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a b s t r a c t

This paper aims to develop a PMU-based state estimation algorithm that considers the presence of
classic HVDC links operating under different control modes. Thus, hybrid AC/DC grid state estimation
becomes feasible. In this algorithm we assume that DC link measurements can be sampled and reported
at the same rate as PMU measurements, so that both AC and DC states can be estimated simultaneously
in real-time. The estimation algorithm uses synchrophasors in polar coordinates, which allows angle
bias detection and correction. In addition, some practical issues for the proposed state estimator are
discussed, including observability and measurement redundancy, measurement noise and weightings,
and angle bias correction. Finally, study cases using different power system models are carried out to
show the state estimator’s performances during both steady conditions and dynamic changes. Relatively
small residuals during steady conditions validate accuracy; results during dynamic changes verify the
estimator’s reliability.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Power system state estimation (SE) is a process used to deter-
mine the state of a network by using measurements and a model
of the grid. With a proper redundancy level, SE can eliminate the
effect of bad data and produce reliable state estimates in order to
help operatorsmonitor the grid and to support other analysis func-
tions in energy management systems (EMS) [1].

1.1. A PMU-based state estimator

Conventional SE [1,2] uses a combination of measurements
provided by traditional supervisory control and data acquisition
(SCADA) systems and pseudo-measurements. At the same time,
some of these measurements are state variables to be estimated.
These measurements are asynchronous and provided every two to
ten seconds, which limits the speed at which the state estimator
can be executed, regardless of the speed of the numerical algorithm
used for estimation. The network model for conventional SE, by its
nature, contains numerous nonlinearities in contrast with circuit
analysis models [3].

∗ Corresponding author.
E-mail address:wei3@kth.se (W. Li).

http://dx.doi.org/10.1016/j.segan.2015.04.004
2352-4677/© 2015 Elsevier Ltd. All rights reserved.
With the remarkable growth of synchronized phasor measure-
ment units (PMUs) installations in power systems, new types of SE
methods based on synchrophasor measurements have been pro-
posed and tested, for instance, [4–6]. With respect to measure-
ments, PMUs provide GPS time-synchronized measurements at a
rate of 30–50 samples per second to PMU-based state estimators.
Compared to that in SCADA systems (measurement every two to
ten seconds per sample), this rate enables static SE to follow the
states’ trajectories. On the other hand, such synchronous data rate
requires a numerical algorithm for estimation that (i) can be ex-
ecuted faster than the PMU reporting rate, and (ii) offers a suffi-
ciently simplemathematical representation of the grid to allow fast
updates when changes occur in the power system, without sacri-
ficing accuracy. Having suchnumerical algorithmavailable, a PMU-
based state estimator could help in sanitizing synchrophasor data
and supporting other PMU applications. Moreover, various PMU
applications [7] can also benefit from a PMU-based state estima-
tion (PSE).

Another difference is that PMU measurement quantities are
voltage and current phasors, which are state variables at the same
time. This characteristic significantly decreases the dimension
of the SE network model compared to that of the conventional
SE, and can lead to a mathematical representation with far less
nonlinearities as long as circuit analysismodels are applied instead
of power flow models. This kind of simple representation will in
turn mitigate numerical computation burden.
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Today, PMUs are not as ubiquitous as SCADA measurements,
and thus they are regarded as a complement to SCADA measure-
ments in conventional SE. [8] presents an approach to incorpo-
rate the PMU measurements within a conventional SE assuming
that the conventional SE must function normally in the absence
of PMU data. [9] introduces a multistage SE that separates pha-
sor measurements from a SCADA-based estimator and processes
them distinctly. In [10], a whole power system is decoupled into
PMU- and SCADA-observed areas and the estimation is computed
sequentially. This approach greatly relies on systemmeasurement
configuration and topology connectivity. Similarly to these three
articles, most related publications aim to preserve the mathemat-
ical representations of the conventional SEs, avoiding changes to
it as much as possible. In a sense, in these approaches, PMUs be-
come common metering devices, not differing much with others.
However, this comes at the cost of not exploiting the advantages
of PMUmeasurements, which are fast reporting rate and time syn-
chronization.

Mixing PMU measurements with SCADA measurements for
conventional SE is only a temporary solution when considering
an insufficient number of PMUs in a system. However, it is
foreseen that in the near future PMUs could cover most areas
of power systems at least at high-voltage substations. PMUs will
thus become omnipresent metering devices, in the same way that
SCADA metering devices are now.

Based on the above considerations, this paper proposes a PMU-
only SE algorithm, in which Kirchhoff’s laws are applied with volt-
age and current phasors exclusively, significantly reducing the
nonlinearities of the network model and the computation burden
of the numerical solution algorithm. In addition, magnitudes and
angles of the PMU measurements are uncorrelated in polar coor-
dinates, which is greatly different from the linear state estimator
presented in [11] where the phasors are used in rectangular coor-
dinates. Thus, analyzing magnitude and angle data independently
allows angle bias detection and correction [4–6], whichwill be also
addressed in this paper.

1.2. Modeling of classic HVDC links under different control modes

Power electronic-based devices are becoming more common
in power systems, and there are several papers considering
FACTS devices in state estimation [12,13]. However, to the best
knowledge of the authors, previouslywork has not fully considered
hybrid AC/DC grids. Classic HVDC technology is mature and has
been usedworldwide. It is still irreplaceable for HVDC applications
of high power and voltage ratings, which can be up to 8000 MW,
with voltages up to 800 kV [14]. Although classic HVDC links have
been included in conventional SE network models [15,16], the
use of conventional measurements makes the SE model complex.
Therefore, the main contribution of this paper is to include classic
high voltage direct current (HVDC) links into the PSE network
model.

The fast sampling rate of PMUs in the AC grid can assist system
operators to track fast DC control, which cannot be supported by
the slow-rate measurements in SCADA systems. The proposed PSE
algorithm in this paper takes classic HVDC links into consideration
so that a PSE for hybrid AC/DC grids becomes feasible. It uses
PMU measurements from the AC network, and assumes that
measurements of theDC link are sampled synchronously and time-
stamped by GPS at the same rate as PMU data.

Paper [11] proposes a linear classic HVDC link model for PSE,
however, it is simplified and has not considered different control
modes. To the authors’ knowledge, none of the published SE
models consider the control modes of the HVDC link, which in
fact could bring benefits to the performance and accuracy of state
estimators. This will be illustrated by a comparison between the
linear DC linkmodel in [11] and the nonlinear one proposed in this
paper. Moreover, as classic HVDC control technology ismature and
robust, the controlled states can be steadily maintained at their
references, which can be provided as an input to the PSE model.
Hence, applying the corresponding references into the network
model will provide additional robustness to the PSE.

