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Optimal Signal Selection for Power System Ambient
Mode Estimation Using a Prediction Error Criterion

Vedran S. Perić, Student Member, IEEE, Xavier Bombois, and Luigi Vanfretti, Senior Member, IEEE

Abstract—This paper formulates an optimality criterion for the
selection of synchrophasor signals to be used in ambient mode
estimators. This criterion, which is associated with each measured
signal and each dominant mode, is defined as the asymptotic
variance of the corresponding estimated mode damping ratio.
The value of the criterion is computed directly from an estimated
autoregressive moving average (ARMA) model. Because the
online computation of the defined criterion (for each measured
signal in the system) may be computationally expensive, a fast
pre-selection method for initial signal ranking is formulated. The
pre-selection method is used to effectively determine a set of the
candidate signals for which the formal criterion is evaluated in
a second stage. The methodology is illustrated using synthetic
measurements from the KTH Nordic 32 and the IEEE 39-bus test
systems.
Index Terms—Mode estimation, mode meter, PMU placement,

prediction error, signal selection.

I. INTRODUCTION

T HE development of synchrophasor technology has en-
abled better monitoring of electromechanical oscillations

and consequently improved situational awareness of power
systems [1]. Oscillations are monitored by continuously esti-
mating parameters of critical system modes (frequencies and
damping ratios) that predominantly cause the observed oscilla-
tions [2]. The tools that have been developed for this purpose
(often referred to as mode estimators) estimate parameters of
the critical modes by applying system identification theory
and techniques. In recent years numerous system identification
approaches have been investigated with the aim to improve the
robustness and accuracy of the estimates [2], [3]. Commonly
used approaches for mode estimation include: 1) prediction
error methods [4], 2) frequency domain decomposition [5]
and 3) subspace identification methods [6]. Frequency domain
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decomposition and subspace methods are computationally
efficient and suitable for multi-channel analysis, but provide
only limited information about the quality of the estimated
model. On the other hand, prediction error methods have a firm
mathematical foundation which provides additional insight
in the estimation process as well as the uncertainty of the
estimated model. These methods use an optimization technique
to determine model parameters with the objective to minimize
the discrepancy between measured and model responses.
In recent years there has been a trend of increasing the number

of PMU installations in power systems, leading to a high de-
gree observability of the system [7]. However, since not all syn-
chrophasor signals contain equal amount of information about
the critical mode of interest, it can be shown that only a limited
number of carefully selected signals contain sufficient informa-
tion for accurate mode estimation. Furthermore, concurrent use
of large number of signals imposes higher computational com-
plexity that may not be suitable for online applications. This
reasoning poses the research question of optimal signal selec-
tion for mode estimation. The first attempts to address this ques-
tion have been presented in [8] and [9]. In [8], a Modal Power
Contribution (MPC) is proposed as a signal selection criterion,
while in [9], suitable signals are selected based on the geometry
of the signals' power spectra. In the more recent papers [10] and
[11], two level algorithms for mode estimation have been pro-
posed. In these papers, signals contribute to the final mode es-
timation according to their weighting factors that represent sig-
nals' quality. In [10], the weighting factor is defined as a Fourier
Transform magnitude at the critical mode's frequency, whereas
in [11], the mode energy is used instead. The means for quan-
tifying the signals' relevance for mode estimation (either signal
selection criteria [8], [9] or weighting factors [10], [11]) have
been developed based on heuristics without a formal proof that
the selected signals provide the best possible mode estimation.
The problem of optimal signal selection can be also seen

as a problem of optimal PMU placement for mode estimation
with the question where to install PMUs to obtain the best pos-
sible estimation of the critical mode. To the authors' best knowl-
edge, this question has not been formulated, even though op-
timal PMU placement (for other applications such as state es-
timation and stability assessment) has been investigated in the
literature [12], [13]. In the traditional PMU placement problem
formulations, the optimization criterion is mainly defined as a
maximum observability. This observability is defined either in
terms of its numerical observability or topological observability
[13]. However, the methods developed do not provide informa-
tion about the optimal signals that should be used to obtain ac-
curate mode estimation.
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An estimate of the critical mode's damping ratio can be seen
as a realization of a random variable whose variance depends
on the signal that is selected as an input to the mode estimator.
Therefore, if an unbiased mode estimator is used, the best signal
for mode estimation is the one that provides the smallest vari-
ance of the critical mode's damping ratio. This means that the
variance represents the criterion for ranking signals according
to their quality for mode estimation.
This paper provides a formal algorithm to compute the

(asymptotic) variances of the critical parameter estimates for
each signal, under the assumption that the signals' power
spectra are known in the form of AutoRegressive Moving Av-
erage (ARMA) models. The best signals (for mode estimation)
are then determined by ranking the signals according to the
calculated variances. This algorithm has its foundation in a
theorem (presented in Section III-A) that gives a formula for the
parameter covariance matrix (and consequently the variances
of interest) of an arbitrary model parameterization.
The proposed algorithm has an advantage that it uses only

parameters of the ARMA models as an input to the algorithm.
This makes the variance computation independent of the
method used to determine the ARMA models. In the case of
off-line PMU placement (for mode estimation), the ARMA
models can be obtained from the existing physical power
system model (off-line simulation). On the other hand, in
the case of selecting the best from the set of available syn-
chrophasor measurements, any identification method [2]–[6]
can be used (on-line operation).
The proposed algorithm represents a formal approach in de-

termining optimal signals for mode estimation; however, in an
on-line setting, it may be computationally expensive to run this
algorithm for each signal. For this reason, a fast pre-selection
method is formulated in order to determine a limited number of
signals which are candidates for the optimal signal (first stage).
Later, the formal approach (second stage) is applied only on
the signals selected in the first stage to determine the optimal
ranking of the signals. The proposedmethods are applied to syn-
thetic signals from the KTH Nordic 32 and IEEE 39 bus test
systems.
The reminder of this paper is organized as follows.

