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Abstract—Despite the increasing sophistication of building
simulation models and digital twins, some components of the
building energy system remain challenging to model using
first-principles. For instance, internal heat loads generated by
occupants in buildings and their usage of the building are often
assumed rather than learned. Consequently, building control
systems are designed based on average human behavior, and
the assessment of the closed-loop system is often limited to a
small set of handcrafted scenarios. In this paper, we propose
the use of deep generative networks to complement the physics-
based simulation platforms by learning time-series distributions
from real occupancy and usage data. The learned distribution
can subsequently be sampled to construct scenarios that can
drive the building simulation model as a disturbance input. This
capability enables the more systematic construction of a large
set of scenarios for controller performance assessment. Due to
the expense of the simulator and the unknown relationship
between the disturbance inputs and performance, we provide
a sample-efficient algorithm for extracting ‘limiting scenarios’,
i.e., disturbance inputs that are most likely to result in the
best and worst closed-loop performance. We demonstrate the
potential of our proposed framework using Mitsubishi Electric’s
SUSTIE building data, on a building simulation benchmark
model implemented in Modelica. We report that the generated
scenarios preserve signal features observed in the true data
while enabling the automatic identification of low-probability
scenarios for controller evaluation, and our sampling method
determines these limiting scenarios using only 300 simulations.

I. INTRODUCTION

Physics-based building simulation tools are often used to
size equipment during building design, and also to mon-
itor building performance; for example, to predict annual
energy consumption or carbon footprint. Recently, sophis-
ticated building simulation models (sometimes referred to as
‘digital twins’) have been developed such as the Modelica
Buildings Library [1] based on an acausal, equation-based
paradigm, which allow for simulation of the coupled dynamic
behavior of building envelopes and HVAC systems [2], [3].
These simulations are extremely valuable: they can enable
systematic controller design [4], and provide a cheap and
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fast alternative to field experiments for evaluating closed-loop
control performance [5].

The basic physics of heat transfer by conduction and
radiation, and mass transport by advection, are well known
and can be transcribed accurately in these modeling libraries.
As such energy and mass transfer through walls and windows
can be accurately simulated, together with the thermo-fluid
physics of modern HVAC systems. However, this is only
part of the heating and cooling load. Building occupants
also produce and absorb latent, sensible and radiative heat,
and their behavior can strongly affect the performance of an
HVAC system as measured by energy consumption, human
comfort, indoor air quality etc [6]. Typical building simula-
tion platforms must assume this behavior a priori, or consider
some ‘nominal’ behavior for convenience. For example, the
modeler assumes an occupancy (number of people occupying
a zone) and their activity level and schedule, represented as
an input disturbance, in order to execute a simulation. Human
behavior of this type is not practically amenable to physics-
based, or more generally first-principles’, modeling.

Owing to the proliferation of occupancy and thermal
usage data in modern buildings [7], deep generative net-
works have proven effective at capturing the distribution
of single-output operational building profiles, including en-
ergy consumption [8], thermal comfort [9], and occupancy
profiles [10]. While most prior work has only assessed
the intrinsic quality of the learned distributions or showed
their usefulness as a data augmentation tool for forecasting
models [11] and controllers [12], some recent work has
also showcased interesting applications including controller
validation [13]. These generative models can be used to
generate a variety of building simulation scenarios, such as
simulating nominal or corner-case occupancy patterns for a
particular building, perhaps in order to identify opportunities
for improvement, or building models of occupancy that can
be used in building design, HVAC product development, or
controller performance assessment.

In this paper, we use a recently proposed generative
modeling architecture called RAFT-VG [14] (regularized
adversarial fine-tuned VAE-GAN) that combines the benefits
of variational autoencoders (VAEs) and generative adversarial
networks (GANs) for modeling occupancy and internal heat
loads from real data collected from Mitsubishi Electric’s
SUSTIE* building. A contribution of this work is in the

*https://www.mitsubishielectric.com/en/about/rd/sustie/index.html
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integration of this deep generative network into Modelica
for closed-loop simulation. This network learns a distribution
in a latent space that can be decoded to form ‘scenarios’:
occupancy and heat load time-series, which in turn can be
used to automatically execute closed-loop building simula-
tions. Another major contribution of this work is to ascer-
tain latent vectors which, when decoded, result in limiting
scenarios that result in extremely good or bad closed-loop
simulation performance: we do this using an information-
theoretic Bayesian Algorithmic eXecution sampling method
called InfoBAX [15]. Obtaining such limiting scenarios sys-
tematically, and without manual intervention, is critical to an
efficient controller design pipeline.

