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Abstract—Existing mode meter algorithms were derived with
the assumption that load variations are accurately represented
by white noise or an integral of white noise, which may not be
satisfied in actual power systems. This paper proposes a mode
meter algorithm which relaxes this assumption by explicitly taking
into account spectral load characteristics. These characteristics
can be either measured or estimated using the inverse of the
existing power system model. The method is developed assuming
an autoregressive moving average (ARMA) model of the system
and incorporating estimated correlations between loads as inputs
and synchrophasor measurements as outputs. Performances of the
proposed method are compared with the Yule-Walker and N4SID
methods using simulated synchrophasor data obtained from the
KTH Nordic 32 test system. Finally, the effects of measurement
noise on the proposed method are analyzed, as well as the effects
of model uncertainty when the power system model is used to
determine spectral load characteristics. It is shown that the pro-
posed algorithm increases accuracy in mode estimates when the
loads are described with nonwhite noise.

Index Terms—Forced oscillations, load spectrum, mode estima-
tion, mode meter, synchrophasors.

I. INTRODUCTION

P OORLY damped power system oscillations reduce net-
work transfer capacity and decrease security margins

[1]–[3]. For accurate real-time monitoring of poorly damped
oscillations, different algorithms (usually referred to as mode
estimators) have been developed [4], [5]. Mode estimators use
signals from phasor measurement units (PMUs) which provide
time-synchronized voltage and current phasor measurements
with high sampling frequency (currently up to 50 or 60 Hz).
Mode estimation methods can be broadly classified into two
main groups, defined here.
• The first group consists of methods that use transient (large
disturbance) system responses. These algorithms have very
good performances, but they require existence of transient
responses in the system, which makes their application dif-
ficult in continuous (near real-time) mode estimation [4],
[5].
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• The second group consists of methods that perform anal-
ysis of ambient responses, usually referred to as mode
meters. Ambient responses are a result of random load
changes and can be observed in all system variables (e.g.,
voltages, currents, powers, and frequency), even under
quasisteady-state operation. Information about system
transfer functions, and, consequently, system modes, are
contained in the spectrum of ambient responses. This
property can be seen as a “coloring” of input noise with
the system’s transfer functions.

Ambient power system responses were first considered in
[6], where an autoregressive model of ambient data was used.
This method was later extended to incorporate the autoregres-
sive moving average (ARMA) model [7] and the autoregres-
sive model with spectral analysis [8]. Subspace identification
[9]–[11] and frequency-domain decomposition [12] have been
also applied for mode estimation in power systems. More infor-
mation on mode estimation algorithms can be found in [5], [8],
[13], and [14].
Ledwich and Palmer show in [15] that it is reasonable to as-

sume that loads at the low voltage level can be represented by
integral of Gaussian white noise. However, considering only
the transmission network (which is common practice for trans-
mission system operators), aggregated loads at the high voltage
level have a spectrum whose distribution is determined by dy-
namic characteristics of the local distribution and surrounding
transmission systems. Further, intrinsic oscillatory behavior of
loads (load oscillations) [16], [17] makes spectral load proper-
ties even more complex. These considerations highlight that ag-
gregated load spectra cannot be accurately described by a simple
function such as white noise or integral of white noise.1

Properties of input signals have been included in mode esti-
mation using external probing signals, which are usually based
on subspace methods [18]. However, existing mode estimation
algorithms that use ambient responses assume that spectral dis-
tributions of loads are known in advance and constant, i.e., loads
are represented by Gaussian white noise or integral of Gaussian
white noise [4], [5]. As explained above, this assumption is very
strict and may not be satisfied in real-world power systems [16].
This paper proposes a mode meter algorithm which relaxes

this assumption, i.e., the method does not assume any under-
lying load spectral distribution. This refinement makes mode
estimates more accurate and independent of spectral load char-
acteristics. The method assumes that load active and reactive
powers are available from PMUs placed directly at the load
buses. This assumption, even though not satisfied in present-day

