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Abstract—This paper develops a measurement-based method
for estimating a two-machine reduced model to represent the
interarea dynamics of a radial, multimachine power system. The
method uses synchronized bus voltage phasor measurements
at two buses and the line current on the power transfer path.
The innovation is the application of the interarea oscillation
components in the voltage variables resulting from disturbances
for extrapolating system impedances and inertias beyond the
measured buses. Expressions for the amplitudes of the bus voltage
and bus frequency oscillations as functions of the location on the
transmission path are derived from a small-signal perturbation
approach. The reduced model provides approximate response
to disturbances on the transfer path and offers an alternative to
model reduction techniques based on detailed system models and
data.

Index Terms—inertia extrapolation, interarea oscillations,
phasor measurement, power system model reduction, power
transfer interface, reactance extrapolation.

I. INTRODUCTION

MOST power system model reduction methods start from a
detailed system model with a large parameter set. These

methods are based on the observation that when subject to a dis-
turbance, groups of close-by and strongly connected generators
would swing coherently. Model reduction is then achieved by
aggregating the coherent groups of generators together. These
analytical reduction techniques include the terminal bus aggre-
gation approach [1], [2] and the slow-coherency method [3]–[5].
An important attribute of these methods is that a power network
structure is retained.

In this paper, we develop a measurement-based method
for constructing a reduced physical model to represent the
transfer path of a radial, multimachine power system, using
bus voltage and line current phasors on the transfer path. The
method is made practical by the availability of networks of
GPS-synchronized, high sampling-rate (30 to 60 samples/s)
phasor measurement units (PMU) [6], [7]. The innovation here
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is the application of the interarea oscillation components in the
voltage variables resulting from disturbances for extrapolating
system impedances and inertias beyond the measured buses.
Starting from a small-signal model, fundamental expressions
for the amplitudes of the bus voltage and bus frequency oscilla-
tions as functions of the location on the transmission path of a
two-machine system are derived. This concept is then extended
to obtain the impedance and inertia of a coherent area in a radial
power system, by extracting the interarea model oscillations.
The results here extend those in [8], where only the impedance
between the measured buses and an equivalent inertia were
computed. The work here differs from several out-of-step relay
studies [9], [10] which rely on known or precomputed machine
and system reactances.

Dynamic analysis of synchronized phasor data obtained in the
U.S. west coast system from disturbances and staged tests has
focused on low-frequency interarea damping calculation [11],
transfer function analysis [11], and the validation of system
models and parameters [13]. This paper provides a new appli-
cation of phasor measurement data.

The remainder of this paper is organized as follows. Section II
poses the reduced interarea model estimation problem using a
two-area power system as an illustration. Section III discusses
the reactance and inertia extrapolation algorithms for a two-
machine system. Section IV illustrates the extrapolation algo-
rithms using a two-machine system with voltage regulator con-
trol. Section V extends the extrapolation algorithms to a two-
area power system. The disturbance response of the reduced in-
terarea model is shown in Section VI. The application of the
method to a transfer path in the WECC system using actual mea-
sured data is provided in Section VII.

II. PROBLEM FORMULATION

Consider the two-area power system with four machines and
13 buses (see Fig. 1) modified from the one used in [14] and [15].
The data for this system are given in Appendix A. In this system,
Generators and are strongly connected and Generators

and are also strongly connected. The connections be-
tween Generators ( , ) and Generators ( , ), how-
ever, are weaker. As a result, and form a coherent group
or area and and form a second coherent group. For a
disturbance external to a coherent group, the generators in the
coherent group will swing in unison with each other and against
other coherent groups of generators. Such interarea modes of
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Fig. 1. Two-area power system.

Fig. 2. Reduced model of the two-area system.

oscillations are lower in frequency than the local mode of os-
cillations between machines in the same coherent area. For ex-
ample, with 300 MW power transfer from Area 1 to Area 2, the
interarea oscillation frequency is 0.5735 Hz, and the local mode
frequencies within the coherent areas are 1.2930 Hz and 1.3076
Hz.