II. PROBLEM STATEMENT AND PROPOSED SOLUTION

Many dynamic simulators or “digital twins” of building
energy systems can be abstracted by a model of the form

xt+1, yt = M(xt, ut, d
ext
t , d int

t ), (1)

where xt ∈ Rnx denotes a state of the building dynamics,
ut ∈ Rnu denotes the control inputs to the system such as
heating, ventilation, and cooling (HVAC), and d ext

t , d int
t are

disturbance inputs to the system generated either externally
to the system, or internally within the system, respectively.
While making this distinction between the disturbance inputs
is not always necessary, we do so in this paper because ex-
ternal disturbances such as ambient conditions are simulated
directly from standard weather files, whereas generating in-
ternal disturbances such as heat loads and occupancy patterns
are the subject of our study. The simulation model M is often
based on first-principles (e.g., physics-based) that accurately
reflects the thermal dynamics of the building zones. We treat
M as a black-box.

Some outputs yt ∈ Rny of the simulation model are
available for online measurement: these outputs may inform
the controller for regulation/tracking, or for assessing the
scalar performance output J of the closed-loop building
simulation, usually by evaluating a performance function f .
That is

J = f({yt}
Tf

t=0), (2)

where Tf is the total time of closed-loop simulation over
which the performance output is computed. Often, these
closed-loop simulations are driven by control algorithms that
have been designed for nominal scenarios, e.g. by selecting
d int
t and d ext

t to be some nominal values based on domain
experience or a simplifying statistic (such as the mean) of
observed data. Even if such a controller based on a nominal
scenario is effectively designed, it may not will perform
equally well under a wide range of scenarios. For example,
if the controller was designed assuming a zone has some
nominal occupancy, there is no reason to expect it will
perform adequately if the zone’s occupancy is completely
empty or filled to capacity.

Constructing scenarios with the specific objective of learn-
ing where the closed-loop control system will perform at
its limits (extremely poor or extremely good performance)

Fig. 1. Overview of the proposed solution. The pink arrows denote infusion
of real data via deep generative networks, whereas the blue arrows are
operations involving high-fidelity simulations. Specific implementations used
in this work are parenthesized.

requires significant computational effort or intuition honed
by significant domain expertise; neither strategy scales well
if selecting candidate scenarios involve designing a large
number of time-series signals and is not a systematic strategy
across different building simulation models. Our objective
in this paper is to provide a systematic framework for
generating scenarios based on relevant building data, and to
construct specific limiting scenarios which, when driving a
high-fidelity simulator, is expected to result in the limits of
closed-loop system performance. For any such method to be
practical, we require it to be generalizable to any simulation
model, and therefore, agnostic to the type of simulation
model, as long as it can be represented by (1).

To this end, we propose the framework pictured in Fig. 1.
Assuming we have available a simulation model M and
access to real scenario data D := {d int

t }, we propose the use
of deep generative models to learn the underlying distribution
that has generated this data. In this work, we consider a
combination of a variational autoencoder (VAE) fine-tuned
by a discriminator as in GANs; we refer to our architecture
as RAFT-VG [14] and will describe this generative network
in more detail in the next section. The RAFT-VG is trained
to learn a distribution in its latent space that, when decoded,
is ‘close’ (in some metric) to the true data distribution.
Additionally, the generative model allows conditioning, that
is, the distributions that are learned can be conditioned
on relevant factors (e.g., workday/holiday, seasonality) that
are expected to change the underlying data distribution.
Therefore, sampling from this latent space and passing the
latent sample through a trained decoder network results in
synthetic d int

t scenarios, such as internal heat loads and oc-
cupants in building zones, that can drive closed-loop building
simulations. Such simulations can be used to ascertain a
closed-loop performance metric. Effectively, the generative
network and the physics-based simulator can be viewed as a
black-box map from scenarios to performance metrics. Con-
sequently, one can use efficient sampling methods for black-
box functions such as Bayesian algorithm execution [15] to
obtain informative scenarios by learning interesting regions
in the latent space from a few simulations. In this paper, we
use InfoBAX (a variant of BAX) to automatically learn K
scenarios that result in the best- and worst-case constraint



violation on room temperature.
In the following section, we delve deeper into the RAFT-

VG architecture and the InfoBAX algorithm, and demonstrate
how they can be combined to ascertain these ‘limiting’
scenarios, i.e., where the performance of the closed-loop
system is at its limit.