Section II provides relevant background and the approach used
for optimal signal selection. The algorithm for computation
of the covariance matrix of the estimated parameters is intro-
duced in Section III. The pre-selection method is presented
in Section IV. Application of the theory and developed tech-
niques is demonstrated in Section V. Conclusions are drawn in
Section VI.

II. BACKGROUND AND APPROACH

A power system's ambient response, which can be observed
in measured synchrophasor signals, is a result of random fluc-
tuations of loads in the power system [3]. These random load
fluctuations at the aggregated level can be represented by white
noise [14]. Assuming linearity of the power system, its model
can be represented as a set of transfer functions from each input
(load) to the each output (measured synchrophasor signal) as

shown in [14]. This leads to a mathematical description of the
-th measured synchrophasor output :

(1)

where is the transfer function from the -th input to -th
output and the disturbance associated to the -th input (mod-
elled as a white noise of variance ).
Consequently, the corresponding power spectrum of the

signal can be written as:

(2)
As shown in (2), this spectrum can also be expressed using

one single transfer function that is excited by a white noise
with variance . The modes of are equal to the modes of
the original system (power system). The transfer function
can be assumed to be proper, monic and has a stable inverse.
A parametric (ARMA) model can be deduced from two

sources:
1) From the measured data. Measured data is used to find the

best signals for mode estimation among the set of given
measured signals (on-line operation).

2) From the existing power system model. The existing model
is used to determine the best locations for PMUs (off-line
simulation). This is usually referred to as an optimal PMU
placement problem. One way of deducing ARMA models
from the existing simulation model is to apply a frequency
domain fitting procedure as presented in [15]. In this case
the frequency domain data are obtained from (2) at an arbi-
trary number of frequency points. An alternative approach
is to perform a time domain system identification using
the data synthetized from the model response. It should
be noted that a large identification dataset can be gener-
ated and used for this purpose, meaning that the estimated
ARMA model can be arbitrary close to [16].

The sequel presents how to obtain the ARMA model from
measured data using a prediction error method, assuming that
the same procedure can be used for PMU placement problem
formulation i.e. when the ARMA models are computed using
the existing power system model1. Since the prediction error
method can also be used for the on-line mode tracking (esti-
mation), a mathematical description of the estimation error is
provided as well. This estimation error analysis is used later to
define the criterion for optimal signal selection.
Using measured data , the estimate of

true system (denoted by ) is determined within
an ARMA model structure . The identified parameter
vector is the one that minimizes the prediction error criterion

. Suppose
that the model structure is sufficiently rich to describe
the true system (i.e. there is a vector of parameters
for which , then the estimate is a consistent
estimate of that true parameter vector . Moreover, it can
be proven that asymptotically the estimate is an unbiased
estimate of and that the estimate is normally distributed

1Other identification methods can be used for estimation of ARMA models
as well [2], [5], [6].
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Fig. 1. Global algorithm of optimal signal selection for ambient mode
estimation.

around , i.e. with the covariance
matrix given by [16]:

(3)

where , and is a driving noise
from (2). can be estimated during the identification process
as follows2 [16], [17]:

(4)

is a measure of the asymptotic modeling error between
and and therefore, indirectly, of the estimation error

of the critical damping ratio that is deduced from 3. Since
is an indirect measure, it is more useful to deduce the covari-

ance matrix of the damping ratio estimates . Moreover,
diagonal elements of provide a quantitative measure of how
accurate damping ratio estimates can be obtained using the par-
ticular signal (diagonal elements of represent variances of
the damping ratio estimates).
Suppose now that the covariance matrix can be estimated,

and that it is estimated for all measured signals . The best
signal for damping ratio estimation is the one that has the
smallest variance of the critical damping ratio estimate (which
is the corresponding element of ). This reasoning provides
the basis to develop a formal algorithm for the selection of
the optimal signal for mode estimation applications, which is
illustrated in Fig. 1.
The sequel provides an algorithm for computation of that

uses only ARMA model parameters and not the dataset that is
used for the identification of the ARMA model. This property
makes the signal selection algorithm independent of the identi-
fication method used to determine the ARMA model.

III. COMPUTATION OF THE ASYMPTOTIC PARAMETER
COVARIANCE MATRIX

A. Theoretic Derivation
As presented in [16], [17], one way to compute the covariance

matrix of the model parameter vector (one sub-vector of
is the vector , consequently can be extracted from ) is to

2Note that does not depend on the number of data samples , however,
the real variance of the estimate reduces proportionally when increases.

3This damping ratio can be deduced by converting the discrete-time model
into a continuous-time model and perform a pole/zero-decomposition of

this continuous transfer function.