1The use of integral of white noise as a load model instead of pure white noise
introduces one additional pole at the complex plane origin which is visible in
the measured signals. The locations of other modes are not changed.
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power systems, is expected to be fulfilled in the near future
[19]. However, if some signals are not measured directly, they
can be reconstructed using the inverse of the existing power
system model, providing estimates of the load spectrums and
information about the correlation between loads and measured
system outputs. The method adopts an ARMA model as an un-
derlying model of the system. Using the estimated correlations
and definition of the ARMA model, the problem of mode es-
timation is formulated as an unconstrained linear least-square
problem which can be solved using well-known optimization
techniques. The algorithm concurrently uses all available syn-
chrophasor signals from the network, providing a robust esti-
mate of critical system modes.
Performances of the proposed algorithm are evaluated in the

presence and absence of forced oscillations which are a result of
load oscillations. The results are compared with two mode es-
timators: the Yule–Walker algorithm, which is widely accepted
as a method with good overall performances [5], and the N4SID
method as a representative of the group of subspace identifica-
tion methods [9].
This paper is organized as follows. Section II introduces

the power system model used for load spectrum estimation.
In Section III, the proposed method for load spectrum estima-
tion is described. In Section IV, the methodology is verified
by simulation studies using a KTH Nordic 32 power system
model, whereas additional remarks are given in Section V.
Conclusions are drawn in Section VI. The Appendix provides
detailed derivation of the inverse power system model which
is used in Section III.

II. POWER SYSTEM MODEL

From the system identification and mode estimation view-
point, it is neither necessary nor feasible to track all changes in
the distribution system due to the large number of components
and continuous changes in operating conditions. Further, distri-
bution systems are usually radially connected to the transmis-
sion system. This makes the identification of oscillatory events
originating at the distribution level relatively straightforward
(due to their local nature).
Taking into account the aforementioned considerations, the

power system model used in this paper describes dynamics
of the transmission system with the distribution system repre-
sented by active and reactive power injections at all load buses,
i.e., distribution system dynamics are not represented explic-
itly. Ambient responses, which are of interest here, are mainly
driven by small perturbations in the network, and therefore
associated power system dynamic behavior can be accurately
represented by a linear model [1]–[3].
The inputs of the system are defined as loads variations.2

Responses (outputs) of the system are variables measured by
PMUs (voltage, current phasors, and other derived quantities)
excluding measurements at the load buses. Thus, the power
system model can be represented in the state-space form,
assuming zero initial conditions, as follows:

(1)

(2)

2It is assumed that all control references in the system are held constant and
are therefore not considered as the inputs.

where and are subvectors of the input vector
, denoting measured and nonmeasured inputs, respec-

tively. Vector denotes the state vector, and is a
vector of output variables measured by PMUs. Note that some
or all inputs can be measured by PMUs, but these signals are not
part of the output vector . Matrices
and are system, input, output, and control ma-
trices, respectively.
Using the state space model (1)–(2), the transfer function ma-

trix between loads (at the input) and measured variables (at the
output) is computed as follows:

(3)

The complete model of the system can be written in a developed
form as

...
...

...

(4)

where and are the th elements of the vectors
and , respectively, and is the element of

the H matrix at position . denotes the number of inputs
(loads) bothmeasured and not measured, i.e., length of .
denotes the number of outputs (available PMU measurements
and length of . This model can be visually represented
as shown in Fig. 1.
Fig. 1 shows that a single output signal can be considered

as a sum of components which are driven by only one load
(denoted by in Fig. 1). The decomposed signals are used in the
formulation of the mode estimation method which is presented
in Section III.

III. METHODOLOGY

The block diagram of the proposed method is depicted in
Fig. 2. The method assumes that all inputs (loads) are mea-
sured, whereas outputs are arbitrarily chosen in accordance with
available PMUs in the system. In the case that some inputs are
not measured, these signals are reconstructed using the existing
model of the system. The rest of this section describes each step
in detail.

A. Data Preprocessing

As the first step in the method, preprocessing aims to remove
erroneous data and the mean of the measured signal. Further,
the signal is downsampled to 5 Hz in order to improve compu-
tational efficiency of the algorithm. More details about prepro-
cessing steps can be found in [16] and [20].