III. GENERATION AND IDENTIFICATION OF LIMITING
SCENARIOS VIA DEEP GENERATIVE MODELS

A. Generative modeling of scenarios with RAFT-VG

In this work, we adopt the generative modeling ap-
proach of [14], which applies regularized adversarial fine-
tuning (RAFT) that combines the benefits of Variational
AutoEncoders (VAE) [16], [17] and Generative Adversarial
Networks (GAN) [18], [19]. This method is a two-stage
approach, where we first train a conditional VAE in a
conventional manner, and then we fine-tune the decoder
with adversarial training against a discriminator, in a manner
similar to Wasserstein GAN (WGAN) [20] with spectral
normalization [21]. Additionally, the second-stage fine-tuning
is regularized by limiting how much the decoder parameters
may change, which aims to preserve consistency with the
encoder. This approach combines the relative ease of training
a VAE in the first stage, with the generative quality benefits of
GAN-like adversarial fine-tuning in the second stage, while
the regularization helps to preserves VAE consistency and
improves the stability of fine-tuning. In the following, we
briefly describe the steps of this method, while further details
can be found in [14].

The first stage consists of training a conditional VAE that
implicitly captures the distribution pθ(w|s), where w :=
{d int

t }Tt=0 is shorthand for the disturbance time series being
modelled and s is a conditioning variable related to that time
series. The conditional VAE provides a generative model
specified by the distribution pθ(w|s, z), where z is latent
representation sampled from the latent prior distribution p(z).
Together, these implicitly (and intractably) determine the
conditional model distribution,

pθ(w|s) =
∫

pθ(w|s, z)p(z) dz.

The training objective for the VAE involves maximizing a
variational lower bound of the expected log-likelihood, also
known as the evidence lower bound (ELBO), given by

E[log pθ(w|s)] ≥ E
[
log pθ(w|s, z) + KL

(
qϕ(z|w, s)∥p(z)

)]
,

where qϕ(z|w, s) is a variational approximation of the (in-
tractable) posterior pθ(z|w, s) = p(z)pθ(w|s, z)/pθ(w|s).

The variational posterior qϕ(z|w, s) can be viewed as a
probabilistic encoder that maps from the data features w to
the latent representation z, while conditioned on s. We adopt
the typical approach of parameterizing the encoder as a con-
ditional Gaussian, qϕ(z|w, s) = N (z;µϕ(w, s),Σϕ(w, s)),
where the mean vector µϕ and diagonal covariance matrix Σϕ

are parametric functions (i.e., realized by a neural network)
of (w, s). With the latent prior set to the standard Gaussian
distribution, i.e., p(z) = N (0, I), the Kullback-Liebler (KL)

divergence term of the ELBO objective is tractable and
differentiable [16]. Similarly, we also realize the decoder as
a conditional Gaussian, i.e., pθ(w|s, z) = N

(
w; ŵθ(z, s),Σ),

where Σ is a trainable diagonal matrix, and ŵθ(z, s) is the
decoder output. Thus, the first term of the ELBO is given by

E[log pθ(w|s, z)] =− 1

2
log(det(Σ)) + c

− 1

2
(w − ŵθ(z, s))

⊤Σ−1(w − ŵθ(z, s)),

where c = −d
2 log(2π) (with d as the dimensionality of w) is

a constant that does not affect the optimization. The training
objective for the VAE then becomes

min
θ,ϕ,Σ

1

2
log(det(Σ)) +

1

2
(w − ŵθ(z, s))

⊤Σ−1(x− ŵθ(z, s))

− KL
(
qϕ(z|w, s)∥p(z)

)
. (3)

In the second stage, we introduce an adversarial discrim-
inator Dφ : W × S → R that aims to distinguish between
actual data sample pairs (w, s) and synthetic pairs produced
by the VAE generative model. This discriminator is applied
in the manner of WGAN [20], with Lipschitz continuity
enforced by spectral normalization [21], in order to improve
the perceptual quality of the generative model. We also
incorporate a regularization term that aims to constrain how
much the fine-tuned decoder can vary, in order to maintain
consistency with the frozen VAE encoder. The adversarial
training loss of the second stage is given by

min
θ

max
φ

E [Dφ(w, s)−Dφ(ŵθ(z, s), s)]+λ∥θ−θ⋆∥22, (4)

where λ > 0 controls the proximal regularization, θ⋆ are
decoder weights obtained by VAE training in the first phase
with the latent representation z sampled from its prior, i.e.,
z ∼ p(z) = N (0, I).