This two-area system is useful for representing a radial
transfer path in a large power system in which one coherent
area is exporting power to the other coherent area. In a realistic
system, there will be many more generators in each coherent
area. With an aggregate machine representing each coherent
group, we rationalize that there is a center point in an equiv-
alent machine where the voltage magnitude is fixed during
a disturbance. Let these fixed voltages be and

for Areas 1 and 2, respectively. Thus, the transfer
path can be represented by a reduced-order model consisting
of impedances connecting to the center points of the coherent
areas, as shown in Fig. 2, which are the internal voltage nodes
of the equivalent generators and , with inertias and

, respectively. Note that Buses 3, 13, and 101 are retained in
the reduced model, and the total impedance between Buses 3
and 13 is . Thus, the two-area power system in
Fig. 1 is considered as having a radial transfer path.

In this paper, we develop a method to construct a reduced-
order dynamic model of the transfer path, using synchronized
voltage phasor measurement data at Buses 3 and 13 (

and , respectively) and the current phasor
from Bus 3 to Bus 13 . We pose the problem of
finding the reduced model in Fig. 2 as follows.

Interarea Model Estimation (IME) Problem: Given the
measured synchronized phasor variables , , and

in Fig. 1 that exhibit a few cycles of interarea oscillations,
compute , and , and of the reduced-order
two-machine system in Fig. 2 to represent the interarea dynamic
behavior of the two-area power system.

The IME problem can be generalized to handle two-area sys-
tems whose transfer interfaces consist of multiple lines. In such
cases, phasor measurement units need to be installed to measure

Fig. 3. Two-machine power system.

the voltages at all the buses at the sending and receiving ends
of the interfaces and the currents across the interface. To solve
the IME problem, we first develop a method to find the parame-
ters of a two-machine system based on the phasor measurements
recorded during a disturbance. Then the reduced system model
in Fig. 2 is constructed using only the interarea oscillations be-
tween the two areas.

III. DYNAMIC MODEL ESTIMATION

FOR A TWO-MACHINE SYSTEM

Consider the two-machine power system in Fig. 3 where the
inertias and the internal voltage phasors of the generators
and are and , and and , respectively. We assume
that is supplying power to , which acts as a load. The gen-
erators are connected to Buses 3 and 13 through transformers
having impedances and ,
respectively. The line current phasor flowing from Bus 3 to
Bus 13 is . Bus 101 is located between Buses 3 and
13. The impedances connecting the generator internal voltages
to Buses 3 and 13 are thus given by

(1)

where and are either the direct-axis transient or sub-
transient reactances of and , respectively, depending on
the generator models. The internal node model of the system in
Fig. 3 is also represented by Fig. 2.

The dynamic model of the two-machine system in Fig. 3, ne-
glecting damping, is given by

(2)

where is the speed, and and are the mechanical
power input and electrical power output, respectively, of the th
machine. The constant is the conversion factor from p.u. speed
to rad/s. The two swing equations (2) can be combined to form
a second-order system

(3)

with

(4)

where represents the losses,
is the total line impedance, is the total line
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Fig. 4. Two-machine power system line diagram.

resistance, is the equivalent inertia,
, and .

We assume that phasor measurement units are located at
Buses 3 and 13, and synchronized phasor variables ,
and as a result of a disturbance are available. Based on the
measured data, one of these quantities, namely, , can readily
be computed as

(5)

In addition, if and are known, then the machine internal
voltages can be computed as

(6)

Thus, the problem of estimating the two-machine power
system model reduces to the estimation of and , and the
inertias and . They will be computed using extrapolation
techniques described in the following subsections.

We remark that if the voltage and current phasor measure-
ments are available at only one bus, say Bus 3, the dynamic
model can still be estimated if the impedance
from Bus 3 to Bus 13 is known. In this case, the voltage phasor
at Bus 13 can be computed from the expression (5).

A. Reactance Extrapolation Algorithm

To the dynamic model (3), we will append an expression for
the voltage at any point along the total impedance

, as illustrated by Fig. 4, where the two
endpoints A and B represent the internal nodes of and .
C is any point on the line between A and B, at an impedance of

from B.
Given the line current phasor , the voltage phasor at the point

C is

(7)

where

(8)

The magnitude of is, therefore, calculated as (9) at the
bottom of the page, where .