B. Reconstruction of Unavailable Signals and
Cross-Correlation Estimation

The second step reconstructs signals of active and reactive
load powers which are not available from PMUs. The approach
consists of using available information about the system (in this
case, the existing power system model) in order to obtain an
estimate of the required inputs (loads). This procedure avoids
the use of predefined signals (such as Gaussian white noise) for
representing the loads.
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Fig. 1. Model of the power system using loads as inputs and PMU measure-
ments as outputs.

Fig. 2. Global block diagram of the proposed method.

To reconstruct unavailable input signals from the measured
outputs, it is necessary to find the inverse system of (1)–(2). The
inverse system is the state space system with exchanged roles
of the inputs and outputs [21]. In this case, the known outputs
are available from synchrophasor measurements and unknown
inputs (load variables not measured) need to be computed. The
inverse system is given by

(5)

(6)

Vectors , and maintain the
definition given in Section II. Derivation of the state space ma-
trices of the inverse system ( and ) are
given in the Appendix. Once the inverse system is determined,
unknown input signals are computed by time-domain simula-
tion of the linear system (5)–(6).
At the beginning of this section, it was assumed that all input

signals are measured or reconstructed. However, cross correla-
tions between inputs and outputs carry all necessary informa-
tion for mode estimation,3 as time-domain input signals are not
directly used in the proposed mode estimation method. A th
element in the cross-correlation sequence between two signals
( and is estimated as follows:

(7)

C. Transfer Function Estimation

As described in Section II, one output signal (measurement) is
determined by all inputs (loads) in the system. Using the ARMA
model formulation, the equations associated with the th output
can be written as [22]

...
...

...

(8)

where is the contribution of the th input to the th output
at the sample , whereas and are autoregressive and moving
average model orders, respectively, with corresponding coeffi-
cients and .
In (8), it is assumed that all denominator coefficients (

for each transfer function are the same (considering the unique
characteristic polynomial of the system).

3Autocorrelation is a special case of cross-correlation where both signals are
identical.
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The sum of all equations associated with the th output equa-
tion (8) leads to

(9)

and further

(10)

By multiplying both sides with and taking expected
values denoted by , the following expression is obtained:

(11)

Using the definition of the autocorrelation and cross-correlation
sequences and assuming that inputs are wide-sense stationary
[22], (11) can be written in compact form as

(12)

or in equivalent form

(13)

where is the autocorrelation sequence of the th output
signal and is the cross correlation between the th output
signal and the th input (load) signal. These correlation se-
quences are estimated using (7). Note that all signals have zero
mean due to the assumption of an underlying linear model and
the performed preprocessing steps (Section III). This ensures
that covariances and correlations can be used interchangeably.
The same set of equations can be written for all available

output signals . Further, an arbitrary number of
correlation coefficients can be used , forming a
set of linear equations. By using a sufficient number of
autocorrelation and cross correlation elements, it is possible to
form an overdetermined system of equations given by (13). The
resulting system is linear with unknown ARMA model param-
eters. ARMA parameters are computed from (13) using least
squares or any other linear programming solver [23]. Note that
this is an unconstrained linear least-square problem.

TABLE I
DOMINANT MODES OF THE KTH NORDIC 32 TEST SYSTEM

D. Computation of System Eigenvalues

The computed ARMA model parameters define the charac-
teristic polynomial of the system. The roots of the characteristic
polynomial are the system poles (eigenvalues) in the -domain
which can be transformed to the -domain using the well-known
transform [1]

(14)

where is the signal’s sampling period and is a vector of
computed poles in the -domain. and are real and imagi-
nary components of the modes in the -domain (s), respectively.
Once the -domain modes of the system are calculated, damping
ratio of the th pole can be easily computed from

(15)

in order to perform a small-signal stability assessment of the
system.