B. Information-theoretic identification of limiting scenarios

The simulated performance function (2), when combined
with the building simulator (1) and the generative model in
Section III, implicitly defines a black-box function g : Z →
R that maps from the latent disturbance representation z ∈ Z
to a potentially noisy performance outcome denoted by Jz =
g(z) + N (0, σ2). The set Z represents the set of allowable
latent parameters, which we assume to be a compact subset
of the set of all possible latent values concentrated where
the VAE is accurate (within some standard deviation band
around mean zero). The noise term can be used to capture
other inputs that may vary within the simulator but are not
modeled by the VAE.

We are interested in efficiently learning so-called “limiting
scenarios” that lead to substantially different performance
outcomes. We formulate this as a top-and-bottom-K estima-
tion problem in which our goal is to simultaneously compute
the top-K and bottom-K elements of a finite collection of
latent values Z ⊆ Z . The underlying idea is that we want to
find scenarios that lead to a large spread in behavior (hence
top and bottom), while also having the flexibility to observe
the spread around these worst-case values when K > 1. What



makes this problem challenging is that we do not assume to
have knowledge of the performance values gz := g(z) for
most latent values z ∈ Z. If we had a large evaluation budget
L ≥ |Z| and no noise in our evaluations, we could solve this
problem with a simple algorithm A that (i) evaluates g(z) for
all z ∈ Z, (ii) sort the results {gz}z∈Z in decreasing order,
and (iii) return the first k and last k elements. However, we
assume that our budget is much less than the number of
points L ≪ |Z| since querying gz requires one to run an
expensive closed-loop building simulation. As such, we are
motivated by the question: Can we identify the best L latent
parameters z1, . . . , zL to sample such that we can accurately
infer K⋆ ⊆ Z (the optimal top-and-bottom-K elements)?

To answer this question, we look to the recently proposed
Bayesian Algorithm Execution (BAX) framework [15]. BAX
assumes uncertainty in the unknown function can be captured
with some prior distribution p(g), which for our purposes will
be a Gaussian process (GP). The goal of BAX is to estimate
the output of an algorithm A, denoted by OA(g) ∈ O, using
some collection of noisy observations of the true function.
Let Dℓ = {(zi, Jzi)}ℓ−1

i=1 denote the dataset of ℓ− 1 function
observations Jzi = gzi + ϵi where ϵi ∼ N (0, σ2). The
posterior distribution of the unknown function given this data
is p(g|Dt). This distribution, when combined with algorithm
A that returns output OA (top-and-bottom-K elements),
induces a posterior distribution over the algorithm output
p(OA|Dℓ). Given some acquisition function α(z|Dℓ) that
reflects the potential benefit of querying gz in the context
of our knowledge of OA given Dt, the sequence of points
{zi}Li=1 can be designed using the following strategy

zℓ ∈ argmaxz∈Zα(z|Dℓ), Dℓ+1 = Dt ∪ {(zℓ, Jzℓ)}, (5)

for all ℓ = 1, . . . , L.

Information-based BAX (InfoBAX) defines α(z|Dℓ) in
an information-theoretic manner. In particular, it uses the
mutual information (MI) between the random output OA and
unrevealed observation Jz given the current dataset Dℓ; MI
represents the expected information gain (EIG) about OA
upon observing Jz , conditioned on Dℓ [22]. EIG can be
expressed mathematically as

EIGℓ(z) = H[OA|Dℓ]− EJz|Dℓ
[H[OA|Dℓ ∪ {(z, Jz)}]],

= H[Jz|Dℓ]− EOA|Dℓ
[H[Jz|Dℓ, OA]], (6)

where H[A] = Ep(A)[− log p(A)] denotes the differentiable
entropy for any continuous random variable A. The second
line above can be derived from the symmetry property of MI,
often called the predictive entropy form based on previous
work [23]. The main advantage of (6) is that the first term is
the entropy of the posterior predictive distribution p(Jz|Dℓ),
which has a closed-form expression for GP models

H[Jz|Dℓ] = 0.5 log(2πe(vℓ(z) + σ2)), (7)

where vℓ(z) denotes the predictive variance of the GP given
Dℓ. The second term, however, is difficult to compute since
we do not have a closed-form expression for p(Jz|Dℓ, OA).
Thus, we rely on the method developed in [15, Section

3.3] to evaluate an approximate form of EIGℓ(z) and use
α(z|Dℓ) = EIGℓ(z) in (5), along with a heuristic maximiza-
tion procedure, to generate samples over our finite budget.

