

Interactive Model Transformations from the
Common Information Model (CIM) to Modelica

Glen K. Halley
City Utilities

Springfield, MO 65802
Glen.Halley@CityUtilities.net

Luigi Vanfretti
Rensselaer Polytechnic Institute,

Troy, NY 12180
vanfrl@rpi.edu

Marcelo de Castro
Mitsubishi Electric Power Products

Warrendale, PA 15086
marcelo.decastro@meppi.com

Abstract—Model transformation is necessary to save time
in using different power system analysis tools. The
transformation process should ensure that model parameters
are correct when using a tool that is different than the original
source, and systematically moving and mathematically
changing the source parameters. This paper describes an
interactive model transformation process using eXtensible
Stylesheet Language Transformations (XSLT) within the
EditiX software. The process starts from models in the
Common Information Model (CIM). The XML files were
generated by the PSS®E ODMS software according to the
Common Grid Model Exchange Specification (CGMES)
Library. The transformation results in a text file, linking the
OpenIPSL library, with a MO extension for use with
Modelica-standard-compliant dynamic simulation tools.

Index Terms — Common Information Model (CIM), XSLT,
information exchange, information modeling, Modelica,
OpenIPSL, power system dynamics.

I. INTRODUCTION
The Common Grid Model Exchange Specification

(CGMES) [1] contains descriptions of Extensible Markup
Language (XML) files used to facilitate the exchange of
operational and grid planning data among transmission
system operators. Extensible Stylesheet Language
Transformations (XSLT) [2] within EditiX’s interactive
development environment (IDE) provides means to
interactively translate CIM/CGMES XML files to a
Modelica file linked with the OpenIPSL library [3]. Observe
that XSLT is meant specifically for translating XML
documents. This model transformation allows to perform
dynamic simulations using Modelica-standard-compliant
software such as OpenModelica, Wolfram SystemModeler
or Dymola. This approach makes the process of
transforming the models from CIM to Modelica
understandable, flexible, and maintainable.

CGMES extends a Common Information Model (CIM)
which provides components and system information in a
structure that matches the intent of the European Network of
Transmission System Operators for Electricity (ENTSO-E)
protocols [4]. The protocols describe the tagging file
structure, hierarchy, and relationships that are necessary to
understand the data. In this case CGMES/XML contains
modeling parameters for power system components.
Because the XMLdoes not contain possible (or default)
parameters used as part of the meta-data, it is necessary to
understand parameter definitions from the standards.

A. Motivation
Power systems are rapidly evolving; however, the

availability of efficient collaborative engineering design and
analysis tools lags the technological deployment in the field.
Most of the existing tools used in the United States for

power system analysis can’t share information efficiently
and transparently, and more importantly, without ambiguity
[5]. In many cases this means that mostly only one tool is
used for typical analysis needs, i.e., to perform power flow
and dynamic simulations. When a new analysis need
appears and it is not supported in the tool, e.g., thermal
analysis, it is most likely not performed due to the
substantial time, effort and experience required to use the
model in another environment. In contrast, the data model
provided by CIM [6] and the additional definitions provided
by CGMES[1] allow for the exchange of data that is created
once and used by many tools. This capability has made it the
preferred translation method used in European utilities for
data exchange and is now supported by software such as
PSS®E ODMS and DigSILENT PowerFactory.

OpenIPSL [3], written using the open-access and
standardized Modelica language, is a power system dynamic
model library with many of the components available in
PSS®E (e.g., GENROU, for generators, HYGOV for hydro
turbine-governors, and so on). When used in conjunction
with a Modelica-standard-compliant software tool, it is
possible to perform dynamic studies leveraging both time-
domain simulation and linearization. It becomes attractive to
translate models from CIM/CGMES to Modelica in such a
way that the OpenIPSL library models are re-used. In this
context, CGMES/CIM files include all the necessary
information to transfer the power flow and dynamic model
information from the PSS®E ODMS to OpenIPSL. To
automate this process, the transformation normally requires
parsing the original files, storing the parsed data, and
reassembling the data into a new Modelica file, i.e., a “.mo”
file.