IV. STUDY CASES

The proposed method is demonstrated using the KTH Nordic
32 test system [24]. The system has 44 inputs (22 load buses)
and a total of 52 buses where voltage magnitudes are measured.
Small-signal stability analysis shows two dominant modes
whose properties are given in Table I. Also, study cases are
carried out to assess the performance of the proposed method
and to compare it with other methods (Yule–Walker and N4SID
method, later referred to as conventional methods).
In all studies, a 13-min data window is used for mode estima-

tion (3900 samples obtained after the preprocessing procedure
where signal is downsampled to 5 Hz).
The autoregressive model order of the estimated model is

chosen to be 25, whereas the moving average order is equal to
2. For the proposed method, 125 elements of the correlation se-
quences are used which corresponds to a 25-s in-
terval with 5-Hz sampling rate. Considering that the system has
52 outputs , the total number of equations in the un-
constrained linear least-square problem is equal to 6500. Statis-
tical properties of the three estimators are evaluated with 1000
independent Monte Carlo simulations.

A. Mode Estimation in the Presence of a Forced Oscillation

The main advantage of the proposed method is that it takes
into account properties of the input spectrum. For the sake of
simplicity, the most comprehensive nonwhite signals, i.e., white
noise with only one permanent oscillation, are used to model
load variations. This type of load behavior (sometimes referred
to as cyclic load) has been identified in power system literature
[25]. It can be caused by some specific industrial processes [26]
or intrinsic element properties, such as diesel generators [27].
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Fig. 3. Fourier transform of the active power signal with a load oscillation at
0.45 Hz.

Fig. 4. ARMA 25/2 mode estimation using the Yule–Walker method in the
presence of forced oscillations at 0.45 Hz.

Fig. 5. ARMA 25/2 mode estimation using the N4SID method in the presence
of forced oscillation at 0.45 Hz.

This topic has gained more interest in recent time with the de-
ployment of large number of wind turbines which show oscilla-
tory behavior due to mechanical properties of the turbine [28].
In this study, all load signals (active and reactive powers)

are modeled by a load oscillation at 0.45 Hz, which is added
to a Gaussian white noise with a signal-to-noise ratio of 17 dB
(the squared amplitude of the sinusoidal signal component is
25 times smaller than the noise variance). A Fourier transform

Fig. 6. ARMA 25/2 mode estimation using the proposed method in the pres-
ence of forced oscillation at 0.45 Hz.

TABLE II
STOCHASTIC PROPERTIES OF THE ESTIMATION RESULTS IN THE CASE WHERE

A FORCED OSCILLATION IS PRESENT IN THE LOAD SIGNALS

of the generated load signal is shown in Fig. 3. Measurement
errors are neglected in the simulation studies.
Results of the performed simulations are shown in Figs. 4–6,

while numerical results are given in Table II.4 The obtained
results show that both estimators which do not take into ac-
count the shape of the load spectrum (Yule–Walker and N4SID)
wrongly estimate 0.45 Hz as the most critical electromechan-
ical mode, making the true system mode at 0.5 Hz unobserv-
able. Also, damping of this artificial mode is estimated with very
small variance (around 0.001) because the forced oscillation is
clearly visible in the spectrum of the measured signals. On the
other side, the proposed algorithm correctly discerns the forced
oscillation from the true system modes in the mode estimation
process (mode at 0.45 Hz is not present in Fig. 6). This is pos-
sible because information about the load oscillation is extracted
from the measured input signal and corresponding correlation
sequences.
These results show that the “white noise load” assumption

used in the Yule–Walker and N4SID methods is essential for
the accurate mode estimation. However, as illustrated in Figs. 4
and 5, this assumption might not hold and, consequently, it will
affect results of the mode estimation. On the other hand, the
proposed method is not sensitive to the input load spectrum, i.e.,
it discerns from the main network modes and neglects specific
load dynamics.
Another important observation is that when a forced oscilla-

tion appears close to one of the true systemmodes, it deteriorates
the accuracy of the Yule–Walker’s method for that true system

4True system modes are given in Table I.
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Fig. 7. Probability distribution function (PDF) of the estimates.

Fig. 8. ARMA 25/2 mode estimation using the Yule–Walker’s method with
white noise at all inputs.