When the PSE is applied to hybrid AC/DC grids, all the related
issues for AC state estimators, such as system observability and
measurements redundancy, measurement noises and weightings,
and bad data detection and correction, have to be addressed. In
particular, this paper provides new rules for observability analysis
when considering HVDC links for PSE. Solutions for such issues are
devised in this paper by taking advantage of phasormeasurements.

1.3. Article organization

This paper is organized as follows. Section 2 describes the PSE
algorithm. In Section 3, network models of a unified AC network
branch model, a classic HVDC link, and their interface are in-
troduced. Then the PSE for a hybrid AC/DC grid is presented in
Section 4. Section 5 discusses the PSE practical application is-
sues, including system observability and measurement redun-
dancy, measurement noise and weighting’s selection, and angle
bias correction. Then the PSE algorithm is validated through simu-
lations of two different test systems in Section 6. Finally, Section 7
discusses the differences between the linear state estimator in pre-
vious work [11] and the nonlinear one presented in this paper in
order to highlight the advantages of using the nonlinear PSE.

2. PMU-based state estimation algorithm

The conventional SE formulation for nonlinear systems is based
on the nonlinear measurement model [1]:

z = h(x) + e, (1)

where z ∈ Rm is the measurement vector, x ∈ Rn is the state vec-
tor, h : Rn

→ Rm is a nonlinear function relating measurements
to states, and e ∈ Rm is themeasurement error vector, which is as-
sumed to have a normal distribution, i.e., e ∼ N (0,Rz). Rz denotes
the corresponding measurement covariance matrix.

The measurement variables of a conventional state estimator
include flowmeasurements, e.g. active power flowmeasurements
(Pmeas

ft ), reactive power flow measurements (Qmeas
ft ), current mag-

nitude measurements (|Imeas
ft |); and bus injection measurements,

e.g. active power injection measurements (Pmeas
i ), reactive power

injection measurements (Qmeas
i ), injected current magnitude mea-

surements (|Imeas
i |). On the other hand, state variables are mainly

bus voltage magnitudes and angles. Therefore, measurement vari-
ables and states are explicitly separated, as expressed in (1).

However, when PMUs are used for data acquisition, the state
variables can be measured directly, that is V, I phasors. A
direct consequence is that the choice of state variables x to be
measurement variables z in (1) cannot be uniquely determined.
Therefore, the choice will affect estimation accuracy of different
states. Any variable chosen to be z in the measurement model will
lose the corresponding element in the Jacobian matrix. In other
words, the network model and corresponding Jacobian matrix are
not unique. Based on above consideration, a new measurement
model is needed to separate the measurement variables from the
network model. The proposed measurement model is formulated
as follows:

e =


h(x)
x


−


0
z


, (2)

where h : Rn
→ Rk, k is the number of network model equations.
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If a power system has more measurements than states, i.e.m >
n, the state estimator will conduct the weighted least squares
(WLS) algorithm to solve an over-determined problem. The
performance index J(x) based on the proposed measurement
model is expressed as follows:

J(x) =
1
2

 k
i=1


hi(x̂)
σi

2

+

m
j=1


x̂j − zj

σj

2
, (3)

where the inverse of σ 2
i is the weighting of the ith network

equation in the WLS, the inverse of σ 2
j is the weighting of the

jth measurement. In order to minimize the estimation error, the
performance index J(x) should beminimized. This can be achieved
when σi equals to the standard variance of the ith network model
equation error and σj equals to the standard variance of the jth
measurement.

Numerical methods for solving non-linear algebraic equations
(e.g. Gauss–Newton and Newton–Raphson methods) can be used
to solve the nonlinear WLS problem, which have been described
in the literature, e.g., [1,2]. Thereby, we apply a commonly used
iteration procedure to obtain the updated state x̂, as follows:

(HT (x̂i)R−1H(x̂i))−1∆x̂i = HT (x̂i)R−1∆z(x̂i),

x̂i+1
= x̂i + ∆x̂i,

(4)

where

∆z(x̂i) =


h(x̂i)
x̂i − z


,

H(x) is the Jacobian matrix of the first order derivative of J(x), and
R denotes the covariance matrix with σ 2

i and σ 2
j on its diagonal.

Note that thismeasurementmodel and its Jacobianmatrix have
higher dimensions compared to those in the conventional state es-
timator. However, it does not result inmuch computational burden
since the elements in both of them are very simple, the former is
the differences between state variables and measurements [x− z]
and the latter is an identify matrix.

3. Hybrid AC/DC network model

A state estimator determines the real-time condition of a
network by using dynamic data (PMU measurements) and static
network data (connectivity configuration and model parameters).
Thus, building a static network model is a crucial step. Note that in
this paper, it is assumed that the network topology remains the
same, thus the static network model does not need to consider
the statues of switching devices, a task that is more relevant for
a topology processor [1,2].

PMUs measure voltage phasors Ṽ at the buses where PMUs are
installed and current phasors Ĩ on the lines adjacent to the buses.
Directly using Ṽ and Ĩ in the network model could significantly
reduce nonlinearities of themodel and the corresponding Jacobian
matrix [1]. In this section, we propose a unified AC network branch
model, a classic HVDC link model including its different control
modes, and the interface model combining the above two models.

3.1. Unified AC network branch model

The AC networkmodel of the PSE is more straight-forward than
that of the conventional SE [1]. Replacing active and reactive power
measurements with voltage and current phasor measurements
reduces at least one order in each network model equation. The
proposed model can be easily derived by using Kirchhoff’s laws.
Fig. 1. AC line with transformer [17].

Fig. 2. A simplified DC link model [17].

As shown in Fig. 1, the model is built using not only lines with
series impedance and shunt admittances, but also transformers.
These components are sufficient to formulate most AC network
models, which describe the relation between complex voltages on
buses and complex currents flowing through the lines connected to
these buses. This approach is similar to [1,2,17], but taking shunt
admittances and transformers into account at the same time.

As shown in Fig. 1, the subscript f denotes the bus where
current flows from and t is the bus where current flows to. The ith
line is represented by a series admittance yi and shunt admittance
yi0 in per unit. A transformer is represented by the off-nominal
tap ratio a : 1. In the case of phase shifting transformers, a is
a complex number. Consider a fictitious bus x between the ideal
transformer and the line series admittance, thus, for the assumed
current directions, we have

Vx =
1
a
Vf , Ix = a∗If .

The currentsIx andIt are given by

Ix = −yiVt +


yi +

1
2
yi0

 Vx, It =


yi +

1
2
yi0

 Vt − yiVx.

Substituting forIx and Vx, we have

a∗If = −yiVt +
1
a


yi +

1
2
yi0

 Vf ,

It =


yi +

1
2
yi0

 Vt −
1
a
yiVf .