This paper proposes to use the EditiX software and
XSLT as a means to perform such translation. To this end,
the CIM/CGMES XML files can be translated using
templates for each component, thereby operating only on the
required data without parsing and storage. Observe that this
is an important aspect, as it implies that it is not necessary to
create an intermediate data model and associated database,
as in previous efforts [7]. The process begins with the
required parameters, in this case those used by OpenIPSL
models, and looks for the equivalent parameters within the
XML files. Then, unit conversions, per unit modifications,
or other mathematical functions are used to make sure the
parameters match requirements. Template translation using
EditiX and XSLT consists of sequential steps, each of which
relates to the final output. With prerequisite understanding
of Modelica and OpenIPSL, the EditiX/XSLT toolset
simplifies the workflow and creates maintainable translation
rules. It does not require complete understanding of all the
CIM/CGMES XML files since we will introduce analysis to
determine the proper translation rule to apply.

Even though attractive, this approach would still face
some challenges that are independent of the software
technologies used. First, observe that in the utility context in
the United States there is no motivation for vendors to
comply with CIM standards, and even less to adopt
CGMES, and there isn’t a long list of successful projects of
interoperability. Most importantly, in the United States,
there isn’t any sort of government mandate for
interoperability. In contrast, in Europe, it is a mandate for
vendors to provide and maintain CIM exports. Finally,
regardless of the regulatory context, a vendor's software may
not have complete parameters for a given function in another
piece of software.

Despite the lack of regulation or vendor roadblocks for
model transformation to be successful, the payoff for using
other tools (e.g., Modelica tools with OpenIPSL) offers
unique benefits because it provides:

• A different perspective that builds confidence in the
first tool’s problem statement and exposes other
branches for investigation. Based on Modelica,
OpenIPSL is easy to understand and use, as it
follows textbook-like equations [3].

• Analysis extension by incorporating a different
domain [8], for example, generating constraints from
limitations on fuel such as natural gas during winter
events.

• Originating tool testing for comparable results for the
same parameters [3].

B. Previous Work
The ENTSO-E provided business standards through the

CGMES Libraries. CGMES is part of the overall
International Electrotechnical Commission (IEC) 61970
CIM standards which define formats for, and definitions of
power system parameters used for network planning and
power system operations. These standards provide modeling
information for individual components and their associated
parameters, but don’t describe overall verification after
translation and use by target tools. In this work, successful
translation is verified by comparing results between the
origination tool and the resulting Modelica model simulated
under the same conditions using a Modelica tool. This
process would be outside the XML file structure used for
dynamic analysis.

The best parameter descriptions are listed by component
and table at the following web site: https://cgmes.github.io/.

II. XML, XSLT, FUNCTIONS, AND EDITIX TOOLS
The XML was exported from PSS®E ODMS[9].

Translating from XML to Modelica is a process of
determining what parameters the components in the
Modelica library need, where the parameters reside in the
XML files, and writing the translation templates. XSLT
naturally accommodates standards-based XML. For
example, there is no expectation of order for parameters, but
XSLT can easily sort by multiple parameters if necessary.

Processes that are not encapsulated in XSLT are placed
in helper functions that are executed within EditiX. This set
of functions is limited to a few common needs characterized
by accommodating multiple XML files, ancillary tables, and
to format the Modelica output file.

A. XML Analysis
The XML is structured into a tree of nodes. While an

XML tree can be many levels deep, the CGMES limits it to
a root, components or ancillary table, and parameters. This
limitation allows one to treat the tree as a relational database
where a database table is the components (or ancillary)
table, and the parameters are the fields within the table.

The table is formed by looking at all the nodes with the
same tag, for example the ACLineSegment tag contains line
parameters. XSLT provides XPath (XML Path Language), a
syntax to navigate nodes and match patterns to do this. In
the ieee14_EQ.xml file[9], the nodes are grouped together in
alphabetical order. This is not expected, but it is helpful to
understand the way it behaves as a relational database table.
It typically requires two namespaces entered in the
Namespace tab, as shown in Fig. 1.

Namespace prefixes are listed in the root node and used
in the entire XML document. XSLT is an XML document
and the root node is name xsl:stylesheet. ‘xsl’ is the
namespace prefix. Then, using an XPath expression to select
the nodes with the same tag ‘/rdf:RDF/cim:ACLineSegment’
and executing this expression would result in a list of all
nodes with the pattern of root node rdf:RDF and
component/table node for power lines. XPath is used
extensively within the XSLT select statements.