Fig. 2. Block diagram of parameter covariance matrix calculation.

use a first order Taylor approximation of the mapping between
and (i.e. ), and to project the covariance matrix

(estimated using (4)), as follows:

(5)

However, this closed-form expression does not
exist and the matrix must be evaluated numeri-
cally as shown in [17]. In addition, this approach assumes that

is known, which means that has to be computed during
the ARMA model identification (usually computed using (4)).
This can be seen as a disadvantage in the case that the used iden-
tification method does not provide matrix as an output (e.g.
subspace identification methods).
This paper presents an approach that computes directly

from the estimated model, and at the same time, avoids the nu-
merical evaluation of . A block diagram of the
proposed approach is illustrated in Fig. 2. (thick line), whereas
the method from [17] is marked by a dashed line.
In the proposed procedure to compute it is assumed that

the ARMA model obtained is an exact representation of reality
i.e. . The identified ARMA model is reparam-
eterized with another parameter vector which has the same
dimension as and whose one sub-vector is . This allows de-
riving an expression for the covariance matrix . The variance
of the mode of the interest is then the corresponding diagonal
element of . The reparameterization procedure is given in the
Appendix. The expression for calculation of the covariance ma-
trix is given in Theorem 1.
Theorem 1: Let the true SISO system be proper, monic

and has a stable inverse. Also, assume that can be described
by an ARMA model structure with the parameter set ,
i.e. such that and that the estimate of

(denoted by ) determined by an identification method is an
accurate estimate of , i.e. it can be assumed that . Also,
assume that can be expressed in terms of another set of
parameters . Further, suppose that the mapping between and
is such that and that is invertible.

Then, the approximated expression for the covariance matrix of
the new parameter vector can be computed as follows:

(6)

where is defined as:

(7)

Signal denotes white noise process with unity variance.
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The proof of the theorem is given in the Appendix. It is to
be noted that expression (7) does not require a closed-form ex-
pression of the mapping between and , nor its
derivatives. It only requires to be able to obtain an expression
of the transfer function and then to obtain the derivative

on this new expression. Even though this the-
orem is used here to evaluate the variance of the damping ratio,
this theorem in fact is general and can be applied to other cases
where a change of parameterization is necessary.
At this point it is possible to provide explanation of why tra-

ditional PMU placement algorithms are not able to find op-
timal PMU location for mode estimation. It was shown that
the variance of the damping ratio depends only on the under-
lying ARMAmodel. However, this ARMAmodel is determined
by two factors. The first one is a power system model and the
second one is excitation (noise) that excites the system (see (2)).
Therefore, PMU placement methods that use only power system
models without including characteristics of the ambient excita-
tion (which is the common case) are not able to provide a com-
plete answer about optimal PMU placement for mode estima-
tion applications. The importance of the excitation is also dis-
cussed in [8].
In the previous derivation, it is assumed that the order of the

ARMA model is appropriately selected. This means, on the one
hand, that the model order has to be high enough to describe
the dynamics of the system accurately, but on the other hand,
it is important to keep the order (and consequently the number
of estimated parameters) as low as possible. More information
about methods for optimal model order selection can be found
in [18].

B. Calculation of the Parameter Covariance Matrix
This paragraph presents a numerically efficient algorithm for

the computation of the asymptotic parameter covariance matrix
that is defined in Theorem 1. The term , that is given

by (7), represents an output of a single-input multiple-output
system that can be written in a state space form described by

matrices and state vector as:

(8)

Using the property that and are independent
and the assumption of unity variance of the

white noise, the inverse of covariance matrix can be written in
terms of the output state space equation:

(9)

where . This term can be computed from
the state space (8):

(10)

In steady state, asymptotically, the following equation holds
, that leads to:

(11)

which is a Lyapunov equation whose unknown is and, that
can be readily solved using e.g. MATLAB4. Substituting the
computed into (9), the value is obtained.
Further, by computing the inverse of the covari-
ance matrix is obtained.
The previous results lead to the algorithm for computation of

the parameter covariance matrix:
Step 1) Find the parameters of the underlying ARMA

model for the selected signal using a system
identification technique.

Step 2) Express the ARMA model in terms of param-
eters to obtain , and find the corresponding
parameters (see the Appendix).

Step 3) Compute the derivatives of with respect to the
model parameters evaluated at .

Step 4) Compute the vector of transfer functions
.

Step 5) Express the transfer functions in state space form
with one input and a number of outputs that is equal
to the number of parameters. Corresponding system
matrices are denoted by .

Step 6) Solve the Lyapunov equation
for .

Step 7) Compute .
Step 8) Compute the parameter covariance matrix as:

This procedure provides the asymptotic covariance matrix
as a final result that contains asymptotic variances of the esti-
mated damping ratios as diagonal elements. It is important to
note that values of the asymptotic variances do not depend on
the number of samples used in the identification. This is not the
case for absolute variance observed that linearly decrease when
the longer data set is used for identification i.e. the following
holds: , as , and consequently

.

