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Abstract: Balanced data is required for deep neural networks (DNNs) when learning to perform
power system stability assessment. However, power system measurement data contains relatively
few events from where power system dynamics can be learnt. To mitigate this imbalance, we
propose a novel data augmentation strategy preserving the dynamic characteristics to be learnt.
The augmentation is performed using Variational Mode Decomposition. The detrended and the
augmented data are tested for distributions similarity using Kernel MaximumMean Discrepancy
test. In addition, the effectiveness of the augmentation methodology is validated via training
an Encoder DNN utilizing original data, testing using the augmented data, and evaluating the
Encoder’s performance employing several metrics.
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1. INTRODUCTION

Power grid measurements, even if regularly collected and
stored, do not contain enough event recordings from where
dynamics can be learnt. This poses a challenge to train
a deep neural networks (DNNs) to perform power system
security assessment tasks that require to recognize, predict
or classify power system dynamics with high accuracy
Narasimham Arava and Vanfretti (2018). Thus, the hybrid
solution of using synthetic and real measurements mixture
has recently been explored for this purpose Zhu and Hill
(2022), Bogodorova et al. (2020); Dorado-Rojas et al.
(2023). Such synthetic data is generated using extensive
simulation physics-based power system models, which are
challenging to maintain validated Podlaski et al. (2022).
In this context, data augmentation arises as an attractive
technique, to enlarge a pool of the relevant data for the
DNN training, which has proven successful in computer
vision Nie et al. (2021), Iglesias et al. (2023).

Ultra-fast performance of DNNs when deployed needs to
be balanced against the training effort for the NN to per-
form well in real-world applications. Therefore, to speed up
the process of learning and recycle the trained networks,
transfer learning has been proposed. This concept suggests
to recycle the trained DNNs when the data has a similar
distribution, even though the NNs might be employed for
slightly different tasks. This approach has been success-
fully applied in the image recognition and classification
fields, for example, in classification of medical data, while
in power system analysis it has been proposed to address
⋆ This research was funded in part by NYSERDA under agreement
137951 and the National Science Foundation, Grant No. 2231677.

event identification and dynamic security assessment tasks
Li et al. (2022), Ren and Xu (2020).

For power system small signal stability assessment (SSSA)
the oscillatory pattern within the data can be used to
determine the damping ratios of different modes Osipov
et al. (2023) and, therefore, the operational state of the
system. To this end, data preprocessing methods Vanfretti
et al. (2015) are applied by grid operators’ tools to detect
unwanted behavior.

In this work we propose to benefit from such processing
step to enlarge the measurements of interest, use it to
train the DNN and to direct the machine learning model
to the features in the data that are important to learn. In
addition we suggest to use the trained models by efficiently
recycling them, i.e. use their parameters and their fixed
structure for the repeated training process when new data
arrive. Moreover, we evaluate if the preprocessing of the
new collected data has a significant impact on the DNNs
output. To this end, the variational mode decomposition
(VMD) technique, that decouples the signal into mean-
ingful modes, is exploited to augment data that is prepro-
cessed via detrending.The verification methodology that is
applied to check if the augmentation is successful is “Train
on Synthetic, Test on Real Data” described in Esteban
et al. (2017).

The reminder of this paper is organized as follows. Section
2 formulates a hypothesis. Section 3 presents the data
augmentation process, the DNN to be trained and the
DNN performance assessment metrics. Section 4 describes
the statistical tests for the hypothesis testing. Section 5
presents the evaluation of the proposed hypothesis on the
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Fig. 1. Examples of input signals

SSSA task for power system data, such as voltage phasor
angle. Finally, Section 6 concludes this work.

2. PROBLEM FORMULATION

Variational Mode Decomponsition (VMD) is a method
that extracts modes from a time-series data that has
recently been explored in the analysis of power system
modes Osipov et al. (2023). VMD allows to decompose
the signal and extract a meaningful pattern in the form
of Intrinsic Mode Functions (IMFs). The combination of
these functions limits the bandwidth of the original signal,
however, filters out the unnecessary information or noise.
This ability of VMD may be utilized when training a DNN
as a feature extraction step, thus shaping the pattern of the
input training data to form another pull of data. Therefore,
we wish to validate (or reject) the hypothesis if such data
can be used as additional augmented data for training for
the tasks where oscillations heavily influence the output of
classification such as power system security assessment.