Like relational databases, CGMES XML also has pre-
defined relationships between the tables using keys. This
allows data normalization. Each relationship has a key that
connects the component and table. Tables contain
parameters that are used by more than one component such
as bus names.

Namespace is three characters followed by a colon
within a tag. It is used to discern who is responsible for the
tag. For example, ‘xsl:’ are XSLT commands, ‘cim:’ is part
of the CGMES data, and for custom functions ‘gkh:’ was
used. A list of namespaces is included in each file in the
xsl:stylesheet tag with the attribute xmlns followed by the
three-character code. It is worth it to note that the pti-
namespace is also present, which is for PSS®E-specific
information and is not used.

XML has a tree graph structure. For the purposes of this
paper, CGMES and RDF truncates the tree to three levels:
root, component/table, and parameters. The domain is
limited based on the active template. Templates act on the
component or table level, therefore, when working on one
component/table functions can't “see” the other components.
This limitation is overcome by using functions which
operate at the root level. Not only can they “see” other
components, but they can “see” other components in other
files.

Fig. 1. Required namespaces.

CGMES uses normalization that is traditionally a
relational database mechanism. One component can
reference another component/table using a foreign key that
links to a primary key, respectively. Both use a 128-bit
GUID with an underscore (_) in front. The foreign key adds
an additional pound (#) -sign to the front. The GUIDs are
meant to be unique. Therefore, without much knowledge
one can search with a GUID from the main component (less
the #) and find related information, albeit the search may be
required for all the files individually.

B. XSLT Structure
The templates or translation rules have a main umbrella

file, herein refered to as CIMtoMO4.xsl, that contains the
overall list of component files (imports), list of utility
functions, and all the XML document files (documents). The
first and only template in the main file points at the root
using the ‘<xsl:template
match=”/rdf:RDF”>

</xsl:template>’ node. Nodes have opening and closing
tags. The whole EQ XML file is its domain and applies to
everything between the tags. The first sub-node is
a <xsl:text>package </xsl:text>. This places the text
“package” in the results file.

“Package” corresponds to the first word of the first line
in the Modelica file. Templates combined with text are used
to build the translation. The next line is ‘<xsl:apply-template
select=”md:FullModel”/>’. In this case the opening and
closing tags are combined into a single statement. Apply-
template reduces the domain from everything under the root
to just the FullModel node (it has a ‘md’ namespace) and it
looks for the corresponding template node ‘<xsl:template
match= ”md:FullModel”>’ to execute the template.

When the main file is opened in EditiX, all imported
files are shown as tabs at the top of the document window as
shown in Fig. 2. This helps to quickly find each different
component. If imports are added to a sub-file, they will also
show up in a tab. If a new component is needed, then a new
file is created and a template and import statement are added
to the main file. The component file requires the XSLT
namespaces, output method (text), and template.

C. Common Workflow
The general workflow for the simplest translation uses

variables, XPath, and helper functions. We’ll start by
looking at a translation for the power line in the file
‘lines.xsl’. After the stylesheet tag, which includes the
namespaces, the template begins with a variable called
baseImpedance, as shown in Listing 1.

This one statement uses name= to name the variable,
select= to assign the function baseImpedance, uses XPath to
navigate to the Conducting Equipment Base Voltage
parameter, and uses the built-in function substring to parse
the parameter.

A more complex example is that of transforming a

transmission line model. Consider the next XSLT rule
shown in Listing 2.

In the XSLT rule, the text and value-of commands are
after the variable. Value-of copies the information between
the tags for the parameters. Only formatted output functions
are necessary for simple translation. All the parameters are
in the core node. The transmission line for OpenIPSL needs
R (resistance), X (reactance), G (shunt conductance), and B
(shunt susceptance) parameters for the PwLine Modelica
component. The available XML parameters will come from
the XML node ACLineSegment (line) including parameters
r, x, gch, and bch. The rule requires converting all values to
per unit using the base impedance. It also requires dividing
both the G and B values in half, see the ieee14_EQ.xml file
[9].