C. Mode Estimation in Case of Multiple Critical Modes in
the System
The proposed algorithm answers the question of the optimal

signal selection for one critical mode of interest. If multiple
modes are monitored in real-time, it is obviously possible to de-
termine a different signal ranking for each of the critical modes
(the proposed procedure is performed for each critical mode
separately). Based on these results, the recommended practice
for real-time mode estimation is to perform estimation sepa-
rately (as parallel processes) for each critical mode using the
corresponding optimal signals.
An alternative to this approach is to use an integral ranking

criterion that combines the computed variances of different
modes of interest (weighing sum for instance). The integral
criterion provides a unique signal ranking that takes different

4In the MATLAB environment, this matrix equation can be solved efficiently
using the function dlyap.
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critical modes into consideration, meaning that there is no need
to run parallel mode estimations (as in the previous approach).
However, this ranking provides only suboptimal results (each
particular mode will be estimated using suboptimal signals).

D. Remarks on Signal Selection for Mode Shape Estimation

In the analysis of electromechanical oscillations, it is also
useful to obtain information about mode shapes of the critical
modes [2], [19]. The sequel of this subsection provides a short
discussion about important considerations for signal selec-
tion for mode shape estimation and the relationship between
damping ratio and mode shape signal selection.
In contrast to damping ratio estimation, mode shape estima-

tion does not estimate a parameter that is common for all mea-
sured signals. Rather, each location has its own true parameter
value that needs to be estimated. Furthermore, it can be said that
themost relevant signals are those that have the largest influence
on the critical mode. Therefore, there are two aspects in signal
selection for mode shapes:
1) Signals that have the largest participation in the oscillation.
2) Signals that provide the best accuracy of the mode shape

estimate.
Relative mode shape that corresponds to the -th signal is

estimated as [19]:

(12)

where is a critical mode, and and are Laplace
Transforms of -th and reference signals, respectively. If a white
noise signal is selected as a reference signal, the mode shape es-
timation is reduced to ARMA model estimation. Furthermore,
the signals that have a large value of such defined mode shape
will also have a large participation in the oscillation, which cor-
responds to the first aspect of the signal selection for mode shape
estimation (large signal participation).
Once the ARMA model (12) and its parameter covariance

matrix are estimated, (5) can be used to obtain uncertainty
of the frequency response at the mode frequency following
the procedure from Section III (with the difference that in
Section III the uncertainty of damping ratio estimate is obtained
instead). Further, this uncertainty represents the uncertainty of
the mode shape estimate and consequently a measure of accu-
racy that can be obtained with a particular signal (the second
aspect of signal selection for mode shape estimation). Note that
the new parameterization in (5) is required, i.e. .
Based on these results (mode shape values and accuracy of

the estimates), it is possible to make a decision on which signals
should be used for mode shape estimation.
Mode shape estimation using the considerations above is be-

yond the scope of this manuscript, and subject to on-going re-
search. Therefore, this will not be analyzed in more details in
the sequel.

IV. SIGNAL SELECTION FOR ON-LINE APPLICATION

This section first discusses the relationship between the es-
timated damping ratio and its variance computed by (6), and

Fig. 3. Bode plot of the transfer function for
different values of .

further formulates a signal pre-selection method that is benefi-
cial for on-line applications, where computational time can be
critical.

A. Qualitative Analysis of the Relationship Between Damping
Ratio and its Variance

To establish a qualitative relationship between damping ratio
and its variance, (6) is expressed in the frequency domain by
applying Parseval's theorem:

(13)

Using the property of the derived parameterization that
it is a product of modes' factors (see the Appendix), it is ap-
parent that the value of the term
in depends only on the mode whose parameter is ( is
the -th element of ). This is due to cancellations between

and for all other modes' factors. Now,
it is possible to plot the frequency response of the term

for different values of , where
represents the damping ratio of the critical mode while

the frequency of the mode is fixed on the value . This
plot is shown in Fig. 3. Note that the fixing the value of
is a justified assumption since it is known that the estimate
of is generally very accurate5. This means that the shape
of the frequency response plotted in Fig. 3 does not change
significantly when is changed.
It can be seen from (13) that the diagonal elements of

are equal to the integral of the squared frequency response from
Fig. 3. Now, assume that the parameter estimates are mutu-
ally independent. This assumption is equal to the assumption
that off-diagonal elements of the matrix (i.e. covariances)
are equal to zero6. Using this assumption, it can be said that

5This assumption does not affect generality of the approach; it only enables
simplification of the reasoning and the presentation.

6This assumption is not fully satisfied in reality, however it enables a qualita-
tive analysis of the relationship between the values of the parameter estimates
and the signal spectrum by simplifying the computation of the matrix inverse in
(11).
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the value of integral in (13) is a diagonal matrix whose in-
verse is obtained simply by replacing the elements by their re-
ciprocals. This means that variance of is inversely propor-
tional to the area below the corresponding lines in Fig. 3, which
again inversely depends on . Therefore, this directly correlates
the value of the critical damping ratio and its variance (the
smaller damping ratio implies smaller variance).
This conclusion can also be derived from another approach.

Let us assume that all parameters in except are known and
that only has to be estimated. Using the same reasoning from
(13) and Fig. 3, it follows that the larger damping ratio implies
the larger estimation variance.
A critical situation in the real-life operation is when damping

ratio of the critical mode decreases with time. The previous re-
sults show that, in this situation, the accuracy of the estimate
will improve, which is a desirable property. On the other hand,
when the damping ratio increases, the accuracy of the estimate
will decrease. However, since this is not a critical situation for
the grid, the smaller accuracy will not affect operation of the
system.