IV. CASE STUDY: GENERATIVE MODELING AND
SCENARIO LEARNING (WITH REAL DATA) FOR BUILDING

PERFORMANCE SIMULATIONS

A. Building Simulator

We developed a high-fidelity building emulator using the
Modelica Buildings Library 7.0.0†. The emulators are based
on the ASHRAE BESTEST model, which are benchmark
models for building energy simulation with open-sourced
information such as dimensions and constructions [24]. The
building represents a single zone with a window on the south
wall and a constant infiltration mass flow rate. There are
two variations of construction, the light weighted Case 600
and the heavy weighted Case 900. The exterior walls and
roof of Case 600 and 900 are respectively plaster board with
fiberglass insulation and concrete block with foam insulation.
The floor of case 600 is timber construction, and the floor
of Case 900 is concrete slab. The external disturbances are
characterized by the typical meteorological year data for San
Francisco, USA.

The emulators include a simple fan coil unit (FCU) to
condition the room that is regulated by a proportional-integral
(PI) dual-setpoint controller to maintain the room temperature
within the heating and cooling setpoints. When the FCU is
activated, the supply fan runs at a constant speed to circulate
the air through the heating and cooling coils. The heating and
cooling setpoints are converted to the supply air temperature
setpoint by the PI controller, and the coils are activated to
reach the setpoint. The conditioned air is then supplied to
the room, where the air is assumed to be well-mixed. As this
study focuses on the control performance, the energy impact
of FCU is simplified. The electric heating coil has a constant
efficiency of 0.9, and the cooling coil operates at a constant
coefficient of performance (COP) of 3.0.

The internal disturbances are defined to represent a small
office, where the operating hours are assumed to be from
8 AM to 6 PM. With six workstations per 92.9 m2 and
a zone floor area of 48 m2, three people are assumed to
be in the room. The sensible heat gain density of office
equipment is set to be 5 W/m2 with the radiative heat gain
comprising 30% of the total, which is a typical light office
load. Similarly, the lighting heat gain is assumed to be 10
W/m2 with a 50% radiative fraction. The occupant-related
activity generates both sensible and latent gains, involved in
room heat and moisture mass balance. They are assumed to
be 73 W/person sensible with a 60% radiative fraction, and
45 W/person latent gain, corresponding to moderate office
work. These heat gains are active during the occupied period
and zero during unoccupied periods. The heating and cooling
occupied and unoccupied setpoint temperatures are (18◦C,
20◦C) and (14◦C, 28◦C).

†https://simulationresearch.lbl.gov/modelica/



B. Data Collection

For the purpose of training generative models of inter-
nal disturbances, we use real experimental data collected
from SUSTIE, which is a next-generation commercial office
building located in Japan. The name SUSTIE combines the
words “Sustainability” and “Energy” and the building is
designed to research and demonstrate energy savings and
workers’ health and comfort. The four-story SUSTIE building
has a total floor area of approximately 6456 m2 which
includes nine office spaces (experimental rooms) regularly
used by around 260 office workers, an open-feel atrium area,
a cafeteria and a gym. SUSTIE’s building management sys-
tem collects electrical energy consumption, meteorological,
indoor environment conditions, occupancy, and equipment
operational data to analyze and control energy consumption
and comfort during building operations. The electrical energy
consumption is measured separately for different types of
equipment (air-conditioning, ventilation, lighting, hot water
supply and elevators) and for each room. The occupancy,
i.e., number of people in each room is counted by the access
control system using card readers installed in each area. A
dataset collected at SUSTIE over consecutive 20 months
from January 2021 to August 2022 is used in this work for
generative modeling.

Noting that time constants for many internal disturbances
of a building are typically of the order of several minutes, we
down-sampled the dataset with a sampling rate of 15 minutes.
Since multi-zone SUSTIE is much more complex than a
single-zone building simulator described in the previous
section, we select a proportionate subset of signals from the
SUSTIE dataset for our modeling efforts. In particular, we
consider a set of 12 signals which include power consumption
by HVAC equipment, ventilation, lighting systems and the
occupancy in three different office spaces located on the same
floor of SUSTIE. While this reduction in the size of dataset
also makes the training process much more tractable, we
emphasize that the scaled dataset still maintains characteristic
day-to-day usage trends of a real commercial office building.