Functions are used within the select statements. In addition
to the built-in substring function, the built-in functions
format- number and concat are also needed. The custom
functions compliantName and defaultNumbers were also
required to perform the translation. Finally, per unit
calculations were created in the select statements with the
div and * operators in conjunction with the $baseImpedance
variable.
D. Helper Functions

There are many built-in functions of XSLT, none of
which include namespace identification. For example,
format- number(…) will format a number. The helper
functions created for this work use the ‘gkh’-namespace. For

Fig. 2. Translation rules in separate files shown as tabs.

Listing 1. Transmission line transformation rule, ACLineSegment

<xsl:template match="cim:ACLineSegment">

 <xsl:variable name="baseImpedance" select=
"gkh:baseImpedance(cim:ConductingEquipment.BaseVolt
age/substring(@rdf:resource,2),0,0)"/>

 <xsl:text>OpenIPSL.Electrical.Branches.PwLine</xsl:te
xt><xsl:value-of select=
"gkh:compliantName(concat('line',cim:IdentifiedObject.n
ame,substring(@rdf:ID,6,4)))"/>
<xsl:text>(R =</xsl:text><xsl:value-of select="format-
number(cim:ACLineSegment.r div
$baseImpedance,'0.000000000#')"/><! >
<xsl:text>, X =</xsl:text><xsl:value-of select="format-
number(cim:ACLineSegment.x div
$baseImpedance,'0.0000000000#')"/>
<xsl:text>,G = </xsl:text><xsl:value-of
select="gkh:defaultNumbers(cim:ACLineSegment.gch
*$baseImpedance div 2,0.00)"/>
<xsl:text>, B =</xsl:text><xsl:value-of select="format-
number(cim:ACLineSegment.bch * $baseImpedance div
2,'0.0000000000#')"/>
<xsl:text>);</xsl:text>
…
</xsl:template>

<xsl:variable name="baseImpedance" select= "gkh:
baseImpedance (cim:ConductingEquipment.BaseVoltage/
substring(@rdf:resource,2),0,0)"/>

Listing 2. baseImpedence variable

example, gkh:defaultNumbers is defined in the
CIMtoMO4.xsl file and is used to select a default number on
the right if there is an invalid number on the left as
gkh:defaultNumbers(NaN,0.00) will output 0.00. In addition
to the two functions already mentioned, the line components
use gkh:compliantName(…) to create a unique name
necessary for OpenIPSL components. It combines the word
‘line’, cim:IdentifiedObject.name and four digits of the line
identifier GUID using a built-in function substring (i.e.,
‘line’ + ‘1_2_1’ + 25f8).

E. Example of Running an XSLT-based Transformation
Using EditiX, we use the File->Open Project and select

the downloaded XSLTConferencePaper directory in [10].
The XSLT can run against the XML using the following
procedure:

1. Opening the scenario.xfl scenario file assigns:
a. CIMtoMO4.xsl XSLT as the core translation

file.
b. Input file relative path/name (EQ-file) which

also has three other files in the same directory
(DY, SV, and TP).

c. Input parameters to the XSLT including
frequency, results path, and the faulted bus’s
name, resistance, and reactance, start time,
and end time.

2. Use the Visual Editor tab in EditiX at the bottom
for help in setting up the scenario paths show in
Fig. 3.

3. Two scenarios have been created in the file. Run
the IEEE14 scenario using the red underlined
button in Fig. 5.

III. ASSOCIATIONS
Parameters could be within components or common

tables. If they are within the tables, there will be an
association. Associations can be determined by looking at
any GUID code used to link components' and tables’ global
information. Use https://cgmes.github.io/#core-equipment-
ac-line-segment to see the possible component/table
associations.

CGMES XML classifies the XML nodes of a power system
as shown in Fig. 4. Terminals are linked to connectivity
nodes (buses) and conducting equipment such as lines,
transformers, shunts, machines, and loads. The OpenIPSL
connections are created by going through all terminals

except for BusNameMarkers. The connection is the bus and
equipment for each terminal.

You can see two GUIDs within each line component.
The top GUID is a unique identifier of the line with an
attribute of rdf:ID. It is the same as the connectivity node in
cim:Terminal. Any class with a dependency on the line will
use the GUID with a pound-sign (#) in front of it. In order to
determine the per unit values, we will use the

<cim:ConductingEquipment.BaseVoltage>

attribute rdf:resource GUID to find the value.