B. Signal Pre-Selection

Running the formal algorithm described in Section III for all
available synchrophasor signals in real-time can be computa-
tionally demanding. Also, this is unnecessary because the ma-
jority of the signals will contain little or no information about the
mode of interest. This phenomenon might happen due to (near)
zero-pole cancellation effect. For that reason, it is beneficial to
develop a fast pre-selection method that will aid in determining
if the signal can be considered as a candidate for optimal for
mode estimation.
This pre-selection algorithm will be formulated in similar

manner as the formal algorithm: A criterion that can be com-
puted efficiently is defined and used for ranking of the sig-
nals. Using this ranking, a limited number of the top ranked
signals will be selected as candidates for the optimal signal
(first stage). In the second stage, the full formal algorithm from
Section III will be applied on the selected signal candidates in
order to determine the final ranking.
The proposed pre-selection ranking criterion is defined as

the average amplitude of the signal's Fourier transform over a
small range around the critical frequency. This procedure finds
if there is a peak in the signal's spectrum, which indicates that
the critical mode is visible in the analyzed signal. Since the value
of the peak is not directly proportional to the accuracy of the ob-
tained estimate, it is necessary to run the formal algorithm and
determine the final signals' ranking for optimal mode estima-
tion. This pre-selection criterion can be computed efficiently by
using Goertzel's algorithm [20].
If a signal, due to (near) pole-zero cancellation, contains

little information about the critical mode, its power spectrum
will generally not have a pronounced resonance peak at the
frequency of the considered mode i.e. the damping ratio of
the estimated mode (if it is observable) will have a large
value. Using the results from Section IV-A, it implies that the
computed ranking criterion will numerically have a large value
causing the signal to be discarded. This means that the bias

(caused by the lack of information about the critical mode in
the signal) will not affect selection of the top ranked signals.
It is important to note that this section, besides formulating

the pre-selection method for signal selection, provides new
insight to the commonly accepted premise that signals whose
spectrum has a large peak at the mode frequency are likely to
be a good choice for mode estimation [9], [10].

V. APPLICATION

In order to illustrate application of the presented method-
ology, the KTH Nordic 32 [21] and the IEEE test systems with
10 generators and 39 buses are used. The KTH Nordic 32 test
system has one critical inter-area mode at approximately 0.5 Hz
(or 3 rad/s) with damping ratio of 3.52%, which is closely
studied in [21], [22]. The IEEE test system has a critical mode
at 0.58 Hz with damping ratio equal to 2.29%. The simulated
synchrophasor measurements are obtained from the simulations
where active and reactive powers of all loads are modeled as a
white noise, which is the only disturbance in the system.

A. Critical Parameter Variance Computation and Validation

The variance of the estimated damping ratio of the crit-
ical mode is computed using the methodology presented in
Section III. Using methodology from [18], a model order 12 is
selected as appropriate and used for all the signals. The ranking
criterion (variance of the estimate) is computed assuming a first
order approximation of the prediction error criterion with re-
spect to the model parameters (see Section III and [16]) as well
as Tustin approximation used for mapping between discrete
and continuous domains (see Appendix). These approximations
inevitably introduce errors in the computed damping ratio
variance (it will deviate from the actual variance). To assess
effect of these errors, the computed variance is compared
with the sample variance that is obtained using the results
of 2000 simulated Monte Carlo mode estimations (for each
mode estimation, an independent realization of the excitation
is used). This sample variance is multiplied by the number of
samples used for the estimation. Modes are estimated using
the prediction error method that minimizes prediction error
criterion (defined in Section II) over the set of ARMA model
parameters as shown in Fig. 2. In these simulations, 3000 data
samples with 5 Hz sampling frequency (10 min data block) are
used for each simulation. The variance obtained using Monte
Carlo simulations is denoted as “observed” in the sequel.
The results obtained with the KTH Nordic 32 test system are

given in Figs. 4 and 5, whereas the on-line diagram of the system
with the locations of the signal candidates is presented in Fig. 6.
The results confirm that the variances computed using the ap-

proach proposed in this paper do not significantly differ from
the variances obtained using Monte Carlo simulations (the dif-
ference is always less than 25%). Further, the results suggest
that the voltage angle signals, if chosen carefully, provide the
smallest estimation variance. However, in this particular case,
it is possible to choose among a large number of voltage mag-
nitude signals that provide reasonably good accuracy (around
0.2). Locations of the signal candidates provide further insight
in the obtained results (Fig. 6).
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Fig. 4. Calculated and observed variance of the estimated damping ratio of the
critical mode 0.5 Hz using voltage magnitude synchrophasor signals.

Fig. 5. Calculated and observed variance of the estimated damping ratio of the
critical mode 0.5 Hz using voltage angles synchrophasor signals.