Fig. 9. ARMA 25/2mode estimation using the N4SIDmethodwith white noise
at all inputs.

mode. In this case,Mode 1 at 0.4987 Hz is estimated with signif-
icantly increased damping and large variance (Fig. 4). In con-
trast to that, the N4SID method accurately estimates Mode 1
with a variance which is in accordance to general N4SID per-
formance (Fig. 5). Finally, these results show that Yule–Walker
shows inferior performance in the presence of the forced os-
cillation compared with the N4SID method, even though both
methods show the drawback of estimating the artificial mode at
0.45 Hz.
In order to determine the distribution of the obtained esti-

mates by the proposed method, a larger number (10 000) of
Monte Carlo simulations with randomly generated load varia-
tions are performed. It is found that the estimates obey a normal
Gaussian distribution function which is shown in Fig. 7.

Fig. 10. ARMA 25/2 mode estimation using the proposed method with white
noise at all inputs.

TABLE III
STOCHASTIC PROPERTIES OF THE ESTIMATION RESULTS IN THE BASE CASE

(LOADS ARE MODELED AS A WHITE NOISE)

B. Mode Estimation With Loads Modeled as Pure Gaussian
White Noise

The three mode estimators are compared in the case where
input load changes are driven by white noise. This analysis
shows that the proposed method provides results with similar
accuracy as the conventional methods when their “white noise
assumption” is fully satisfied. Results of the three estimators are
given in Figs. 8–10, whereas numerical results are summarized
in Table III.5

It can be noticed that, in this case study, Yule–Walker’s
method provides slightly better results in terms of variance.
This is because the “white noise load” assumption (which is
incorporated into Yule–Walker and N4SID methods) is fully
satisfied.
On the other hand, the proposed method estimates input spec-

trums based on measurements leading to higher variance of the
estimate. N4SID generally shows inferior performances, both in
terms of variance and mean value of the estimate.
In addition, the N4SID method shows very poor results when

modes are well damped. Even though these modes are not of
interest for mode estimation, the results show that the N4SID
algorithm is not suitable for application when more informa-
tion about well damped modes is required. Figs. 8–10 show one
general deficiency of the mode estimation algorithms: closely
located modes significantly affect the accuracy of the mode es-
timates (e.g., modes with frequencies from 0.7 to 1.2 Hz and
damping ratio below 15%) [29].

5True system modes are given in Table I.



PERIĆ AND VANFRETTI: POWER-SYSTEM AMBIENT-MODE ESTIMATION CONSIDERING SPECTRAL LOAD PROPERTIES 1139

TABLE IV
STOCHASTIC PROPERTIES OF THE ESTIMATION RESULTS WITH MEASURED

SIGNALS OF DIFFERENT TYPE

This analysis shows the importance of the “white noise load”
assumption for conventional methods, whereas the proposed
method obtains accurate results regardless of the load spectrum.

C. Mode Estimation Using the Different Types of
Synchrophasor Signals

In Sections IV-A and IV-B, voltage magnitude synchrophasor
measurements are used with aim to assess performances of
the proposed method. However, the method has been derived
without assuming any particular output signal type, therefore
different signals (such as active and reactive powers, currents,
and voltage angles) can also be used for the mode estimation.
Table IV shows results of the estimation of the two critical
electromechanical modes with measurement signals of different
type.
From the results in Table IV, it can be concluded that any

type of signal can be successfully used for mode estimation,
but the combination of active and reactive power signals pro-
vide estimates with slightly lower variance. One reason for this
is that number of analyzed signals in this case is larger com-
paring to other analyzed cases. Voltage angle signals provide
high observability of the modes (because of relatively low vari-
ance compared to number of used signals), whereas the use of
current signals provides less encouraging results.