For i ≥ 2, all the line parameters and measurements become
vectors, then the above equations can be written in matrix form
as:

IfIt


=

yi + 1
2yi0

a2
−

yi
a∗

−
yi
a

yi +
1
2
yi0

VfVt


. (5)

3.2. Classic HVDC link model including control modes

This subsection presents a classic HVDC link model for the
PSE. It integrates DC voltages and currents with AC voltages and
currents, which can be measured by PMUs, avoiding using active
and reactive power transfer relations. In addition, corresponding
control modes are introduced to supplement the network model.

A simplified DC link model is shown in Fig. 2, where a classic
HVDC link couples two AC networks through a rectifier and an
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Fig. 3. Converter control steady-state characteristics [17,18].

inverter. The subscript r refers to the rectifier side of the DC link
and i refers to the inverter side. For this classic HVDC link, the
network equations are given by [15–18]:

0 = |Ir | − K ∗
3
√
2

π
∗ ar Idc

0 = Vrdc − K ∗
3
√
2

π
∗ ar |Vr | cos(θr − δr)

0 = Vrdc − K ∗
3
√
2

π
∗ ar |Vr | cosα +

3
π
Xr Idc

0 = |Ii| − K ∗
3
√
2

π
∗ aiIdc

0 = Vidc − K ∗
3
√
2

π
∗ ai|Vi| cos(θi − δi)

0 = Vidc − K ∗
3
√
2

π
∗ ai|Vi| cos δ +

3
π
XiIdc

0 = Idc −
1
Rdc

(Vrdc − Vidc),

(6)

where K = 0.995 is a coefficient for a twelve-pulse AC/DC
converter; ar and ai are the tap ratios of the rectifier and inverter
sides; α and δ1 (= π − γ 2) are the firing angle (also called
ignition delay angle) and extinction delay angle, respectively; Xr
and Xi are the transformer reactances of rectifier and inverter sides,
respectively. |Vr | and θr are the magnitude and angle of Vr ; |Ir |
and δr are the magnitude and angle of Ir , which is the current
phasor flowing from the AC side of rectifier to the DC link; the
same quantities with subscript i apply to the inverter of the DC
link. For the above seven equations, there are seven DC quantities
of concern, which are Vrdc , Vidc , Idc , cosα, cos δ, ar , and ai. Both AC
and DC variables in (6) will become vectors when multiple classic
HVDC links are installed in the system.

Eq. (6) characterizes classic HVDC links under steady state,
without including the control models. In fact, including the HVDC
control modes can contribute more information to the network
model.

Generally, a classic HVDC link can control two variables at the
rectifier and inverter, respectively: the transformer tap ratio ar

1 δ here is a DC grid variable, which is different from the AC line current phasor
angles, though they use the same notation to follow the previous work.
2 γ is the extinction (advance) angle.
and the firing angle α on the rectifier side; the transformer tap
ratio ai and the extinction angle γ on the inverter side. The firing
angle α keeps a normal operation range within 15° to 20° with
a minimum limit about 5°. The extinction angle γ maintains a
minimum limit of 15° for 50 Hz and 18° for 60 Hz. Controlling
the firing/extinction angles is called grid/gate control, and is far
more rapid (1–10 ms) than tap ratio control (5–6 s per step) [17].
Therefore, firing/extinction angle control is used initially for rapid
actions, followed by tap ratios changing to restore the converter
quantities, firing and extinction angles, to their normal ranges.
Since the slow changes of tap ratios could be easily estimated [5],
they are not included into the control mode equations. In this
paper, we assume that the ar and ai are kept constant and the
firing/extinction angles are used for control purposes.

The two most common control modes are briefly discussed
below in order to develop the controlmode equations,more details
can be found in [17,18].

Rectifier current control mode (RCCM)

• When α > αmin, the rectifier maintains constant DC current by
changing α. It is the normal constant current (CC) control mode
(represented by AB in Fig. 3).

• When α = αmin, the rectifier maintains the constant ignition
angle (CIA) control mode (represented by FA).

• The inverter alwaysmaintains a constant extinction angle (CEA)
γ = γ ref control mode (represented by CD).

In this controlmode, the intersection point E represents the normal
operating condition.

Inverter current control mode (ICCM)
When the rectifier operates at a reduced voltage represented

by F ′A′B, CD representing the inverter’s CEA operation would not
intersect it. Therefore,

• The inverter maintains a constant current (represented by GH).
• The rectifier maintains a constant firing angle α = αmin

(represented by F ′A′).

The intersection point E ′ represents the operating condition at a
reduced rectifier voltage.

Im in Fig. 3 denotes the current margin, which represents the
difference between the rectifier current reference and inverter
current reference. It is usually set at 10%–15% of the rated current
to ensure that the two constant current characteristics do not cross
each other due to errors in measurements or other causes [18].

Since the dynamics of the firing/extinction angle control are
faster than PMU data reporting rates (20–50 ms per snapshot),
we assume the dynamic control process (1–10 ms) is completed
within several snapshots of the SE process. Therefore, the control
mode equations used here only consider the equilibrium of each
control mode, which are given by:

0 = C1 ∗ (Idc − Iref (re)dc )

0 = C2 ∗ (γ − γ ref )

0 = C3 ∗ (Idc − Iref (in)dc )

0 = C4 ∗ (α − αmin),

(7)

where Iref (re)dc and Iref (in)dc are the DC current references for the RCCM
and ICCM, respectively; C = [C1 C2 C3 C4] is the control mode
index. Ci = 1 indicates the corresponding equation is activated,
otherwise Ci = 0 indicates the corresponding equation will be
removed out of the control mode equation set during the SE
calculation. Hence, C = [1 1 0 0] and C = [0 0 1 1] refer to
the RCCM and ICCM, respectively. Replacing γ and α with state
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variables, (7) can be written as:
0 = C1 ∗ (Idc − Iref (re)dc )

0 = C2 ∗ (cos δ − cos δref )

0 = C3 ∗ (Idc − Iref (in)dc )

0 = C4 ∗ (cosα − cosαmin).

(8)

3.3. Interface model between DC Links and AC grids

Since ar and ai are treated as constant parameters, (6) only
involves five DC states, Vrdc , Vidc , Idc , cosα, and cos δ, and the AC
voltage phasors Vr , Vi and current phasorsIr ,Ii. However, current
phasorsIr ,Ii are not included in the AC network model like Vr andVi. Hence, Kirchhoff’s current law is applied at the buses to which
the rectifier and the inverter are connected in order to formulate
the current phasorsIr ,Ii with AC states as

Ir = −

m
j=1

Irj, Ii =

n
j=1

Iij, (9)

where j denotes an AC bus to which bus r or i is connected through
the AC line rj or ij; m (or n) denotes the number of buses which
are connected to bus r (or i). As a result, the DC link and the AC
grid have been interfaced through the voltage phasors Vr , Vi and
current phasorsIr ,Ii.