C. RAFT-VG and InfoBAX implementation

In order to train the conditional RAFT-VG, we first scale
the data by their median orders of magnitude i.e. temperature
signals in ◦C are scaled down by 10, whereas power signals
in W are scaled down by 1000 or 100 depending on their
median orders of magnitude. Note that all the time-series to
be generated in this work are non-negative. The data tensor
is of size 600×96×12, since the dataset is for 4 signals in 3
rooms collected every 15 min for 600 days. Two conditional
inputs are considered: (i) the zone number, as the data is for
3 distinct zones in the SUSTIE building, and (ii) whether the
scenario to be generated is a workday or a holiday, which
greatly affects occupancy, and therefore, usage. For ease of
conditional RAFT-VG training, the data tensor is reshaped to
1800 × 96 × 4 so each sample is a scenario agnostic of the
room, and the conditional inputs are of size 1800× 2.

For the training itself, we split (randomly) the data into a
training set with 1500 samples, and a hold-out validation

set with the 300 remaining samples. The training loss is
computed with the two losses (3) and (4), and for the
validation loss, we compute the symmetric Jensen-Shannon‡

divergence (JSD) between the validation data distribution
and the decoder-generated distribution. The JSD is computed
efficiently by approximating both by their mean and vari-
ance, and assuming independence and no cross-correlation.
Network weights are saved when the total JSD over the
validation data batches is lower than the JSD computed in all
previous training iterations. The batch size is fixed at nbatch =
128. We set βVAE = 10−4 and the total number of VAE
training iterations is 9000 with an Adam solver with learning
rate 10−4 without scheduling. We allot 1000 iterations for
GAN-based adversarial fine-tuning with learning rate 10−6

and λ = 105 to discourage finding solutions too far from
the stage-1 decoder weights. The discriminator is optimized
with an RMSProp solver and the decoder is updated with an
Adam solver with momentum factors (0.5, 0.999) instead of
the default (0.9, 0.999). For each outer loop decoder update
in (4), the discriminator is updated 2 times, which is a
common trick that helps Wasserstein-GAN training [20].

All three components of the RAFT-VG are conditioned,
that is, conditioning inputs are passed through an embedding
layer using torch.nn.Embedding with an embedding
dimension of 4. Note that these layers are also learned during
training. For the conditional encoder, the input 96× 4 tensor
is flattened and a batch has size nbatch × 384. This is passed
through 5 encoder layers activated by LeakyReLU func-
tions, with hidden dimension (256, 256, 256, 128, 64) and
ending with a latent distribution in nz = 8 dimensions. Note
that such a low latent dimension has been chosen specifically
because we will search this latent domain for representative
scenarios. The encoder has two outputs: the mean and log-
variance of the encoding. These are passed through a standard
reparameterization operation and sampled using an isotropic
standard Gaussian distribution which is fed to a decoder.

Since the decoder is arguably the most important com-
ponent of our architecture, as this is the component that
generates the scenarios, we investigated various architectures
and activation functions for its design. For instance, because
our signals are always non-negative, we ensure that the final
layer is passed through a non-negative activation function.
However, we discovered that a ReLU function in the output
does not work well in practice, because it leads to sudden
drops to zero in the generated scenarios. To counter this,
our final layer is passed through a smooth softmax function.
We also discovered that using ELU functions as activation
functions in the intermediate layers of the decoder improves
the smoothness of the generated scenarios, as opposed to

‡Assuming both n-dimensional distributions are Gaussian, with means
µP and µQ, and covariance matrices ΣP and ΣQ, the Jensen-Shannon
Divergence between the Gaussian distributions P and Q can be expressed
as: JSD(P ∥ Q) = 1

2
KL(P ∥ M) + 1

2
KL(Q ∥ M) where KL is the

Kullback-Leibler divergence, which has the closed-form

2KL(P ∥Q) = Tr(Σ−1
Q ΣP ) + ∥µQ − µP ∥2

Σ−1
Q

− n+ log

(
det(ΣQ)

det(ΣP )

)
with M as the average distribution 1

2
(P +Q).



ReLUs or LeakyReLUs. The decoder has 5 hidden layers,
with sizes (64, 64, 128, 128, 256) and an output of size 384
to match the encoder’s input. The input to the decoder is an
8-dimensional latent along with the 4 + 4 = 8 embedded
conditional inputs.