D. Effects of Measurement Noise on Estimation Accuracy

In order to assess the robustness of the proposed method in
the presence of measurement noise, different noise levels are
simulated and estimation results are compared with the case
where no measurement noise is present. The noise is modeled
by adding a Gaussian white noise to the measured signals. The
noise-to-signal ratio (NSR) used is defined as a ratio between
variance of the measurement noise and variance of the ambient
data analyzed. Fig. 11 shows how mean values and variances of
the estimates (frequency and damping ratio) changewith the dif-
ferent levels of measurement noise. The colored range in Fig. 11
represents standard deviation of the estimation.
In the case of frequency estimation, the standard deviation

is of order , therefore, this range appears as a thin line in
Fig. 11. An important conclusion is that a large amount of noise
does not significantly affect the frequency estimation. On the
other hand, the estimated damping ratio increases with the in-
crease of the noise level whereas the variance is not significantly
increased.

Fig. 11. Effects of measurement noise on frequency and damping estimation.

E. Effects of Load Sensitivity on Mode Estimation

As stated in Section II, the proposed method neglects the be-
havior of the load, meaning that the method always estimates
modes which are associated only to the transmission part of the
system (transfer function between load buses and measured sig-
nals). Biases introduced by the load behavior can be analyzed
using the load model from [2] as follows:

(16)

(17)

where

and initial active and reactive loads;

voltage magnitude at the initial operating
condition;

and coefficients which describe load active
and reactive power dependence on voltage
variation;

and load active and reactive power dependence
on frequency deviation.

In these studies, typical ranges for the load coefficients are
adopted from [2].
Dependence of the location of the first critical mode at 0.5 Hz

on different load sensitivity coefficients is shown in Figs. 12 and
13.
It can be concluded that the mode frequency is not signifi-

cantly affected by load sensitivities, except in the case of reac-
tive power sensitivity on voltage deviation.
System mode damping is more sensitive on load character-

istic changes (see Figs. 12 and 13). Based on the presented re-
sults, modes of the whole system can be computed from the es-
timated modes by knowing the model of the loads and using
(16) and (17). As can be seen in Figs. 12–13, the uncertainty in
load parameters does not introduce significant error in the mode
estimation.
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Fig. 12. Sensitivity of the mode location on load active power change caused
by variations in voltage and frequency.

Fig. 13. Sensitivity of the mode location on load reactive power change caused
by variations in voltage and frequency.

F. Mode Estimation in the Case of Reconstructed Signals

Even though it is envisioned that all buses in the transmis-
sion network will be equipped with PMUs in the future, it is
necessary to consider a situation where some load buses are
not equipped with PMUs or some PMU measurements are not
available due to device or communication malfunction. In this
regard, the methodology from Section III-B is employed to re-
construct missing measurements at load buses. It is reasonable
to expect that a large number of missing load signals and the
existing model uncertainty negatively affect the accuracy of the
reconstruction procedure. However, even in the case where none
of the loads are measured, the procedure provides better estima-
tion of the input–output cross correlations compared with those
of any other predefined spectral distribution.
To analyze the method’s dependency on model inaccuracy,

the generator’s inertias and exciters’ gains are intentionally
changed to model this uncertainty. These model parameters are
chosen under assumption that they have a large influence on
electromechanical oscillations [1], [3]. In addition, to analyze
the dependency on measurement unavailability, none of the

Fig. 14. Mode estimation results using the proposed algorithm with no mea-
sured inputs and assumed model with 10% error.

Fig. 15. Mode estimation results using the proposed algorithm with no mea-
sured inputs and assumed model with 20% error.

input (load) signals are measured and therefore they are all
reconstructed using the methodology from Section III-B.
Three test cases are analyzed where generators’ inertias and

exciters’ gains are changed 10%, 20%, and 50% from their orig-
inal values, respectively. This is done in such way that half
of the generators have their original values increased, while
the other half have these values decreased. Dominant modes of
these modified (uncertain) models are given in Table IV. For
each level of model inaccuracy, 100 independent random load
variations are simulated and modes are estimated for each one
of them. Results from the proposed mode estimation method are
presented in Figs. 14–16 and Table V.
Since the inaccurate model is used in the algorithm, the cor-

relation sequences obtained will be imprecise, leading to less
reliable but still satisfactory mode estimates which can be seen
in Table V. However, the most important property of the es-
timator, its ability to discern and neglect forced oscillations, is
still kept due to the fact that forced oscillations are detected from
the input data even with erroneous model parameters such as the
ones used in this study cases.