These DC link model and interface model in the state estimator
can adapt to various topologies of hybrid AC/DC grids. It can
represent an embedded DC link in an existing AC grid or as an
interconnection between two asynchronous AC grids. Future work
will focus on extending the DC link model for multi-terminal DC
(MTDC) grids [16].

4. PSE for hybrid AC/DC grids

The static network model proposed in Section 3 needs to
be implemented in the measurement model as introduced in
Section 2 for algebraic computation. This section illustrates how
to formulate the measurement model as (2) and its corresponding
Jacobianmatrix. The state variable vector x for a hybrid AC/DC grid
is

x = [|Ṽ| |Ĩ| θ δ |Ĩr| |Ĩi| δr δi Vrdc Vidc Idc cosα cos δ]T.

Here voltage and current phasors are applied in polar form,
i.e. absolute value and argument. Using phasors in polar form takes
two significant advantages: (i) PMU measurements are provided
in polar form so they can be directly used without form changes;
(ii) more importantly, it allows angle bias detection and correction,
which will be addressed in Section 5.3.

For a hybrid AC/DC grid, the network function h(x) is
formulated as:

h(x) =

 hac(x)
had(x)
hdc(x)

 . (10)

Since phasors are applied in polar form, each linear equation
in the AC network model (5) will be rewritten into two equations
associated with trigonometric functions of the phasor angles. It is
these trigonometric functions that introduce nonlinearity into the
model. Based on Fig. 1, hac(x) can be formulated as

hac(x)

=


|Vf||yff| cos(θf + φff) − |Vt||yft| cos(θt + φft) − |If| cos δf
|Vf||yff| sin(θf + φff) − |Vt||yft| sin(θt + φft) − |If| sin δf
|Vf||ytf| cos(θf + φtf) − |Vt||ytt| cos(θt + φtt) − |It| cos δt
|Vf||ytf| sin(θf + φtf) − |Vt||ytt| sin(θt + φtt) − |It| sin δt

.
In addition,

had(x) =



|Ir| cos δr +

m
j=1

|Irj| cos δrj

|Ir| sin δr +

m
j=1

|Irj| sin δrj

|Ii| cos δi −

n
j=1

|Iij| cos δij

|Ii| sin δi −

n
j=1

|Iij| sin δij


,

hdc(x) =



K ∗
3
√
2

π
∗ arIdc − |Ir|

K ∗
3
√
2

π
∗ ar|Vr| cos(θr − δr) − Vrdc

K ∗
3
√
2

π
∗ ar|Vr| cosα −

3
π
XrIdc − Vrdc

K ∗
3
√
2

π
∗ aiIdc − |Ii|

K ∗
3
√
2

π
∗ ai|Vi| cos(θi − δi) − Vidc

K ∗
3
√
2

π
∗ ai|Vi| cos δ −

3
π
XiIdc − Vidc

Vrdc − Vidc − RdcIdc
C1 ∗ (Idc − Iref(re)dc ) + C3 ∗ (Idc − Iref(in)

dc )

C2 ∗ (cosδ − cosδref) + C4 ∗ (cosα − cosαmin)



.

The second part of the measurement model can be expressed as:

x − z =

 xac − zac
xad − zad
xdc − zdc

 , (11)

where
xac − zac =


|V| − |Vm| |I| − |Im| θ − θm δ − δm

T
,

xad − zad =

|Ir| − |Imr | |Ii| − |Imi | δr − δmr δi − δmi

T
,

xdc − zdc =


Vrdc − Vm

rdc
Vidc − Vm

idc
Idc − Imdc

cosα − cosαm

cos δ − cos δm

 .

The PSE Jacobianmatrix for hybrid AC/DC grid is shown as: (see the
equation in Box I).
where

∂had(x)
∂|I| =

cos δrj or 0
sin δrj or 0
cos δij or 0
sin δij or 0

 ,

∂had(x)
∂δ

=


−|Irj| sin δrj or 0

|Irj| cos δrj or 0

|Iij| sin δij or 0

−|Iij| cos δij or 0

 ,

∂hdc(x)
∂|V|

=



0
K1 ∗ ar cos(θr − δr) or 0

K1 ∗ ar cosα or 0
0

K1 ∗ ai cos(θi − δi) or 0
K1 ∗ ai cos δ or 0

0
0
0


,
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2)
H(x) =



∂hac(x)
∂|V|

∂hac(x)
∂|I| ∂hac(x)

∂θ

∂hac(x)
∂δ

0 0

cos δr − |Ir| sin δr
sin δr |Ir| cos δr

0 ∂had(x)

∂|I| 0 ∂had(x)
∂δ

cos δi − |Ii| sin δi 0

sin δi |Ii| cos δi
−I

K1 ∗ ar|Vr| sin(θr − δr)

∂hdc(x)
∂|V|

0 ∂hdc(x)
∂θ

0 −I ∂hdc(x)
∂xdc

K1 ∗ ai|Vi| sin(θi − δi)

I 0 0
0 I 0
0 0 I



, (1

Box I.
∂hdc(x)
∂θ

=



0
−K1 ∗ ar sin(θr − δr) or 0

0
0

−K1 ∗ ai sin(θi − δi) or 0
0
0
0
0


,

∂hdc(x)
∂xdc

=



0 0 K1ar 0 0
−1 0 0 0 0
−1 0 −K2Xr K1 ∗ ar |Vr | 0
0 0 K1ai 0 0
0 −1 0 0 0
0 −1 −K2Xi 0 K1 ∗ ai|Vi|

1 −1 −Rdc 0 0
0 0 C1 + C3 0 0
0 0 0 C4 C2


,

K1 = 0.995 ∗
3
√
2

π
, K2 =

3
π

.

As shown by (12), the nonlinearities in the Jacobian matrix are
much fewer than those in the Jacobian matrix of a conventional
SE, which will significantly reduce the computation load. The high
degree of sparsity also helps to decrease the computational effort
substantially. Hence, the PSE could follow the trajectory of the
power system and should sanitize data quickly to support other
applications.

5. Considerations for practical application

In the perfect condition for the PSE, PMUs would be installed
at all buses so all the bus voltage and line current phasors are
measured. The system would be fully observable and would have
high redundancy;measurement noiseswould be too small to affect
the estimation, so they would be neglected; additionally, PMU
measurements would be perfectly synchronized by GPS clocks in a
large-scale deployments.