Linearizing (3) and (9) about an equilibrium point (
), we obtain

(10)

where the Jacobian is

(11)

Of prime importance is that (11) consists of two
parts: a numerator part varying as and , and a denominator
part which is the steady-state bus magnitude at the location C.
Note that there is no explicit assumption on the relationship be-
tween and in the derivation of (7)–(11). The ratio may
vary from point A to point B.

If the resistance is uniform between A and B, such that

(12)

which includes the case where the resistance is negligible, (8)
reduces to . As a result, reduces to

(13)

The plot of from (point A) to (point B) is
shown as the solid curve in Fig. 5.1 Note that it closely resembles
a sine function from 0 to 180 , denoted by the dotted curve.2

Suppose that the two-machine system is subject to a distur-
bance, inducing an oscillation on the bus voltages. Then (11)
can be used to compute the amplitude of the voltage oscillation
at various locations between the two machines, provided that the
oscillations remain largely linear and , and are known.

1The Jacobian fit can accommodate series-compensated lines. When a series
capacitor �jx is encountered, we move to the left by an amount normalized
for �x .

2The sinusoidal representation can be justified by treating the reactance x as
a distributed parameter. Hence, the voltage wave generated along the line fol-
lowing a perturbation is given as the solution of a wave equation of the form
@ V=@t = 
 @ V=@x , where 
 is propagation velocity. The solution con-
sists of a forward traveling wave and a backward traveling wave so that at a
fixed time point, the voltage wave can be written as a standing wave V (x) =
A sin(2�x=�) of amplitude A, where � is the wavelength of the traveling
waves.

(9)
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Fig. 5. Comparison of Jacobian fit (solid) and standing wave fit (dashed).

Furthermore, if the voltage oscillations are measured or calcu-
lated at Bus 101, we can use (11) to compute and .

We will illustrate the computation of and for the uni-
form resistance case. The general case can also be computed,
but the resulting expressions are more involved. Following the
disturbance, the amplitudes of the voltage oscillations at these
three buses are measured as , and . If Bus 101
does not physically exist, we can take it to be the midpoint be-
tween Buses 3 and 13, such that

(14)

Using (13), we obtain three normalized voltage equations

(15)

where and is the steady-state value of
. These three values , and will uniquely define

the curve .
Note that the three equations in (15) contain three unknowns
, and and , which determine , and as

and . The constant can be
eliminated by dividing two of the equations in (15) by the third
equation, such that

(16)

(17)

which can be solved for and using a nonlinear equation
solver.

For systems where and are nonzero and the ratios
and are not known, two more measurements between
Buses 3 and 13 are needed.

B. Inertia Extrapolation Algorithm

Once and have been computed, the remaining param-
eters to be computed are the inertias and . We need two
pieces of information. First, from the linearized model (10), the
inter-area frequency (in Hz) is given as

(18)

Thus, by measuring the frequency of the swing mode in the
voltage measurement, the equivalent inertia constant can be
computed as

(19)

When the line resistance is negligible compared to the reactance,
then , and hence, (19) can be reduced to

(20)

Second, to calculate and separately, we develop a
companion equation by exploiting the frequencies measured at
Buses 3 and 13. Neglecting losses and machine damping effects,
the conservation of the total angular momentum of the two-ma-
chine system is given as

(21)

from which we obtain

(22)

Hence, (22) and (19) together can be used to solve for and
, provided that the estimates for the machine speeds are

known. We next show that and can indeed be estimated
from the measured frequencies and at Buses 3 and 13.

For the two-machine system, we can write

(23)

where . Thus, the voltage angle at Bus 3, , can
be expressed as . Differentiating
with respect to time , we get

(24)

where

(25)

The expressions in (24) can be readily derived from the dynamic
model (2) for the two-machine machine. Also, deriving the ex-
pression for from and using it in (24), we can
show that the frequency derivation in p.u. from nom-
inal frequency at Bus 3 is given as

(26)

where , and
.
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Fig. 6. Voltage and frequency oscillations at three buses in the two-machine
system with AVR. (a) Voltage magnitude. (b) Bus frequency.