Note, that the obtained variances have a physical interpreta-
tion. Namely, the absolute variance when samples are used,
is simply obtained by dividing the asymptotic variance with .
Further, the absolute variance can be expressed through stan-
dard deviation. For instance, if (as used in the pre-
sented test cases), the asymptotic variance of 0.15, will repre-
sent the absolute variance of , i.e. standard deviation of
the damping ratio estimate is 0.707% whereas the true damping
ratio value is 3.52%.
Based on the results of modal analysis it is known that the crit-

ical 0.5 Hz mode causes oscillation of the area represented by
generators 17 and 18 against the Northern part of the system. It
can be noticed that the best voltage angle signals are in vicinity
of these generators. On the other hand, voltage magnitude sig-
nals that are in vicinity of buses 36–37 provide the smallest vari-
ance of the damping ratio. The results conclusively show that the
optimal locations are very different when different signal types
are used. This can be explained by the fact that voltage angles
deviations will be largest in the proximity of the dominant os-
cillating generators, whereas voltage magnitude oscillations at
these buses can be significantly suppressed by reaction of auto-
matic voltage regulators. More details on this phenomenon can
be found in [22].
The proposed algorithm has been derived with the assump-

tion that the prediction error estimator is unbiased as commonly
assumed in mode estimation algorithms. However, due to the
zero pole cancelation and the reduced model order that is used
to describe the full system dynamics, a certain amount of bias is
an inevitable consequence. This bias is a complex phenomenon
for which an analytical expression does not exist. In the sequel,

Fig. 6. Single-line diagram of the KTH Nordic 32 Test System with locations
of the candidate signals for ambient mode estimation.

Fig. 7. Bias analysis of the top ranked voltage magnitude signals from the KTH
Nordic 32 test system.

the bias obtained with different signals is analyzed using Monte
Carlo simulations. For each signal, 2000 Monte Carlo mode
simulations are run and the mean value of the mode damping
ratio estimates is used for the bias calculation (the bias is a dif-
ference between this value and the true value which is equal to
3.52%).
Figs. 7 and 8 show damping ratio estimates obtained as a

mean of the 2000 estimates from Monte Carlo simulations, as
well as the absolute value of the bias (the red line shows the
absolute value of the difference between the solid blue line and
the true damping ratio value denoted by the blue dashed-dotted
line). Fig. 7 shows results for 15 top-ranked voltage magnitude
signals, whereas Fig. 8 shows results for 15 top-ranked voltage
angle signals.
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Fig. 8. Bias analysis of the top ranked voltage angle signals from the KTH
Nordic 32 test system.

Fig. 9. Power spectra of the best ten voltage magnitude signals ranked based
on the methodology from Section III.

Fig. 10. Power spectra of all of the voltage magnitude signals.

The results suggest that the top ranked signals with the pro-
posed methods tend to provide a smaller value of the bias (the
red lines in Figs. 7 and 8 are almost monotonically increasing).

B. Signal Pre-Selection

As it was concluded in Section IV, power spectrums of the
measured signals can be used for optimal signal pre-selection.
In other words, the optimal signals for damping ratio estima-
tion will have large peaks in their spectra at the critical mode
frequency. The validity of this assumption is analyzed by com-
paring power spectrums of the voltage magnitude signals. The
results are presented in Figs. 9 and 10.
Figs. 9 and 10 show that the ten best signals for the 0.5 Hz

mode have in general large peaks (according to Fig. 9) com-
paring to the all signals whose power spectra are given in
Fig. 10.
Numerical comparisons between the pre-selection and formal

algorithm for voltage magnitude signals are given in Table I.
It can be seen that among the first ten signals that are deter-

mined by the pre-selection algorithm, the 4 best signals com-
puted by the formal algorithm are present. Also, the best ten

TABLE I
COMPARISON OF THE PRE-SELECTION AND FORMAL ALGORITHM IN THE CASE

OF VOLTAGE MAGNITUDE SIGNALS

TABLE II
COMPARISON OF THE PRE-SELECTION AND FORMAL ALGORITHM IN THE CASE

OF VOLTAGE ANGLE SIGNALS

signals determined by the formal algorithm (highlighted) are
contained in the 22 first signals computed by the pre-selection
algorithm. Further, it can be noticed that pre-selection tends to
favor the signals measured directly at the middle voltage gener-
ator buses (buses denoted by numbers 1–20) even though these
signals do not ensure the optimal mode estimation (according to
the formal algorithm).
A similar analysis has been conducted for voltage angle sig-

nals, and the results are reported in Table II.
Table II shows even better matching between the pre-selec-

tion and formal algorithm in case of voltage angle signals, com-
paring to the voltage magnitude signals. The first 15 pre-se-
lected signals contain ten best signals determined by the formal
algorithm.
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TABLE III
COMPARISON OF DIFFERENT SIGNAL SELECTION ALGORITHMS USING

VOLTAGE MAGNITUDE SIGNALS FROM THE KTH NORDIC 32 TEST SYSTEM

TABLE IV
COMPARISON OF DIFFERENT SIGNAL SELECTION ALGORITHMS USING
VOLTAGE ANGLES SIGNALS FROM THE KTH NORDIC 32 TEST SYSTEM

C. Comparison of Signal Selection Methods

This section provides comparison among different signal se-
lection methods, namely the proposed method is compared with
the methods proposed in [9] (denoted by CF1) and in [8] (de-
noted by MPC). In addition, variance of the damping ratio es-
timate obtained using Monte Carlo simulations is reported (ob-
served variance), even though this method is not applicable for
on-line signal selection.
First, voltage magnitude and angle signals synthetized using

the KTH Nordic 32 test system were used to obtain rankings
with different criteria. The values of different computed criteria
and corresponding rankings (top ten signals for each criterion)
are shown in Tables III and IV.
The results show that the final ranking results obtained with

different algorithms differ significantly, however it can still be
noticed from Fig. 6 that buses selected with different methods
are relatively close to each other with some exceptions.
Figs. 11 and 12 show performances of the three signal se-

lection methods in terms of the obtained bias that is calculated
using 2000 Monte Carlo simulations. The results are shown for
the top ten ranked signals (as in Tables III and IV) separately for
voltage magnitude (Fig. 11) and voltage angle (Fig. 12) signals.
The presented results show that the top ranked signals with

the proposed method provide smaller values of bias (with a few
exceptions). This can be seen from the fact that the blue line is
placed below other lines for most signals.