The desired Modelica output for a load starts with
PSSE.Load. Upon examination of the examples in
OpenIPSL: characteristic, initial active power, initial
reactive power, initial voltage magnitude, and initial voltage
angle are required. The characteristic is determined based on
the model selection. All other parameters are values copied
out of the XML into the OpenIPSL Modelica models.

Unlike transmission line translation, the required
parameters for loads are not all within the core component
(EQ-file). The component uses relationships between
attributes to add power/reactive power and voltage/angle
parameters. Such parameters are stored in the SV-file
(cim:SvPowerFlow) which uses a Terminal (rdf:resource)
attribute for relationships.

It is necessary to determine associations between the
Terminal attribute and the load's (cim:ConformLoad and
cim:NonConformLoad) available attributes: equipment code,
Load Group, Load Response, Equipment Container. Each
component has an equipment attribute, which is a GUID.
Equipment attribute of load is used as the function parameter
of gkh:SvLoadTree which is used to get the Modelica
parameters.

SvLoadTree calls another function gkh:EQterminal to
convert the equipment attribute to a Terminal attribute. The
function return is the entire tree for the particular
cim:SvPowerFlow which includes both power and reactive
power. Voltage/angle are added with the gkh:SvVolt
function.

In this case PSS®E's load model is a ZIP (total load is
assumed to be composed of parts defined as constant
impedance, current, or power) model. We must use the
characteristic setting that will guarantee power and allow
reactive power to drop as a function of voltage squared. This
means the OpenIPSL characteristic attribute must be set as
2. Load Response relationship is used to create the settings
for this model type.

The model OpenIPSL.Electrical.Buses.Bus requires
the gkh:baseVoltage function in addition to gkh:SvVolt in
order to get the Modelica parameters into per unit.
Otherwise, it is very similar to the voltage/angle code for
loads. Meanwhile, the model

Fig. 4. Diagram of associations.

Fig. 5 Visual editor tab.

Fig. 3 Generated scenarios and execution of translation.

OpenIPSL.Electrical.Banks.PSSE.Shunt requires the
gkh:baseImpedance function to create per unit impedance
parameters for Modelica.

IV. CREATING FUNCTIONS
Templates and functions are the key mechanisms used

for translating CGMES XML. Templates match an XML
node. In this case the node is a component or table. Under
the node are the parameters (that are also nodes), and any
keys used for linking to other components/tables. Functions
are used to access components/tables using keys.

XPath is part of XSLT and typically shown in a select
attribute. It uses path expressions to navigate XML
documents. It can select parts of the tree. XSLT variables
were created at the top of the main translation file linking to
the different CIM files. They are $DY (dynamic), $TP
(topology),$SV (state variables), and $rdf (equipment) files.
The files will be followed by either the root node (rdf:RDF)
or the component/table. For example, $rdf/cim:Terminal
starts with all the Terminal nodes in the equipment file.

The function gkh:tapchanger returns a complete node
with its parameters, which is a return type of
as=“element()”. It receives one string parameter
as=”xs:string” and names it name=“transEndCode”. The
command copy-of is the element return value. The select
statement uses the document variable $rdf for the main
document and the Xpath

“cim:RatioTapChanger/cim:RatioTapChanger.TransformerEnd”

 with the bracketed filter. A substring function cuts off the
pound sign from the foreign key and matches it with
the parameter variable. Finally, the XPath “..” moves the
context back up to the RatioTapChanger node. See the
example in Listing 3.

V. CONCLUSION
It takes hundreds of equipment parameters to complete a

power flow or dynamic analysis. The size of the analysis is
based on the pool of Real Time Operators (RTOs) in the
United States. For example, the Southwest Power Pool
(SPP) includes large parts of North Dakota, South Dakota,
Nebraska, Iowa, Kansas, Missouri, Arkansas, Oklahoma,
and Texas. While PSS®E is the standard modeling software
for static and dynamic analysis for some RTOs, OpenIPSL
running within a Modelica-compliant tool offers attractive
benefits, different features and analysis possibilities. It
also provides opportunities for looking at multi-domain
models with thermal or physical parameters in addition to
electrical parameters.