Similarly, the frequency deviation at Bus 13 is

(27)

where , and
, with .

Because the bus frequencies and are available from
synchronous phasor measurements, we can estimate and
using (26) and (27), calculate the ratio , and
solve for and using (20).

IV. TWO-MACHINE SYSTEM WITH DETAILED MACHINE

MODEL EQUIPPED WITH AVR

In this section, we will use the algorithms in Section III to
compute the dynamic model of the two-machine system in
Fig. 3, with detailed machine models equipped with automatic
voltage regulators (AVRs). Both machine models include
subtransient effects, and a type AC4A [16] voltage regulator
model is used for both machines. The parameters of this system
are given in Appendix B. Note that there is no fixed voltage
source in the subtransient model, because the voltages within
the synchronous machine are controlled by the AVR. However,
it is still useful to conceptualize that there is a fixed voltage
source, albeit fictitious, inside the machine, as impacted by the
AVR.

A disturbance is applied to the system and the resulting bus
voltage magnitude response, simulated using the MATLAB
Power System Toolbox [17], is shown in Fig. 6(a). Note the
interarea mode oscillates at a frequency of 0.909 Hz. Further-
more, the voltage magnitude swings at Buses 3 and 13 are in
phase.

From the voltage response, we obtain the normalized voltage
oscillation amplitudes for fitting the Jacobian function as (with
the negative sign dropped)

(28)

From (16) and (17), we obtain the values of and in
Table I. The Jacobian curve fit of the reactance results is shown
in Fig. 7(a).

To calculate and , we compute bus frequencies and
by passing the bus voltage angles and through a

derivative filter , where the time constant is
=0.02 s. The bus frequencies and are shown in Fig. 6(b).
It is important to note that the frequency oscillations are out of
phase. The estimated initial parameters are shown in Table I.

Fig. 7. Reactance and inertia extrapolations. (a) Voltage magnitude fit. (b) Fre-
quency fit.

TABLE I
ESTIMATED PARAMETERS FOR DETAILED SYSTEM MODEL (900-MVA BASE)

The extrapolation of the machine speeds from the bus frequen-
cies is illustrated in Fig. 7(b).

It is of interest to note that the estimated values of and
satisfy

(29)

(30)

Thus, we view that the AVRs move the fixed voltage points from
the voltages behind the subtransient reactances to be further be-
hind the reactances and .

V. ILLUSTRATION WITH TWO-AREA SYSTEM

In this section, we extend the algorithms in Section III to find
the reduced IME model parameters of the two-area system in
Fig. 1 for several power transfer levels from Area 1 to Area
2. For the case with a power transfer of 300 MW,3 we apply
a disturbance to the two-area system and simulate the system
response using [17]. The disturbance is a three-phase fault at
Bus 101 cleared after 0.05 s without any line switchings. The
voltage phasors and and the current phasor flowing
from Bus 3 to Bus 13 are measured. The magnitude of these
quantities are shown in Fig. 8. Note that the Bus 101 voltage
phasor can be either measured or computed from (14).

Because this two-area system has four machines, there are
three swing modes, one of which is the interarea mode at 0.5735
Hz. From Fig. 8, the interarea mode oscillation is dominant
in all three voltages. We apply the Eigensystem Realization
Algorithm (ERA) to extract the modes and their mode shapes
in the time response [18], [19], using the time period of 1 to
10 s to avoid the initial voltage transients.4 In addition to the
steady-state values, ERA shows that the oscillations can be
approximated by two modes, a 0.5732-Hz interarea mode and
a 1.0823-Hz local mode. Fig. 9 shows the 0.5732-Hz mode

3Due to losses, the actual power transfer is about 339 MW.
4The Prony method [12] can also be used.
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Fig. 8. Simulation results for two-area system. (a) Bus 3 voltage magnitude.
(b) Bus 13 voltage magnitude. (c) Bus 101 voltage magnitude. (d) Line current
magnitude.