Fig. 11. Comparison of biases obtained with the top-ranked voltage magnitude
signals from the KTH Nordic 32 test system using different signal selection
methods.

Fig. 12. Comparison of biases obtained with the top-ranked voltage angle
signals from the KTH Nordic 32 test system using different signal selection
methods.

Further, this comparison is performed using the IEEE Test
system with 39 buses and ten generators. Characteristic of this
system is that it has one critical mode at 0.58 Hz and damping
ratio of 2.29%, where generator 1 has a very large inertia, which
makes other generators oscillate against generator 1. A single-
line diagram of the test system with optimal locations deter-
mined by the proposed method is shown in Fig. 13.
Numerical results obtained by the different signal selection

methods are presented in Tables V and VI. These results suggest
that the optimal locations for voltage angle signals are closer to
the generators than the voltage magnitude signals. A difficulty
with this system is that there is no single dominant mode path,
rather, there are multiple paths that transfer oscillations from
generator 1 to other oscillating generators. This explains rela-
tively dispersed optimal locations.
The results obtained using the other twomethods ([8] and [9])

show that the 10 top optimal locations overlap to the some ex-
tent with the results from the proposed method. Due to multiple
mode paths this system in general shows that several locations
can provide sufficiently good mode estimation results.
Similarly to Figs. 11 and 12, bias analysis is performed for

IEEE 39 bus system. The results are shown in Figs. 14 and
15 where a similar conclusion can be drawn, which is that the
proposed method generally selects signals that also provide
smaller bias.

D. Effect of Measurement Noise and Selected Model Order on
the Calculated Ranking Criterion

Presence of measurement noise alters the spectrum of
the measured signal and, consequently, the mode estimation
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Fig. 13. Single-line diagram of the KTH Nordic 32 Test System with locations
of the candidate signals for ambient mode estimation.

TABLE V
COMPARISON OF DIFFERENT SIGNAL SELECTION ALGORITHMS USING
VOLTAGE MAGNITUDE SIGNALS FROM THE IEEE 39-BUS TEST SYSTEM

TABLE VI
COMPARISON OF DIFFERENT SIGNAL SELECTION ALGORITHMS USING
VOLTAGE ANGLES SIGNALS FROM THE IEEE 39-BUS TEST SYSTEM

results and estimated variance of the damping ratio. Effects
of measurement noise on mode estimation is analyzed in

Fig. 14. Comparison of biases obtained with the top-ranked voltage magni-
tude signals from the IEEE 39-bus test system using different signal selection
methods.

Fig. 15. Comparison of biases obtained with the top-ranked voltage angles sig-
nals from the IEEE 39-bus test system using different signal selection methods.

Fig. 16. Effect of measurement noise on computed ranking criterion.

[14], [23], whereas effect on the estimated damping variance
(ranking criterion) is analyzed in the sequel. This is done by
analyzing signals that are synthetized by adding different levels
of white Gaussian noise [described by noise-to-signal power
ratio (NSR)] to the voltage magnitude signal of bus 38 (the
KTH Nordic 32 test system). The synthetized signals are used
for ARMA model estimation with settings described in the
previous section. Finally, the obtained ARMA models are used
as an input to the proposed method to obtain variances of the
critical damping ratio. The results of the performed analyses
show (Fig. 16) how the estimated critical damping ratio and its
variance change with different level of noise.
The results show that the measurement noise increases the es-

timated variance. The final ranking of the signals will obviously
depend on level of the noise on each measurement, however a
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TABLE VII
EFFECTS OF THE SELECTED MODEL ORDER ON THE ESTIMATED VARIANCE OF

THE CRITICAL MODE'S DAMPING RATIO

positive thing is that signals with more noise will be negatively
penalized (the computed variance increases with noise).
In the previous studies, model of the ARMA model was se-

lected to be equal to 12 (determined using methodologies from
[18]). However, it is necessary to assess how results of the pro-
posed methodology change when sub-optimal model order is
selected. To do that, the KTH Nordic 32 test system is used to
simulate one realization of synchrophasor signals. These sig-
nals are used as an input to the proposed method where different
values of the selected ARMA model orders are used. The cal-
culated damping ratio variances (criterion values) for different
signals are shown in Table VII.
Table VII shows that the computed variance does not change

significantly when model order is non-optimal, but even this
small deviation can cause change in the final signal ranking.
However, it has to be noted that as long as the model order is
high enough to describe the dynamics of the system and if a real-
time mode estimator uses the same model order, the obtained
ranking will be correct even when non-optimal order is used (the
mode estimation will not be optimal but because the estimated
variance is correct, the ranking will be adequate).