However, in real life this condition cannot be met, and all
of the above issues have to be carefully considered since they
may affect the SE’s performance. Therefore, prior to implementing
the proposed PSE algorithm, all these issues of it need to be
carefully assessed. This section discusses how to analyze system
observability with PMUs and the effect of redundancy, what is
the allowable measurement noise level of PMUs and DC grid
measurements, and how to deal with the phase mismatch owing
to imperfect PMUs synchronization.

5.1. Observability analysis and measurement redundancy

Generally, observability analysis aims to determine whether
there are observable islands within the network, and isolate
observable islands. System observability can be analyzed in
two main approaches: topological and/or numerical methods.
Basic topological algorithms for conventional SEs can be found
in [1,2,19]. A non-iterative numerical algorithm is proposed
in [20]. In addition, observability often acts as the criterion for
PMU placement in a power system, which aims to maximize
system observability with a minimum number of PMUs. If full
observability for an entire network is required, the algorithms
in [21–25] may be used for adding new PMUs.

However, observability analysis in this paper is performed for
each individual island, aiming to define whether this island is
observable or not as a portion of the power network, and then
developing independent state estimator models for each island to
be solved. Strictly defining observable islands for an entire system
is out of this paper’s scope.

Since PMU phasor measurements for PSE replace power flow
and power injection measurements from SCADA, new topological
rules for AC systems are as follow [26,27]:

• R1: A bus with a PMU installed and any line extending from the
bus are observed.

• R2: Any bus that is incident to an observed line connected to an
observed bus is observed.

• R3: Any line joining two observed buses is observed.
• R4: If all the lines incident to an observed bus are observed, save

one, then all of the lines incident to that bus are observed.
• R5: Any bus incident only to observed lines is observed.

Note that R4 holds based on the usage of the PSE bus modeling
method as shown in Fig. 4(a), which requires that the power
systemmodel must account for the bus at the load side (Bus B) and
any other transmission equipment (e.g. a transformer located on
line 4) before they are connected to the substation bus (Bus A). This
busmodel avoid the potential unobservable problems for non-zero
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(a) PSE. (b) Conventional SE.

Fig. 4. Non-zero injection bus modeling methods.
injection buses, which exit when applying R4 on the conventional
SE busmodel as shown in Fig. 4(b). As illustrated by Fig. 4(a), green
stars represent the observable lines and according to R4 the last
line with red star will be observable. While in Fig. 4(b), R4 does not
hold due to the unknown injection.

Therefore, with PSE bus modeling method R4 allows us to
consider this type of network topology, i.e. the connection between
a load or a generator to the high voltage system through a
transformer. This approach suits for non-zero injection buses,
additionally, it is easy to implement and makes the model more
organized.

An annotated example for the above definition of observability
can be found in [27].

To define observability rules for classic HVDC links, it is
necessary to account for all the states involved in each link. There
are five DC states to be estimated, together with four AC states
(|Vr |, |Vi|, θr , θi), and four AC/DC interface states (|Ir |, |Ii|, δr , δi).
Observe that for every set of DC link equations, (6) and (8), there
are 13 states involved. Therefore, the hybrid AC/DC observability
algorithm is extended by considering the DC network model:

• R6: The DC link is observable if all DC states are measured by
metering devices.

• R7: If the DC states are not fully measured, at least 4 of 13
states involved in each link model have to be known in order to
make all the DC states observable. Note that the AC/DC interface
state variables among the four measurements do not have to be
measured directly. They can also be accounted as known states
by being calculated from AC measurements.

However, not all combinations of four measurements will
suffice. First, these four measurements should not contain Idc and
cos δ for RCCM, or Idc and cosα for ICCM since the control mode
equations have already provided references for the above state
variables. Second, the fourmeasurements should not all come from
only the rectifier side or only the inverter side. In addition, any
of the four measured state variables should not be possible to be
calculated by the other three measurements. Providing a classic
HVDC link under RCCM, (6) and (8) can be reduced to a five-
equation set as follows:

0 = f1(|Vr|, θr, δr,Vrdc)

0 = f2(|Vr|, cosα,Vrdc)

0 = f3(|Vi|, θi, δi,Vidc)

0 = f4(|Vi|,Vidc)
0 = f5(Vrdc,Vidc).

(13)

Based on (13), the combinations can be divided in two types:
two measurements from the rectifier side and two from the
inverter side, three measurements from the rectifier side and one
from the inverter side. For the first type, all the combinations can
be inferred by the following steps:

• S1: The first measurement selected from inverter side can be
|Vi| or Vidc. Knowing either of them can calculate the other one
by using f4. Moreover, Vrdc will be known sequentially by f5.

• S2: Knowing either θi or δi can calculate the other. So far, all the
states from the inverter side have been known.
Table 1
Proper combinations of fourmeasurements tomake a classic HVDC link observable.

|Vr | θr δr Vrdc cosα |Vi| θi δi Vidc

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

• S3: Since Vrdc has been calculated, there are two equation f1
and f2 for four unknown states, which are |Vr|, θr, δr, and cosα.
Therefore, any two of the four states can be selected, except for
choosing |Vr| and cosα simultaneously.

• S4: In total, the number of combinations is 2×2×(C2
4 −1) = 20.

For the second type, the steps are as follows:

• S1: Select any three measurements among five states in the
rectifier side except for selecting |Vr|, cosα,Vrdc together.
Hence, all the states in the rectifier side can be calculated
associated with f1 and f2.

• S2: Vidc will be sequentially known by f5 and then |Vi| is known
by f4.

• S3: Either θi or δi can calculate the other. So far, all the states
from the inverter side have been known.

• S4: In total, the number of combinations is (C3
5 − 1) × 2 = 18.

All the proper combinations of four measurements to make a
classic HVDC link observable are shown in Table 1. The upper
part of Table 1 presents the first type of combinations, whereas,
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Table 2
σmax for different PMU variables.

|V | 0.02% of reading or 0.002% range
|I| 0.03% of reading or 0.003% range
θ and δ 0.01° or 10% of range minimum

the lower part is for the second type of combinations. Since PMUs
measure syntheticmagnitudes and angles together in phasor form,
thus, in reality extrameasurements out of each combinationmight
be obtained incidentally. For instance,when using the combination
of θr, δr, |Vi|, and θi; |Vr|, and |Ir| would be known automatically
when θr, δr are measured or calculated.

As indicated by the red marks in Table 1, in the case of no
measurement redundancy, the DC states can still be computed
even without any DC measurement. This brings a great advantage
since AC measurements can be easily obtained by PMUs. When
measurements are redundant, this can be taken as an advantage
for cross-validation [28], as discussed in Section 5.3. In addition,
rectifier and inverter tap ratios can also be included as DC states
when necessary since there are four more equations than the
number of DC states.

