Saturation. Bottom:
Considering Saturation)
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Fig. 7. Eigenvalues of the system after bifurcation analysis w.r.t.Qld (Top:
Neglecting Saturation. Bottom: Considering Saturation)

when saturation is neglected, no Hopf bifurcation is detected in
the system. However, detailed saturation modeling shows that
one Hopf bifurcation exists in the system’s dynamics. Further,
results with detailed saturation modeling show0.20554 pu

higher reactive loadability for the system before the SNB.
Hence, in addition to the unrepresented bifurcation that exists
in the nature of the system’s dynamics, there is a significant
difference in the reactive power loadability margin between
the two cases. The eigenvalue loci for both cases are shown
in Fig. 7.

IV. B IFURCATION ANALYSIS OF THE MULTI -MACHINE

TEST SYSTEM

To assess the applicability and scalability of the proposed
method, bifurcation analysis is performed on the Western
System Coordinating Council (WSCC) 9-bus multi-machine
system. In this case, PSAT [20], a standard power systems
analysis software, is modified and used for the purposes
of bifurcation analysis, control design and its performance
evaluation.

The bifurcation parameter of the system (λ) is considered to
be the aggregated active load in all load buses of the system1.
As mentioned in [18], the stationary branch of solutions should
be derived, and bifurcation analysis has to be performed. This
has been achieved by modifying and using the Continuation
Power Flow (CPF) routine of PSAT. CPF allows to derive a
continuum of power flow solutions w.r.t. the loading parameter,
and helps in determining the voltage stability limit, i.e. SNB
of the system. An important characteristic of the CPF is that
it remains well-conditioned at and around the voltage stabil-
ity limit. Consequently, divergence due to ill-conditioning is
largely avoided at the SNB [21], [22]. PSATs source code
has been modified to detect Hopf bifurcations after each CPF
iteration. Bifurcation analysis results are shown in TableV.
Note that the initial loading displayed was chosen and plotted
very close to the HBs for the sake of clarity of the figure. As it
is shown in Fig. 8, the system exhibits two Hopf bifurcations
before reaching the saddle-node bifurcation. The bifurcation
diagram of the system w.r.t. the voltage amplitude in bus5 is

1In this case, the bifurcation parameter is considered to be the standard
loading parameter of the system as it is in PSAT.

TABLE V
BIFURCATIONS OF THE MULTI-MACHINE TEST SYSTEM W.R.T. LOADING

PARAMETERλ

Point Type EP HB1 HB2 SNB
λ 0 0.0196 0.0586 1.0182
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Fig. 8. Bifurcation analysis in the uncontrolled multi-machine test system
w.r.t. λ

shown in Fig. 8. As it is depicted, the system undergoes Hopf
bifurcations atλ = 0.0196 andλ = 0.0586. Also, the system
collapses atλ = 1.0182. The eigenvalue loci of the system
are depicted in Fig. 9, showing the two eigenvalue crossings
of the imaginary axis related to the Hopf bifurcations.

V. HOPFBIFURCATION CONTROL

In this section, a dynamic state feedback controller is
designed for relocating Hopf bifurcations using the results
from Sections III and IV.

In the analyzed systems, one controller with a single input
is sufficient to eliminate the Hopf bifurcations analyzed in
Section III. For the single-machine test system, thed-axis
stator current is chosen as the state used for the design of the
state feedback control law; while for the multi-machine test
system, the internal angle of synchronous generator number
one is used. Hence, one single-input single-output controlis
added to each system in both cases.

A. Conditions of the Feasible Equilibria for Hopf Bifurcation
Relocation

This section summarizes the steps of the algorithm used
to select the equilibria to which the bifurcations can be
(theoretically) relocated. The algorithm is formally described
in detail in [18].

The dynamic state feedback controller relocates the existing
Hopf bifurcations of the system to equilibria located after
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Fig. 9. Eigenvalues of the multi-machine test system after bifurcation analysis
w.r.t. λ



TABLE VI
BIFURCATION ANALYSIS RESULTS IN THE CONTROLLED SINGLE-MACHINE

TEST SYSTEM W.R.T. ACTIVE LOAD POWER

Point Type EP SNB HB′

1
HB′

2

Pld 0 1.024110 0.963149 0.798569

the occurrence of the SNB. The relocation process alters the
stability status of the power system at its stationary equilibria.
Because it cannot be guaranteed that all equilibria locatedafter
SNB are feasible from the stability point of view, a set of
feasible equilibria are selected when they satisfy the following
properties:

• The equilibria are located after the SNB.
• When relocating the Hopf bifurcations to this equilibria

using the dynamic state feedback controller, the stabil-
ity characteristics of the initial stable equilibrium point
should not be altered.

B. Hopf Bifurcation Control w.r.t. Pld in The Single-Machine
Test System

According to the bifurcation analysis w.r.t.Pld, the system
undergoes two supercritical Hopf bifurcations. Although the
bifurcations are supercritical and the associated limit cycles
are stable, it is desirable to eliminate any oscillatory behavior
from the system’s responses. Hence, the introduced controller
in Section V of [18] is employed. It should be noted that,
because system experiences two Hopf bifurcations, two control
gain vectors (K1 andK2) are required.