PERIĆ AND VANFRETTI: POWER-SYSTEM AMBIENT-MODE ESTIMATION CONSIDERING SPECTRAL LOAD PROPERTIES 1141

Fig. 16. Mode estimation results using the proposed algorithm with no mea-
sured inputs and assumed model with 50% error.

TABLE V
DOMINANT SYSTEM MODES FOR DIFFERENT MODEL UNCERTAINTY LEVELS

TABLE VI
STOCHASTIC PROPERTIES OF THE ESTIMATION RESULTS IN THE CASE WITHOUT

MEASURED INPUT SIGNALS AND DIFFERENT MODEL UNCERTAINTY

The results in Table V show that, regardless of the model un-
certainty, the forced oscillation is not identified as a true system
mode. However, model uncertainty has an effect on the accuracy
of the estimation process; this can be seen in the mean value and
variance of the estimate (larger uncertainty leads to larger bias
and variance). Figs. 14–16 also show that the uncertain model
does not create bias in the estimatedmode frequency but slightly
increases value of the estimated damping ratio.
The use of an inaccurate model for distinction between a

forced oscillation and a real system mode imposes a possible
problem in the case where the model contains no information
about the dominant mode. In that case, the real system mode
can be interpreted as a forced oscillation and therefore not re-
ported to the operator.

Fig. 17. Errors in load signal estimation by using the inverse power system
model caused by output measurement noise.

G. Effects of Measurement Noise on Input Signal
Reconstruction

Measurement noise in output signals (which are used for re-
construction of unavailable input signals) corrupts the quality
of the estimated input signals. The level of noise produced at
the input can be computed using (5) and (6). In the studies per-
formed, a fully accurate model is assumed, meaning that the
measurement noise is the only cause of errors for input signal
reconstruction.
Different measurement noise levels (up to 1.1 NSR) are sim-

ulated and six different sets of output signals are used in the
reconstruction process. The selected output signal sets used in
the reconstruction process are:
• Set 1: Voltage magnitudes in all buses and 60 both active
and reactive power flow measurements.6

• Set 2: Voltage angles in all buses and 60 both active and
reactive power flow measurements.

• Set 3: Voltage magnitudes and angles in all buses and 80
both active and reactive power flow measurements.

• Set 4: Voltage magnitudes and angles in all buses and 80
both active and reactive power flow measurements, as well
as 80 current magnitude measurements.

• Set 5: Voltagemagnitudes and angles in all buses and active
and reactive power flow measurements at both ends of all
lines in the system.

• Set 6: Voltagemagnitudes and angles in all buses and active
and reactive power flow measurements as well as current
magnitude measurements at both ends of all lines in the
system.

The computed dependence between noise level in the mea-
sured output and resulting noise in the reconstructed input is
given in Fig. 17. Two cases are analyzed: the noise level pro-
duced at the active power inputs and the noise level at the reac-
tive power inputs.
From Fig. 17, it can be concluded that the first set of mea-

surements provides satisfactory accurate input estimation. This
is due to fact that the NSR of the estimated input signal is around
2 for active power and less than 1.5 for reactive power in the
case of 1.1 NSR in the output measurements. This proportion
approximately holds for all noise levels. A larger number of

6There are 80 lines in the system, and PMUs can be installed at both ends.
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measured signals reduces the effect of the output noise. In addi-
tion, with the large number of measured signals, noise produced
at the input has a lower NSR compared to the NSR of the orig-
inal (output) measurements.

V. DISCUSSION

A. Topology Change

Topology changes may lead to a significant displacement of
the modes. Because the time window used for the estimation
is in range of 10–15 min, the estimator may not be able to in-
stantaneously calculate new (correct) results after a significant
topology change. Instead, the estimated modes have a smooth
transition to the correct results.
The ambient system response is present in the measured sig-

nals all of the time, whereas topology changes may introduce
additional transient responses. Transient response can be used
for mode estimation (employing methods that use transient re-
sponses) in order to crosscheck the results obtained using an
ambient mode estimator.
If the model is used for the input signal reconstruction, it is

necessary to update the model after a topology change to reflect
the current state of the system. The effects of using an inaccurate
model of the system are analyzed in Section IV-F.