E. Computational Performance of the Proposed Method

Following the description of the proposed algorithm in
Section III, it is possible to assess its computational perfor-
mance. The first step of the proposed algorithm is pre-selection.
A typical required time for the pre-selection ranking criterion
(FFT analysis) computation using a MATLAB implementation
and an off-the-shelf personal computer (Intel i7, 2.7 GHz CPU,
8 GB of RAM) is around 0.4 ms per signal.
The result of the pre-selection method is a list of a relatively

small number of signals (less than 50 regardless of the system
size) for which the final ranking criterion has to be computed.
The final ranking criterion for one signal is computed as follows:
1) ARMA model computation (Step 1 in Section III-B). For-

mally, this is not part of the ranking criterion computation.
ARMAmodels can be obtained from different sources. For
instance, following the two level architecture from [11],
ARMA models can be computed at the substation level.

2) Model manipulation (Steps 2–5 from Section III-B).
3) Variance calculation (Steps 6–8 from Section III-B).
Typical required computational times for the above proce-

dures using a MATLAB implementation a personal computer
are given in Table VIII.

TABLE VIII
COMPUTATIONAL PERFORMANCES OF THE PROPOSED SIGNAL SELECTION

METHOD

The results show that total computational time, even for the
largest systems can be held below 60 s (30 pre-selected signals,
2 s each), whereas the criterion computation time itself can be
held below 10 s. By applying the decentralized approach pro-
posed in [10], [11] or using a compiled programming language
with better performances (C for example), the computational
time can be significantly reduced. Regardless, this time delay is
acceptable, especially taking into account that a long data blocks
(10 minutes in the presented case studies) are used as an input,
which makes a 60 s delay relatively small.

VI. CONCLUSION
This paper proposed a criterion and an algorithm that ranks

synchrophasor signals according to their ability to estimate pa-
rameters of the critical mode (frequencies and damping ratios)
with lowest variance. The value of the ranking criterion is com-
puted directly from the model that describes spectrum of the
measured synchrophasor signal. These models can be obtained
in two ways depending on the application: 1) from the physical
model of the power system in the case of off-line PMU place-
ment problem with the objective of optimal mode estimation,
or 2) from on-line measurements in the case of on-line optimal
signal selection problem which is used for mode estimation.
This paper emphasizes the fact that mode estimation, as one

of the most important synchrophasor applications, requires spe-
cial attention, even in the planning stage when PMU locations
are decided. Traditionally, this was not the case because PMU
locations are mainly determined based on state estimation appli-
cation requirements. Also, during the operation it is advisable
to periodically check if the used signals provide the best pos-
sible results because operational changes in the power system
can cause a change in the critical modes as well as the signals
that contain the most information about these modes.

APPENDIX

A. Derivation of the Parameterization Suitable for Mode
Estimation Application
For the mode estimation application, accurate estimation of

the mode damping ratios are of essential importance. This
means that a new parameterization is required where these pa-
rameters are in the vector of model parameters . To do
this, the identified transfer function is expressed in terms of dis-
crete poles and zeros and then transformed to the continuous
domain using the well-known Tustin approximation. Once, the
poles/zeros are expressed as continuous variables, they can be
written in terms of frequencies and damping ratios. The param-
eterization obtained contains the parameters of interest in
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the vector of parameters . This procedure is demonstrated in
the sequel.
The estimated ARMAmodel in terms of discrete zeros, poles

and gain can be written as follows:

(A1)
To express poles/zeros frequencies and damping ratios, the

discrete poles and zeros have to be substituted by continuous
domain poles and zeros. This is done by using Tustin's approx-
imation (A2) that gives the relationship between discrete and
continuous domains [24]:

(A2)

where and is the -th continuous domain
pole/zero (calculated in advance). The real continuous domain
poles/zeros do not need to be expressed in terms of continuous
domain poles/zeros because there is no frequency and damping
ratio associated to these poles/zeros. In the case of complex
poles/zeros, the expression (A2) has to be expressed in terms
of pole/zero frequency and damping ratio using the following
relationship:

(A3)

where is damping ratio of -th pole/zero and its natural
frequency. By substituting (A3) into (A2), the following is ob-
tained:

(A4)

Expression (A4) represents the relationship between the de-
sired parameterization and known discrete poles/zeros. Fi-
nally, by substituting (A4) into (A1), the reparameterized model
is obtained whose derivatives can be easily calculated (that is
needed for solving (6)). One factor of the reparameterizedmodel
is shown in (A5)–(A7) (other factors have a similar form):

(A5)

The real part and amplitude of are as follows:

(A6)

(A7)

At this point, derivatives of the factors of can be easily
computed, i.e. transfer function from (7) can
be determined. It can be noted that only the derivatives of el-
ementary factors have to be computed because the remaining
transfer function does not depend on the parameters of the cor-
responding elementary factor (other factors are constant).

B. Proof of Theorem 1

Without losing generality, it can assumed in (3) that
the variance of the driving noise is equal to one
because does not depend on . Also, note that
the following equation holds:

, (assuming that is
a function of , i.e. ). Using this expression and the
relationship ,

can be written as:

(B1)

where the following notation is used:

(B2)

Substituting this expression in (3) results in:

(B3)

where the fact that is a deterministic matrix is
used. To simplify notation, this can be written as:

(B4)

where as defined in the Theorem 1.
Taking an inversion of the (B4) and replacing by its esti-

mate , the expression (5) is obtained, i.e.:

(B5)

This concludes the proof of the theorem.
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