A complementary approach is to examine the Jacobian matrix
of the hybrid AC/DC grid, which is referred as to the numerical
method.

rank((H)T(H)) = Nx, (14)

where H(x) is the Jacobian matrix; and Nx represents the number
of state variables. Generally, the more rows that the Jacobian
matrix has with respect to the number of columns, the higher
the redundancy offered by the PSE. As mentioned in [1,2,5],
measurement redundancy is crucial for bad data detection and
identification.

When a measurement is lost, the corresponding measurement
row in themeasurementmodel equation, the JacobianmatrixH(x),
and its weighting in weighting matrix W(x) will be removed. As
long as (14) holds, all the states can be estimated by using the
nonlinear WLS algorithm.

A simulation study for the low measurement redundancy
scenario is presented in Section 6.3 to illustrate its effect on PSE
accuracy.

5.2. Measurement noise and the choice of weightings

In reality, it is impossible to avoid measurement noises due
to PMU metering and other causes. The standard uncertainty (σ )
for each measurement is proportional to the specified maximum
uncertainty (σmax) of the PMU with a coefficient of 1

√
3
[29,30]. In

the IEEE standard C37.242-2013 [31], PMUs have the capability of
providing the following accuracy:

1. Time tagging with accuracy better than 1 µs (or equivalently
0.02° of phase at 60 Hz).

2. Magnitude accuracy of 0.1% or better.

However, in reality the σmax varies according to each PMUs
manufacturer. For instance, [32] provides the accuracies shown in
Table 2.

In addition, it is assumed that the DCmeasurements have a σmax
of 0.01% of reading or 0.001% range. Then the σmax values in Table 2
are used and transferred into signal-to-noise ratios (SNRs) by using
(15) in order to add Gaussian noise to the true values.

SNR = 10 ∗ log10

 √
3

σmax

2

dB. (15)

As discussed in Section 2, the weighting in the WLS algorithm
would be optimal if the inverse of the correspondingmeasurement
Table 3
SNRs andweightings for different measure-
ments.

Meas. SNR (dB) Weighting
|V | 78.75 7.5 ∗ 107

|I| 75.23 3.3 ∗ 107

θ and δ 79.93 9.8 ∗ 107

DC states 84.77 3 ∗ 108

covariance is used. Therefore, the SNRs and the weightings for
different measurements can be calculated as shown in Table 3.

The weightings for network model equations depend on the
modeling accuracy for each component. A simulation test of
applying AC and DC measurement noises and corresponding
weightings into the PSE is show in Section 6.3, where the
weightings for network model equations are all equal to the
highest measurement weighting.

5.3. Angle bias detection and correction by PSE

Angle biases (or shifts) emerge due to imperfect synchroniza-
tion or incorrect time-tagging by the PMUs [4,6,33]. These phase
angle errors have been observed from recorded data in several util-
ities [4,5]. Paper [34] presents two time skew cases that result in
angle biases. In one case, the GPS signal cable was loosely con-
nected so the signal was intermittent. Thus, the PMU time was
not accurate, resulting in spikes on top of the correct angle values.
The other case of angle bias occurred due to drifting of the internal
clock.

Different from measurement errors, angle bias does not have a
normal distribution and its deviation varies within 1∼2 degrees,
even 20° in some extreme cases. In addition, angle bias could last
for a few snapshots, whichmay contaminate other measurements.

Since in the PSE, magnitudes and angles are separated as
independent states, angle biases can be detected by using
redundant measurements [4]. The vector of angle bias variables Ω

is included in the state vector as

x = [|V| |I| θ δ |Ir| |Ii| δr δi Vrdc Vidc Idc cosα cos δ Ω]
T

where

Ω = [Ωθ Ωδ Ωr Ωi].

The voltage and current angles in the AC grid measurement model
become

θ − θm
+ Ωθ and δ − δm + Ωδ.

Similarly, the current angles in the interface measurement model
become

δr − δmr + Ωr and δi − δmi + Ωi.

In order to correct the angle bias, it is required that

rank((H)T(H)) = Nx + NΩ , (16)

where NΩ represents the number of angle bias auxiliary state
variables.

This approach has been definedmore formally in the control lit-
erature, and it has been termed as cross-validation. Mathematical
proofs for cross-validation rules, as used in this paper, are available
in [28].

The angle bias variable Ω greatly facilitates angle bias cor-
rection. Compared to common bad date detection and correction
methods, such as by using normalized residuals [1], it does not
need to perform additional calculations or to define a threshold
to determine bad data. In addition, it avoids the risk that the
largest normalized residual method may fail in the detection of
gross errors for the measurements that have a large undetectable
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Fig. 5. Six-bus hybrid AC/DC system.

component [35]. In fact, this angle bias correction gives a huge
flexibility for correcting angle bias no matter how large the bias
is. The requirement, however, is to have enough redundancy to ac-
commodate the angle bias variables Ω. Hence, if the power system
has high measurement redundancy, this approach would be suit-
able.

Paper [6] applies the same algorithm for magnitude error
detection and correction. However, the authors believe it is
not necessary to use this method to correct magnitude errors,
because the incorrect time tagging issues normally do not give
rise to deviations in the magnitude measurements. It is not worth
scarifying measurements redundancy to detect and correct minor
magnitude errors.

A simulation test for the angle bias scenario is show in
Section 6.5 to illustrate this method’s performance.

6. Study cases

In this section, we apply the proposed PSE algorithm on
the synthetic measurements from both a six-bus hybrid AC/DC
system and the KTH-NORDIC32 hybrid AC/DC system [11]. Test
scenarios for illustrating the practical issues are also performed.
The synthetic measurements used for off-line PSE computations
were obtained by running time-domain simulations using the
Power System Analysis Toolbox (PSAT) [36]. The time-domain
simulations were run with a time-step (∆t) of 20 ms (which
corresponds to a 50 samples/second—PMUs reporting rate), and
each solution at ∆t was synthesized as a measurement snapshot;
hence, performing time-domain simulations allows to expose the
system dynamics for the model in the synthesized data.

In order to illustrate the performance of the proposed PSE, in
Sections 6.1 and 6.2, all the weightings for both network equa-
tions and measurements are assumed to be 1, and full measure-
ment observability is assumed. The following three subsections
present simulation results for a scenario with low measurement
redundancy, a scenario considering realistic measurement noises
and corresponding weightings, and a scenario where angle bias
correction is performed. At last, simulation time and computation
performance is discussed.
6.1. Simulation results for a six-bus hybrid AC/DC system

The diagram for a six-bus hybrid AC/DC system is shown in
Fig. 5.