The equilibria of the uncontrolled system to which the
bifurcations should be relocated are1

x̄e1
1 = [1.1, 1.93, 0, 0.54, 0, 1,−0.07, 0.61,−0.87]

T
,

x̄e2
2 = [1.27, 1.93, 0, 0.50, 0, 1, 0.31, 0.51,−0.75]

T
.

(1)

These equilibria are located after the SNB, and the bifurca-
tions occurring at these equilibria do not affect the stability of
the system. For controller design,l1 = 0.1 is used. Following
the procedure introduced in Subsection V-C of [18],k11 is
calculated at the first Hopf bifurcation point, and thenk21 is
calculated using the second Hopf bifurcation point. The control
gains calculated to relocate the Hopf bifurcations are

k11 = −0.1159,
k21 = 0.00106.

(2)

and the input and controller state equation are

u1(x, yc1) = −0.1159id + 0.00106(id − 1.1)2 − 0.1yc1 ,
˙yc1 = −0.1159id + 0.00106(id − 1.1)2 − 0.1yc1 .

(3)

Next, bifurcation analysis is performed on the controlled sys-
tem. Table VI presents the results. As it is observed, the Hopf
bifurcations are successfully relocated to new positions and
system is stable before reaching the SNB. The corresponding
bifurcation diagram is presented in Fig. 10. In addition, the
eigenvalue loci for the stationary branch of solutions of the
controlled system are depicted in Fig.11. According to Fig.
11, eigenvalues are located in left side of the plane and system
is stable before the SNB.

1Based on algorithm introduced in Section V-A.
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C. Hopf Bifurcation Control w.r.t. Qld in The Single-Machine
Test System

According to the bifurcation analysis w.r.t. reactive power
load when saturation is modeled, the system undergoes one
subcritical Hopf bifurcation. Hence, aside from the undesired
oscillatory behavior, the resulting limit cycles are unstable and
should be eliminated from system’s response. The controller in
Section V of [18] is designed. It should be noted that, because
the system experiences only one Hopf bifurcation, onlyK1

is required to relocate the subcritical Hopf bifurcation from
the stable stationary branch of solutions. The equilibriumof
the uncontrolled system to which the bifurcation should be
relocated is

x̄e1
1 = [0.87, 2.32, 0, 1.61, 0, 1, 0.38, 0.41, 0.34]

T
. (4)

The aforementioned equilibrium is located after the SNB, and
a Hopf bifurcation occurring at this equilibrium does not affect
the stability of the system. Only one control input is sufficient
to relocate the Hopf bifurcation observed in III-B, andl1 =
0.001 is used for controller design. Using the procedure from
V-C of [18], k11 is calculated as

k11 = −0.001722845, (5)

and the input and controller state equation are

u1(x, yc1) = −0.001722845id − 0.001yc1 ,
˙yc1 = −0.001722845id − 0.001yc1 .

(6)



TABLE VII
BIFURCATION ANALYSIS RESULTS IN THE CONTROLLED SINGLE-MACHINE

TEST SYSTEM W.R.T. REACTIVE LOAD POWER

Point Type EP SNB HB
Pld 0 0.720344 0.423637
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Next,the bifurcation analysis is performed on the controlled
system. Results are presented in Table VII. As it is observed,
the Hopf bifurcation is successfully relocated to the new
specified position and the system is stable before reaching
the the SNB. The corresponding bifurcation diagram is pre-
sented in Fig. 12. In addition, the eigenvalue locus for the
stationary branch of solutions for the controlled system is
shown in Fig.13. As depicted in Fig. 13, the eigenvalues of the
controlled system are located in the left side of theS-plane,
before reaching the maximum reactive power loadability of the
system. Hence, the system is stable on its stationary branch
of solutions, and the risk of voltage collapse is eliminated.
Because there are no stable operating points after the SNB
where the HBs are relocated, the control objective is achieved
successfully.
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Fig. 13. Eigenvalues of the controlled single-machine test system after
bifurcation analysis w.r.t.Qld

TABLE VIII
BIFURCATION ANALYSIS RESULTS IN THE CONTROLLED MULTI-MACHINE

TEST SYSTEM W.R.T. λ

Point Type EP SNB HB′

1
HB′

2

λ 0 1.0181 0.9072 0.9412
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D. Hopf Bifurcation Control in The Multi-Machine Test Sys-
tem

Using the results of Section IV, the objective is to relocate
the two Hopf bifurcations. Hence, the controller in SectionV-
C of [18] is designed next. In this case, control gain vectors
K1 andK2 are required to eliminate Hopf bifurcations from
the solutions of the stable stationary branch. The equilibria of
the uncontrolled system to which the bifurcations should be
relocated are

x̄e1
1 = [0.03, 1,−4.51, 1, 0.30, 0.26, 1]

T

x̄e2
2 = [0.04, 1,−4.61, 1, 0.35, 0.27, 1]

T
.