The conditional WGAN has 4 layers, each
of which are passed through the spectral norm
(torch.nn.utils.spectral_norm) and subsequently
activated by LeakyReLU(0.01) functions followed by
Dropout(0.1) for regularization during stage-2 training
of the RAFT-VG. The 384-size input to the discriminator is
conditioned with the 8-dimensional conditional embedding,
and the output is a scalar. The final layer of the WGAN
does not have dropout or spectral norm regularization, and
is a linear layer without activation.

To implement InfoBAX, we build upon the code from [25].
As mentioned previously, we select the algorithm A to solve
the top-bottom-K problem where K = 5. The discrete set
of latent parameters Z was generated by randomly sampling
within a hypercube of [−5, 5]8 in the 8-dimensional latent
space. We generate |Z| = 5000 samples, while having a
total budget of T = 300; that is, we have the ability to
query less than 10% of the space. To construct the GP
prior, we use a squared exponential (also known as radial
basis function) kernel with automatic relevance determination
(ARD), i.e., each dimension is individually scaled using a
lengthscale hyperparameter. The lengthscale, output scale,
and noise variance hyperparameters were estimated from the
initial 100 data points using the standard maximum likelihood
estimation (MLE) procedure outlined in [26]. These hyper-
parameters were then fixed throughout the rest of sequential
sampling procedure for simplicity.

D. Modelica implementation

There are several aspects to consider when integrating
Generative Models into building simulations, i.e. 1) Genera-
tive Model Implementation, 2) Generative Model integration
with building models, and 3) simulation workflow automa-
tion. The goal of the software integration approach used here
was to minimize all dependencies (only for simulation pur-
poses) on external software tools other than the C compiler
and the Modelica tool, in this case Dymola [27], [28], which
requires a C compiler itself. Using the standardized external
function feature from the Modelica language implies that
if the integration of Generative Models with the simulation
model is done solely using C, the only dependency would be
that of the C compiler, which is anyway required by Dymola.
Meanwhile, simulation workflow automation can be achieved
by interfacing the simulator executable, which contains both
the Generative Models and the building models, with a
suitable scripting tool supported by Dymola. To achieve
this goal, the three aspects considered at the beginning of
this section were addressed in the software integration and
implementation shown in Fig. 2.

As Fig. 2 shows, the Generative Model architecture is
re-implemented in C, where different C functions provide
inputs to the Generative Model and request its output to

populate the lookup table. The function itself is defined
through the external function that provides the Generative
Model output, i.e., the timeSeries output that will pass
its data to lookUpTableValues in CombiTimeTable.
The CombiTimeTable also performs sample-and-hold
and periodic extrapolation. Finally, the outputs of the
CombiTimeTable are mapped to RealOutput and
IntegerOutput interfaces that are linked to the simu-
lation model as shown in the right hand side of Fig. 2,
the top left part of the area enclosed in an orange square.
This model is then used within the full system model, as
shown in the bottom right of Fig. 2. Finally, to facilitate the
automation of the simulation workflow, that is, to execute
multiple simulations automatically, the Python Interface for
Dymola [28], an API for executing Dymola commands using
a Python program, is used.

E. Results and Discussion
1) Results on Scenario Generation: We begin by eval-

uating the performance of the RAFT-VG architecture for
scenario generation. To this end, we present occupancy
and heat loads produced by lighting, ventilation, and office
equipment in a zone for a 24-hour period, which is the
time of interest T . This is shown in Fig. 3 for two latent
distributions: N (0, I) and N (0, 5I). By raising the standard
deviation of the latent distribution, we artificially encourage
the sampling of scenarios that are far from the average
behaviour, which is clear from the figure. The left column of
subplots show the generated signals from the tighter latent
distribution N (0, I) for the workday conditioning input in
red, and the holiday conditioning input in blue. The nominal
scenario is the average scenario taken over the entire SUSTIE
dataset, and is represented in black. The mean of the true
data for both conditionals are overlaid with 40 scenarios
that have been sampled and decoded by the trained RAFT-
VG decoder model. In fact, sampling from N (0, I) is so
tight around the mean that the true data mean and the
scenarios are almost indistinguishable. Conversely, for the
looser distribution N (0, 5I), one can easily note from the
right column of subplots that the scenarios generated are
shifted significantly from the true data mean (dashed blue
and dashed red lines), and result in scenarios that are different
enough to induce some interesting closed-loop behavior. Note
also that despite the larger σ = 5, the two conditional
distributions (workday vs. holiday) do not intersect, i.e. the
blue lines do not intersect with the red, and vice versa. We
note that this is true even with a larger number of sampled
scenarios, motivating us to use the truncated N (0, 5I) as the
sampling distribution for InfoBAX.