The line breaker located on line 4 between bus 4 and 6 was
opened at t = 5 s and after three cycles it was re-closed at
t = 5.06 s. The DC link was under the normal operation condition
with Irefdc = 0.506 p.u. and cos δref

= 0.951 p.u. for RCCM. Phasor
measurements in polar form were acquired for a period of 20 s.

The PSE process starts with building up the static network
model. First, the state vector for the six-bus hybrid AC/DC system
is defined as follows

x = [|V1|, |V2| . . . |V6|, θ1, θ2, . . . θ6, |I1|, |I2| . . . |I12|,
δ1, δ2, . . . δ12, |Ir |, |Ii|, δr , δi, Vrdc, Vidc,

Idc, cosα, cos δ]T .

Then, based on network configuration and parameters, and the
unified AC network branchmodel and the classic HVDC linkmodel,
the whole network model is built.

The acquired measurements for all the state variables and
network model are applied to the measurement model as in (2).
To minimize the errors of the PSE, the performance index (3)
must be minimized by using the WLS algorithm. (4) gives the
iteration procedure, where the Jacobian matrix can be calculated
by using (12). Fig. 6 shows the SE computation results for one single
snapshot, and Fig. 7 is for multiple snapshots.

Since the network model for the PSE is relatively similar to the
model in PSAT, the residuals for one single snapshot are extremely
small, lower than 10−14 p.u. However, when the system was
subject to a perturbation, the PSE residuals increased as shown in
Fig. 7. This is because the topology of the system changes when
the perturbation occurs; however, the PSEmodel remains the same
and is not adapted to the change accordingly. This indeed explains
why in Fig. 7 the SE performance decreased at the instance when
the breaker was opened and then came back to a normal level after
the breaker was closed. Topology processing or network model
updating is out of the scope of this paper. Nevertheless, the SE
residuals are still within acceptable error range, including at the
peaks occurring instant when the perturbation happened.

6.2. Simulation results for the KTH-NORDIC32 hybrid AC/DC system

The diagram for the KTH-NORDIC32 hybrid AC/DC system
is shown in Fig. 8. This system is a conceptualization of the
Swedish power system and its neighbors. Its precursors are the
CIGRE ‘‘Nordic 32A’’ test network developed by K. Walve [37]
and a system data set proposed by T. Van Cutsem [38]. In [39]
some adjustments to the system model and its parameters were
made, since then the model is referred to as the KTH-NORDIC32
system [39]. In order to test the hybrid AC/DC PSE, a 400 kV classic
(a) Voltage magnitudes at all the buses
for one snapshot.

(b) Voltage angles for one snapshot
(bus 2 is the slack bus).

(c) AC/DC interface states for one
snapshot.

(d) DC states for one snapshot.

Fig. 6. PSE for the six-bus hybrid AC/DC system for a single snapshot.
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(a) Voltage magnitude at bus 4. (b) DC voltage at bus 4. (c) cosα.

Fig. 7. PSE for the six-bus hybrid AC/DC system for multiple snapshots.
Fig. 8. The KTH-NORDIC32 hybrid AC/DC system.

HVDC link is added between bus 36 and bus 41, as shown by a
yellow line in Fig. 8, for here onwards this model is referred to as
the KTH-NORDIC32 hybrid AC/DC system [11].

A 0.4 p.u. (10%) load increase was applied at bus 41 at t = 5 s.
The state vector for the KTH-NORDIC32 hybrid AC/DC system is

organized as follows

x = [|V1|, |V2| . . . |V53|, θ1, θ2, . . . θ53, |I1|, |I2| . . .

|I160|, δ1, δ2, . . . δ160, |Ir |, |Ii|, δr , δi, Vrdc, Vidc,

Idc, cosα, cos δ]T .

The PSE procedure is the same as introduced in Section 6.1. As
shown in Figs. 9 and 10, the PSE residuals remain as low as in
Section 6.1, which indicates that the proposed PSE is not affected
by the size of the test system. Fig. 10 validates that the proposed
PSE algorithm is capable to estimate states even when the system
is subject to a dynamic change (in this case, a sudden load
change).
6.3. Simulation results for the scenario without DC measurements

The same test scenario as in Section 6.1 was applied here. To
decrease the measurement redundancy, only the voltage phasor
measurements at bus 3 and 4, and current phasor measurements
on lines 3, 4, 7, and 8, which are incident to either bus 3 or 4, were
provided. There was no DC state measurement provided and the
estimation results are shown in Fig. 11.

Comparing Fig. 11 with the results in Section 6.1, reducing
measurements redundancy does not significantly influence the
PSE performance as long as the measurements can satisfy
the observability requirements discussed in Section 5.1. This
test scenario illustrates that when PMUs are available only at
critical boundary buses between the AC system and the DC
link, it is possible to estimate DC states without having any DC
measurements.

6.4. Simulation results for the scenario with realistic measurement
noises and corresponding weightings

The effect of measurement noises and weightings selection
were studied using the same test scenario as in Section 6.1 by
adding Gaussian white noise and using the weightings in Table 3.
Fig. 12 shows the PSE computation results, in which the residuals
are larger in comparison with the previous case in Section 6.1.
Nevertheless, the state estimates are acceptable for the applied
signal-to-noise ratios.

6.5. Simulation results for the scenario with angle bias correction

An example of angle bias correction was made for the six-bus
hybrid AC/DC system, where a 7.5° angle jump at bus 1° and 30°
angle jump on line 1, which is incident to the bus 1, were applied
at t = 10 s and removed at t = 11 s as shown in Fig. 13. This
test scenario shows that PSE also has the ability of correcting angle
biases for hybrid AC/DC grids.3

6.6. Simulation time and computation performance

Referring to the estimation results in Sections 6.1 and 6.2, it
is observed that most of the estimation errors are below 10−12

with relatively few iterations. PSE residuals that are higher than
10−12 are due to the lack of model update, and they require a
larger number of iterations. For instance, in the test scenario of
Section 6.1, the number of iterations for each estimation snapshot
remained around 2 when the system was in steady state. During

3 Note: measurements are shown in green; the solution from the PSE, is shown
in blue.
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(a) Voltage magnitudes at all the buses for one
snapshot.

(b) AC/DC interface states for one snapshot. (c) DC states for one snapshot.

Fig. 9. PSE for the KTH-NORDIC32 hybrid AC/DC for a single snapshot.
(a) Voltage magnitude at bus 41. (b) DC Voltage at bus 41. (c) cosα.

Fig. 10. PSE for the KTH-NORDIC32 hybrid AC/DC system for multiple snapshots.
(a) Voltage magnitudes at all the
buses for one snapshot.

(b) DC states for one snapshot. (c) Voltage magnitude at bus 5. (d) DC voltage at bus 4.