B. Computational Complexity

Computational complexity of the proposed method is mainly
determined by two steps in the algorithm.
• Unconstrained linear least-square problem. The
least-square problem is solved in every estimation cycle.
The computation time depends on the number of unknown
model parameters which is equal to . In the
analyzed problem (6500 equations), the required solution
time is around 50 s using a MATLAB implementation and
a personal computer7. The number of unknown parameters
is especially sensitive to the order of the numerator in
the estimated ARMAmodel. A high order of the numerator
leads to a high order of the least-square problem, which
significantly reduces the computational performance of
the method.

• Pseudoinversion as a part of the input signal reconstruc-
tion. This step can take significant computational time
in the case where large number of input measurements
is missing (up to 7 min for reconstruction of 5000 input
signals using a MATLAB implementation and a personal
computer). This step is performed only once after the
model of the system is updated, therefore, the computa-
tional performance is less critical in this case.

All other steps of the methodology (such as the correlation
coefficient computation) require negligible computational time
and do not affect overall computation performances.

VI. CONCLUSION

This paper proposes a method for mode estimation using am-
bient synchrophasor data which relaxes the widely accepted as-
sumption that loads are accurately described by white noise or
integral of white noise. The proposed method is founded on
the hypothesis that a large number of PMUs is deployed in the
system. Despite the fact that this is not the case in present-day

7Intel i7, 2.7 GHz CPU, and 8 GB of RAM.

power systems, we believe that the sufficient number of PMUs
will be deployed in the near future.
The results obtained confirmed that the method correctly ex-

ploits information about spectral load properties, enabling the
estimator to deal only with true system modes. These results
indicate that the proposed method will provide more accurate
mode estimates in real-life operating conditions where loads can
have unpredictable spectral characteristics.
The results obtained suggest that unavailable input signals

can be extracted with satisfactory accuracy even with a rela-
tively inaccurate model of the power system. The performed
analyses also show that the proposed method provides compar-
atively accurate results even in the case where the “white noise”
load assumption is satisfied, meaning that the proposed method,
compared with conventional methods, does not compromise ac-
curacy by any means.
The proposed method correctly estimates modes of the trans-

mission part of the system. If necessary, modes of the overall
system (including loads) can be estimated using existing load
models to compensate the bias introduced by loads.
The analyses show that the level of measurement noise af-

fects estimation accuracy, particularly damping ratio estimation
accuracy. Computational performances predominantly depend
on the selected order of the numerator in the estimated ARMA
model. A high order can result in unacceptable high dimensions
of the least-square problem.
The proposed methodology gives a new perspective to the

mode estimation problem. Still, forced oscillations and their ef-
fects on mode estimation algorithms in general need to be inves-
tigated more thoroughly under real-life conditions. We believe
that the best results in practice can be obtained by confronting
results from different approaches in an integrated manner; this is
a topic for future research. It is also important to investigate new
methods for obtaining faster response of the mode estimator in
order to make estimation more accurate during transients.

APPENDIX

An inverse system of the linear dynamical system is defined
as a systemwhich, when fed by the output of the original system,
at the output gives inputs (excitation) of the original system. It is
assumed that the original system is defined by (1)–(2). By using
(2), unknown inputs can be expressed as

(A1)

which represents the output equation of the inverse system. By
substituting from (A1) into (2), the state space equa-
tions of the inverse system are obtained as

(A2)

By introducing the following notation:

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)
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a standard state space formulation of the inverse system can be
written as

(A9)

(A10)

which is the formulation used in (5)–(6).
The number of rows in matrix has to be greater or equal

to the number of columns, and the rank of must be equal to
the number rows (number of unknown input signals). If is
not a square matrix, pseudo-inversion is used, which is defined
by

(A11)
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