This paper presented the CIMtoMO XSLT, to provide
means to translate PSS®E files to Modelica using the EditiX
software. When using EditiX, this process is interactive,
transparent, revealing, and extensible. Understanding the
tools that make it possible to transform models in the

CGMES XML requires one to perform XML analysis, to
understand the XSLT structure and common workflow
within EditiX, XSLT functions, and to determine how to
perform the translation within EditiX. Obtaining parameters
from tables through associations is required for parameters
that are common to multiple components. In addition, it is
possible to exploit templates, functions, and associations to
automate the process, as described in this paper.

ACKNOWLEDGEMENTS
The authors would like to thank Svein H. Olsen of

Statnett SF who generated the models from PSS®E ODMS.
L. Vanfretti and M. de Castro were supported in part by
Dominion Energy and by NYSERDA under agreement
number 137940.

REFERENCES
[1] “IEC 61970-600-1 Ed. 1.0 en:2021 - Energy management

system application program interface (EMS-API) - Part 600-
1: Common Grid Model Exchange Standard (CGMES) -
Structure and rules.” Accessed: Oct. 16, 2023. [Online].
Available:
https://webstore.ansi.org/standards/iec/iec61970600eden2021

[2] “XSLT, 2nd Edition [Book].” Accessed: Oct. 16, 2023.
[Online]. Available:
https://www.oreilly.com/library/view/xslt-2nd-
edition/9780596527211/

[3] M. de Castro et al., “Version [OpenIPSL 2.0.0] - [iTesla
Power Systems Library (iPSL): A Modelica library for
phasor time-domain simulations],” SoftwareX, vol. 21, p.
101277, Feb. 2023, doi: 10.1016/j.softx.2022.101277.

[4] “IEC 61970-552 Ed. 2.0 b:2016 - Energy management system
application program interface (EMS-API) - Part 552:
CIMXML Model exchange format.” Accessed: Oct. 16, 2023.
[Online]. Available:
https://webstore.ansi.org/standards/iec/iec61970552ed2016

[5] L. Vanfretti, W. Li, T. Bogodorova, and P. Panciatici,
“Unambiguous power system dynamic modeling and
simulation using modelica tools,” in 2013 IEEE Power Energy
Society General Meeting, Jul. 2013, pp. 1–5. doi:
10.1109/PESMG.2013.6672476.

[6] “A Brief History: The Common Information Model | IEEE
Power & Energy Society eNews Update.” Accessed: Oct.
16, 2023. [Online]. Available: https://site.ieee.org/pes-
enews/2015/12/10/a-brief-history- the-common-information-
model/

[7] F. J. Gómez, L. Vanfretti, M. Aguilera, and S. H. Olsen,
“CIM-2-mod: A CIM to modelica mapping and model-2-
model transformation engine,” SoftwareX, vol. 9, pp. 161–
167, 2019, doi: https://doi.org/10.1016/j.softx.2019.01.013.

[8] F. J. Gómez, M. Aguilera Chaves, L. Vanfretti, and S. H. Olsen,
“Multi-Domain Semantic Information and Physical Behavior
Modeling of Power Systems and Gas Turbines Expanding the
Common Information Model,” IEEE Access, vol. 6, pp. 72663–
72674, 2018, doi: 10.1109/ACCESS.2018.2882311.

[9] “IEEE 14 Bus Model CIM and PSS/E Source Files for Model
Transformation Tool Testing,” GitHub. Accessed: Oct. 16,
2023. [Online]. Available:
https://github.com/ALSETLab/NYPAModelTransformation/tree
/maste r/ModelTransf-Tool/Prototype/examples/bus-14

[10] G. K. Halley, “Tutorial for Using EditiX to Analyze and
Translate CGMES XML.” ALSETLab, Oct. 20, 2023.
Accessed: Oct. 30, 2023.
[Online]. Available:
https://github.com/ALSETLab/XSLTConferencePaper <xsl:function name="gkh:tapPosition">

<xsl:param as="xs:string?" name="tapChangerCode"/>
<xsl:value-of select="$SV/
rdf:RDF/cim:SvTapStep/cim:SvTapStep.TapChanger[sub
string(@rdf:resource,2)=$tapChangerCode]/../cim:SvTa
pStep.position"/>
</xsl:function>

Listing 3. tapPosition function.