Fig. 11. Effect of reducing AC/DC measurements redundancy on the PSE for the six-bus hybrid AC/DC system.
(a) Voltage magnitudes at all the AC buses at one
snapshot.

(b) DC states at one snapshot.

Fig. 12. Effect of measurement noises on the PSE for the six-bus hybrid AC/DC system.
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(a) Voltage angles for one snapshot
(bus 2 is slack bus).

(b) Current angles on all the lines for
one snapshot.

(c) Voltage angle at bus 1 (bus 2 is
slack bus).

(d) Current angle on line 1 (between
bus 1 and bus 3).

Fig. 13. Angle bias correction for the six-bus hybrid AC/DC system. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
the first three cycles after the perturbation occurred, the iteration
number was 37 at once, and then decreased to 4 after another
three cycles. However, observe that this is due to the lack of model
update.

PSE computation time statistics for the test scenario in
Section 6.1 are shown in Table 4. Two hundreds and fifty out of
1000 measurement sets were obtained before the perturbation;
the others were after the perturbation. The measurement sets
for which the PSE computation time was below 0.003 s account
for 23.7% of the whole measurement sets; more than 99.6% of
the PSE computations are faster than the measurement rate,
which is 0.02 s. Computation time exceeding the measurements
interval mainly occurred during the perturbation period. This
shows that the proposed PSE is fast enough to track system
dynamics even when the network model is not fully updated.
The time-performance of the algorithm in a standard PC (2.80
GHz Intel Core processor running matlab R2012b) is already
acceptable for real-time applications with minimum delay, and
could be improved if the code is optimized and re-implemented
in a low-level programming language such as C++. In addition, it
demonstrates the feasibility of implementing the PSE algorithm
into real-time tests for future work.

7. Discussion

Previous work in [11] presents a linear PSE, while the PSE
proposed in this paper is a nonlinear one. The linearity (or
nonlinearity) of a PSE algorithm refers to the applied numerical
algorithm. A linearWLS algorithmor a nonlinear one is determined
by the measurement error vector e(x). In most cases, this vector
presents the same linearity (or nonlinearity) as the networkmodel.
The rationale to use the nonlinear PSE is explained below.
Table 4
Statistics of the PSE computation time.

Computation time No. of meas. sets (1000 in total) %
t ≥ 0.02 s 4 0.4%
0.01 ≤ t < 0.02 s 5 0.5%
0.006 ≤ t < 0.01 s 113 11.3%
0.003 ≤ t < 0.006 s 641 64.1%
t ≤ 0.003 s 237 23.7%

For the AC part, both algorithms use the same linear network
model. However, since the state variables used in this paper are
in polar coordinates, each linear equation needs to be rewritten
into two equations associated with trigonometric functions
of the phasor angles. These trigonometric functions introduce
nonlinearities. Although this brings additional computational
burden, using phasors in polar coordinates gives the significant
advantage of allowing angle bias detection and correction, which
has been addressed in Section 5.3.

To support this point, a comparisonwas performed on the same
nine-bus AC test system as in [11] by using the linear and nonlinear
PSE, respectively. A 7.5° angle bias was introduced to bus 8° and
30° angle biases to the lines that are connected with bus 8 for both
cases.

Fig. 14 shows voltage magnitudes and angles’ estimation
results for the linear PSE when angle biases were introduced.
The estimation accuracy for both magnitudes and angles reduces
significantly compared to the results presented in [11] when
no angle bias was introduced: magnitude residuals from 10−16

to 10−3; angle residuals from 10−15 to 1. This indicates that
the angle biases were not successfully detected; moreover, they
contaminated other angles and even magnitudes being estimated.
Therefore, it is verified that the linear PSE is unable to detect and
(a) Voltage magnitudes at all buses for one snapshot. (b) Voltage angles at all buses for one snapshot.

Fig. 14. Linear SE results—voltage magnitudes and angles for a nine-bus test system when a 7.5° angle bias was introduced to bus 8.
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(a) Voltage magnitudes at all buses for one
snapshot.

(b) Voltage angles at all buses for one snapshot.

Fig. 15. Nonlinear SE results—voltage magnitudes and angles for a nine-bus test system when a 7.5° angle bias was introduced to bus 8.
(a) DC states in linear PSE for one snapshot. (b) DC states in nonlinear PSE for one snapshot.

Fig. 16. PSE results for the linear (left) and nonlinear (right) DC link models.
correct angle biases. Paper [40] also shows a simple example that
draws the same conclusion.

On the contrary, the nonlinear PSE proposed in this paper
successfully detected and corrected the angle bias. As shown in
Fig. 15, estimation residuals remain the same range of accuracy as
in the case when no angle bias is introduced.

The limitations of the linear SE approach was reported in [40],
even in the case where there is full observability and redundant
measurements (PMUs installed at all buses and measuring all the
currents at each bus), the linear state estimator approach fails to
provide the correct measurement residuals in the presence of an
angle bias.

The DC network model can be simplified to a linear one as pre-
sented in paper [11] by reducing the number of equations and us-
ing complex variables. However, this will have two consequences:
(i) the model loses valuable information on the HVDC link, and (ii)
the state variables thatmust be used, for instance |Vr | cosα, are not
consistent with other variables, and this may lead to matrix con-
ditioning issues during the linear least squares solution. Therefore,
though the DC measurements are presumed to be very accurate,
a more detailed classic HVDC link model is still preferred by the
authors in order to guarantee estimation accuracy.

A comparison between the linear classic HVDC link model as
in [11] and the nonlinear one was carried out and the results are
shown in Fig. 16. Compared to the nonlinear model’s estimation
residual of 10−16, the linear one only achieves 10−10.
8. Conclusions and future work

A PMU-based state estimator for a hybrid AC/DC grid has been
presented. By applying Kirchhoff’s laws, the proposed network
model simplifies the nonlinearities of the network model used in
conventional SEs. All the AC and DC states are considered simul-
taneously to solve the nonlinear WLS problem. After posing the
network model and measurement model for the PSE, computation
results for two hybrid AC/DC grids are presented. Practical issues
for applying this PSE algorithm in realistic conditions are briefly
discussed, including system observability and measurement re-
dundancy, measurement noises and weightings, angle bias, and
computation performance.

In addition, this paper has highlighted the importance to
perform quick updates to the system topology and networkmodel.
This calls the need for a PMU-based topology processing algorithm,
for which, the work in [41] is a good starting point.

Future work will focus on developing a VSC-based DC link
model, extending the DC link models to handle MTDC grids,
and implementing the proposed PSE algorithm into a real-time
platform to carry out end-to-end real-time hardware-in-the-loop
performance tests [7].
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