Fig. 9. Two-mode approximation of the voltage oscillation with the steady-
state shifted to zero. (a) Bus 3 voltage magnitude. (b) Bus 13 voltage magnitude.
(c) Bus 101 voltage magnitude.

components superimposed on the individual voltage magnitude
oscillations. The normalized voltage amplitudes are found to be

(31)

Using the reactance and inertia extrapolation algorithms, the
parameters of the reduced IME model are shown in Table II.

Note that although the network impedances in one area are a
mirror image of the other area, the estimated values of and

are quite different, with almost eight times larger than .
This difference is attributed to the different loads in the areas. In
Area 2, a current with a magnitude of 14.36 p.u. flowing from
the two generators in Area 2 on Line 120-13 is actually opposite
in direction to the flow of the current . Hence, is expected to
be smaller. Also, in the reduced IME model, is larger than

TABLE II
IME MODEL PARAMETERS FOR DIFFERENT

POWER TRANSFER LEVELS (900-MVA BASE)

the sum of the individual machine inertias in Area 1, whereas
is smaller than the sum of individual machines in Area 2.

To show the robustness of this measurement-based model re-
duction approach, we studied two more cases. We applied the
same three-phase fault at Bus 101 but cleared the fault after 0.1
s, and we applied a three-phase fault at Bus 13 of the two-area
system, cleared after 0.05 s both without any line switching. The
resulting values of , and were practically identical
to those obtained for the first disturbance.

From the earlier discussion, the IME model will depend on
the amount of power transfer between the two areas. The reac-
tance estimation is also performed for power transfer levels of
150 MW and 450 MW from Area 1 to Area 2, with the resulting
model parameters given in Table II. These power transfer levels
are achieved by adjusting the loads on Buses 4 and 14, while
keeping the total load to be the same.

As expected, Table II shows that as the power transfer in-
creases to 450 MW, decreases and increases. The an-
gular difference also increases because of the higher
loading level. The equivalent inertia computation shows that

becomes higher and becomes smaller. Note that for the
150-MW transfer case, the interarea mode component of the
voltage oscillation at Bus 13 is out of phase with that at Bus 3. As
a result, is negative. This implies that the fixed voltage point
is between Buses 3 and 13, and not beyond Bus 13, as in the
300 MW and 450 MW transfer cases. Such situations with neg-
ative values of are not unexpected for transfer paths at very
low power transfer levels, when the interarea mode component
is not dominant. This should not be viewed as a shortcoming of
this approach because at low transfer levels, the interconnected
power system has a substantial stability margin and there is little
need for a reduced interarea model aimed at stability margin
analysis. Furthermore, this analysis shows that for real-time ap-
plications, the flow on the transfer path and the reactance of the
transfer path must be known for choosing the appropriate IME
model.

VI. DISTURBANCE SIMULATION USING THE IME MODEL

The main purpose of obtaining the reduced IME model from
synchronized phasor data is to use it for predicting system sta-
bility. To this end, we study the disturbance responses of the full
model, a reduced model obtained from the inertia-aggregation
(INA) technique, [3]5 and the IME model.

5The impedances of the reduced model are obtained by paralleling the im-
pedances of the coherent generators connected to the same aggregate bus.
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Fig. 10. Disturbance responses of the three models subject to three-phase faults
on Bus 101. (a) Bus 3 voltage magnitude. (b) Bus 13 voltage magnitude. (c)
Angle between Buses 3 and 13,�� = � � � . (d) Machine speed difference
�! = ! � ! .

The disturbance is a three-phase short-circuit fault applied at
Bus 101 in all three different models with 300 MW of power
transfer. No line is switched out, which would require using a dif-
ferent IME model. The impact of a three-phase short-circuit fault
at Bus 101, which stops the power transfer between the two areas,
can be quite different in these models. For the detailed model and
the inertial aggregated model, the fault depresses the voltages at
Buses 3 and 13, and reduces the loads on Buses 4 and 14. Thus,
all the machine speeds in these two models will accelerate. On
the other hand, in the IME model, is being supplied by the
electrical power equal to the power transfer, and hence, its me-
chanical power is negative. As a result, when the fault is applied
to Bus 101, actually decelerates, whereas accelerates. As
a result, for a fault of the same duration, the energy accumulated
by the IME model will be higher than that of the detailed and
inertia-aggregated models. Thus, to compare the disturbance re-
sponse, we need to use different clearing times for the models.