(7)

These equilibria are located after the SNB, that is, in the
stationary branch of solutions that are non-physically feasible
operating points. In practice, this means that the HBs are
removed from the space of feasible operating conditions of
the grid.

For controller design, considerl1 = 0.5. First, k11 is
calculated at the first Hopf bifurcation point, and thenk21 is
calculated using the second Hopf bifurcation point. The control
gains calculated for the relocation of Hopf bifurcations are

k11 = −0.0091,
k21 = 7.4093,

(8)

and thus the control input and the controller state equationare:

u1(x, yc1) = −0.0091δ1 + 7.4093(δ1 − 0.03)2 − 0.5yc1 ,
˙yc1 = −0.0091δ1 + 7.4093(δ1 − 0.03)2 − 0.5yc1 .

(9)

Next, bifurcation analysis is performed on the controlled
system. Table VIII presents the results. As it is observed, Hopf
bifurcations are successfully relocated to new positions and
system is stable before reaching the SNB. The corresponding
bifurcation diagram is presented in Fig. 14. In addition, the
eigenvalue loci for the stationary branch of solutions of the
controlled system are depicted in Fig.15. According to Fig.
15, the eigenvalues are located in left side of the plane and
the system is stable before the SNB.
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VI. CONCLUSION

This paper illustrated and demonstrated the applicability
and scalability of the control design method proposed in Part
I of this two-part paper [18]. The control design and its
performance evaluation studies presented in this part allow
drawing the following conclusions:

1) If saturation is not modeled in detail, the results of this
paper show that:

• Hopf bifurcations are not represented adequately.
• Loadibility margins w.r.t. active and reactive powers

are under-estimated.

2) For controller design, the feasible equilibria for reloca-
tion of Hopf bifurcations are required. To this end, this
paper shows how the proposed algorithm detects feasible
equilibria. In this algorithm, the equilibria after the
saddle-node bifurcation (SNB) are selected as potential
points to which Hopf bifurcations can be relocated.
Next, the stability of the initial equilibrium point of
the controlled system is assessed. If the initial operating
point of the system is stable when relocating the Hopf
bifurcations to selected equilibria, then they are consid-
ered as feasible equilibria for the controller.

3) When control gain vectors are obtained according to
feasible equilibria for Hopf bifurcations relocation, the
controller effectively relocates the Hopf bifurcations to
their expected locations. Thus, this paper confirms the
claims in Part I [18], providing a new control analysis
and design method to mitigate voltage collapse caused
by Hopf bifurcations.

4) In order to show the applicability and scalability of
the proposed control design method in generic multi-
machine power systems, the WSCC 9-bus system has
been chosen for analysis. The results from a control
design case study using this system show that after
the addition of the controller designed for this system,
two Hopf bifurcations are successfully relocated to the
desired equilibria (located after the SNB), and stability
of the system is preserved before reaching the maximum
loadability margin.

In summary, in this paper (Part II) the effectiveness of the
proposed dynamic state feedback control analysis and design
method (proposed in Part I [18]) is validated via various
analyses using multi-machine and single-machine power sys-
tem models. The results help to illustrate, and to prove the

applicability and scalability of the proposed control design
method in generic power systems.
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APPENDIX

SYSTEM PARAMETERS

In this appendix, system parameters are provided. All of
the parameters are in per-unit. These parameters were obtained
from [6], [23]. In addition, the parameters of the WSCC 9-bus
system are taken from [24].

TABLE IX
LOAD DATA

p1 p2 p3 P0 q1 q2 q3 Q0

0.24 1.7 0.2 0.4 -0.02 -1.866 1.4 0.8

TABLE X
NETWORK PARAMETERS

Y1 Y2 Y3 φ1 φ2 φ3

4.9752 1.6584 1.1056 -1.4711 -1.4711 -1.4711

TABLE XI
SYNCHRONOUSGENERATORPARAMETERS

Rs Armature Winding Resistance 0.0043
Rf Field Winding Resistance 0.0008
RD Damper Winding Resistance (d-axis) 0.0083
RQ Damper Winding Resistance (q-axis) 0.0190
Lls Armature Leakage Inductance 0.1360
Llf Field Winding Leakage Inductance 0.1833
LlD Damper Winding Leakage Inductance (d-axis) 0.1089
LlQ Damper Winding Leakage Inductance (q-axis) 0.1280
Lmd Direct Magnetizing Mutual Inductance (Unsaturated) 1.0125
Lmq Quadrature Magnetizing Mutual Inductance (Unsaturated)0.5840
H Intertia Constant 1068.1
a Turns Ratio 12.75

TABLE XII
POLYNOMIAL COEFFICIENTajk

❍
❍
❍
❍

j
k

0 1 2

0 1.581 -0.5986 -1.387
1 -0.5394 1.297 2.365
2 0.05049 -0.6299 -1.032

TABLE XIII
POLYNOMIAL COEFFICIENTbjk

❍
❍
❍
❍j
k

0 1 2 3

0 -0.4544 6.496 -8.642 3.173
1 -0.3300 14.46 -25.19 10.68
2 4.610 13.63 -36.88 17.60
3 0.3781 18.18 -34.21 14.94
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