2) Results on Latent Sampling with InfoBAX: To evaluate
the performance of InfoBAX, we use the so-called Jaccard
distance between the estimated top-and-bottom-K set K̂ℓ

given Dℓ and the true optimal set K⋆, which is given by

Jaccard distance(K̂ℓ,K∗) = 1− |K̂ℓ∩K∗|
|K̂ℓ∪K∗| . (8)

Since K̂ℓ is a random variable corresponding to p(OA|Dℓ),
we report the expected Jaccard distance at every BAX iter-
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Fig. 2. Integration of RAFT-VG with Modelica.

Fig. 3. Scenarios (occupancy and internal head load disturbances) for
workday (red) and holiday (blue) for a single zone, generated by the RAFT-
VG by sampling the latent distribution N (0, σI) for two σ values. The
nominal scenario is shown in black.

ation ℓ by averaging over posterior samples generated from
p(OA|Dℓ). Since the results depend on the random initial
dataset, we further report confidence bounds around the
Jaccard distance based on 10 complete InfoBAX replicates.
The Jaccard distance for InfoBAX and random search over
300 total iterations is shown in Figure 4. We see a significant
improvement in the Jaccard distance using InfoBAX with
the median over the 10 replicates perfectly identifying K⋆

(distance of 0) with less than 300 iterations whereas random
search only arrives at a distance of ∼ 0.7 in 300 iterations.

3) Results on simulations with limiting scenarios: With
confidence that the InfoBAX algorithm is selecting ‘good’
limiting scenarios in a Jaccard-distance sense, we assess the
performance of the closed-loop building simulation model
driven by these limiting scenarios. We also compare against
the nominal scenario (the average of the true data). The
results of these simulations is shown in Fig. 5. The bottom

Fig. 4. Comparison of Jaccard distance between solutions obtained by
InfoBAX versus random sampling in the latent space.

three subplots are the scenarios computed by InfoBAX, with
the bottom-K in red, the nominal in black, and the top-
K in blue. To summarize, the bottom-K samples all have
in common a high occupancy throughout the workday, with
significant use of lighting as well as equipment throughout
the day, tapering off as the working hours come to a close.
The top-K scenarios are the opposite, where few people use
this zone, and even those who do are frugal in their use
of lights and equipment. The ambient temperature and solar
irradiance (direct horizontal, direct normal, global horizontal)
are also shown as these are the external disturbances d ext

t

that strongly affect the zone’s thermal profile. Note that the
ambient temperature and solar radiation is fixed, and for a
winter day with moderate sunshine and little cloud cover.

The top row of subplots are the zone temperature profiles
throughout the 24-hour period considered, under PI regula-
tion with free-floating allowed in the green bands; i.e. the PI
controllers act only if the zone temperature exceeds the upper
limit of the green band or falls below the lower limit. Two
building models are considered, as described in Section IV-A.
Building Model-1 has high air infiltration (0.41 ACH) and



standard insulation (material heat capacity of 840 J/kgK
and thermal conductivity of 0.04 W/mK), and Model-2 has
low air infiltration (0.041 ACH) and improved insulation in
the roof and walls (84 J/kgK, 0.01 W/mK). The zone
temperature corresponding to the bottom-K, nominal, and
top-K follow the same color theme as in the scenario
subplots.

These simulations demonstrate the counter-intuitive effect
that reducing the infiltration and increasing the insulation
quality has on the building performance. As the occupant
and solar heat gains are higher than the effect of the cold
weather on the envelope, case (i) requires cooling from the
HVAC system. This system hits its performance limit about
halfway through the day, causing the room temperature to rise
somewhat above the constraint from approximately noon to
6pm. In comparison, the reduced infiltration and improved
insulation effectively mitigates much of the cooling provided
by the low ambient temperatures, making the building prone
to overheating. As a result, the cooling coil hits its maximum
capacity limit much earlier in the day, so that the system is
unable to manage the heat gains and the room temperature
rises well above the desired setpoint for a large portion
of the day. These undesired thermal behaviors caused by
“improving” the building envelope are commonly observed,
and this information would be valuable to properly size the
HVAC systems to avoid such phenomena.

Fig. 5. Best-K (blue), worst-K (red), and nominal (black) closed-loop
control performances in two separate building simulation models (K=5).
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