Fig. 10 shows three traces: the responses of the detailed model
and the inertial aggregated model to a five-cycle short-circuit
fault on Bus 101, and the IME model to a two-cycle short-cir-
cuit fault on Bus 101. Note that the inertial aggregated model,
which retains the loads on Buses 4 and 14, duplicates the inter-
area swing of the detailed model accurately. The IME model re-
sponse also approximates the responses of the other two models
quite well. Thus, the impact of a two-cycle short-circuit fault
on Bus 101 applied to the IME model is about the same as a
five-cycle fault on the same bus for the other two models. This
is equivalent to saying that at the fault clearing time, the ener-
gies of these different models are approximately the same.

The disturbance response investigation here shows that the
IME model can be used to assess system stability margins. In
particular, the power-angle plot [20] of the reduced model in
Fig. 2 can be constructed using the IME model and used to esti-
mate critical clearing times and the impact of loss of transmis-
sion capacity.

VII. APPLICATION TO A TRANSFER PATH IN WECC

In [8], synchronized phasor measurements from severe os-
cillation events were used to establish power-angle curves of

Fig. 11. Recomputed power-angle curves for Transfer Path 1.

two power transfer paths in WECC, without performing reac-
tance extrapolation to the equivalent generator internal node.
We apply the new techniques in this paper and recompute the
IME model of Transfer Path 1 in [8], which is compensated by
series capacitors. The resulting pre-disturbance and post-distur-
bance power-angle curves established from the new IME model
are shown in Fig. 11, where the measured PMU data are high-
lighted. Compared to [8, Fig. 8], the new results here show much
better agreement with actual system parameters.

VIII. CONCLUSION

In this paper, we have developed reactance and inertia extrap-
olation algorithms based on GPS-synchronized measurement
data of bus voltage and line current phasors to estimate an equiv-
alent interarea model of a two-area power system. This method
can be used to represent the interarea dynamics across the power
transfer interface of a multimachine power system exhibiting a
single dominant mode of interarea oscillation. The use of the
IME model to replicate the disturbance responses of the full
model is demonstrated.

This work should be viewed as point of departure for sev-
eral future investigations. The discussion in this paper does not
include the effect of line charging and voltage control (for ex-
ample, via a static var compensator) on the transfer interface,
which will change the shape of the waveform in Fig. 5. The vari-
ation of the IME model reactance as a function of power transfer
levels and the correlation of fault clearing times between the
IME model and the detailed model need to be better under-
stood. The applicability of this approach requires measuring in-
terarea oscillations. For a well-damped power system such as
the U.S. Eastern Interconnection, loss of a 1000-MW generating
unit would normally induce oscillations lasting only two to three
periods. Thus, good signal processing techniques need to be de-
veloped to extract the relevant modal response. Furthermore, the
application of the method to large power systems with multiple
interarea modes needs to be pursued.

APPENDIX A
TWO-AREA SYSTEM PARAMETERS

A.1 Machine parameters on 900-MVA base: All the machines
are classical models with identical parameters: p.u.,

p.u., MW.
A.2 Line Parameters on 100-MVA base:
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A.3 Loads MW power transfer: MW and
MW; 450 MW power transfer: MW and
MW; 150 MW power transfer, MW and
MW.

APPENDIX B
TWO-MACHINE SYSTEM PARAMETERS

B.1 Machine parameters on 900-MVA base: p.u.,
p.u., p.u., p.u.,

p.u., p.u., p.u.,
p.u., s, s,

p.u., p.u.,
p.u., s, s.

B.2 Line parameters on 100-MVA base: p.u.,
p.u., p.u.

B.3 Excitation System Parameters—Model Type AC4A [16]:
s, s, s, .
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