Hypothesis: Can the VMD-decomposed data (e.g. as il-
lustrated in Fig. 1) be used as augmented data when the
detrended data are used as input for a deep learning model,
if the two distributions of the data are similar enough?

In this case if the hypothesis is validated, the augmented
data can be considered as trusted augmentation since the
method of data processing is known and unambiguous,
which helps with data credibility.

3. DATA GENERATION AND DNN TRAINING

The data to be used to train DNN is processed using
detrending or VMD decomposition. When applying VMD,
all components are summed up except the last component
that contains nonstationary behavior. Detrending is a
typical preprocessing step Vanfretti et al. (2015), however,
the VMD is used here as an alternative since it has been
shown to be effective in oscillation detection applications
Osipov et al. (2023).

3.1 Variational Mode Decomposition

In this method the signal is decomposed into band-limited
IMFs that are defined as:

uk(t) = Ak(t)cos(ϕk(t)) (1)

where the phase ϕk(t) is a non-decreasing function
(ϕ′

k(t) ≥ 0), the envelope is non-negative Ak(t) ≥ 0, and
the instantaneous frequency ωk(t) varies much slower than
the phase ϕk(t) Dragomiretskiy and Zosso (2013).

The constrained variational problem is the squared L2-
norm of the gradient: ∂t(·):

min
{uk},{ωk}

(∑
k

∥∥∥∥∂t [(δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2
2

)
s.t.
∑
k

uk = f (2)

where {uk} := {u1, ..., uK} and {ωk} := {ω, ..., ωK} are
the modes and their center frequencies, δ(t) is the Dirac
distribution, ∗ denotes convolution.

The solution to (2) is obtained by utilizing the aug-
mented Lagrangian multiplier with a series of iterative sub-
optimizations known as the alternate direction method of
multipliers (see Dragomiretskiy and Zosso (2013)).

3.2 Data Processing using Detrending

Voltage angle measurements naturally contain richer ob-
servability of modes that are excited after a contingency
than other measurements Vanfretti and Chow (2010).
Therefore, voltage angle measurements are used as input
data for a deep learning model after pre-processing Van-
fretti et al. (2015).

The following data preprocessing steps are performed for
the voltage angle signal collected at the location of each
electric power generator bus: a) subtraction of the center
of angle that is defined as the inertia weighted average of
all rotor angles Tavora and Smith (1972); b) unwrapping;
c) subtracting the initial value to obtain a deviation signal;
d) linear detrending. Let the (raw) input data be defined
as x = [x1,x2, ...,xT ], where T is the number of time-series
signals. For the voltage angle data, the deviations of the
signals are given by:

xt = [̸ θ1,t − ̸ θ1,0, ..., ̸ θi,t − ̸ θi,0, ̸ θN,t − ̸ θN,0] (3)

where N is the total number of buses, ̸ θi,t is the voltage
angle at bus i of length t, and ̸ θi,0 is the initial value of
voltage angle for each bus i.

Then, the angle unwrapping is performed by computing:
̸ θj,i = ̸ θj,i + (2πk) if (̸ θj,i − ̸ θj,i−1) ≥ π (4)

where j is the sample number in the data set, i is the
identifier of a measurement at a particular moment in
time, and k is a coefficient that is updated after every
large jump in the phase value Venkatasubramanian (2016).
Measurements are assumed to be collected at key system
locations where Phasor Measurement Units are installed or
synthetic data are obtained by simulating a power system
model (as in this paper) Vanfretti and Chow (2010).

In the last step of this process, i.e. labeling, VMD is
applied and the IMF of the largest energy that contains
the dominant modes is extracted. Then, Prony’s method
Sanchez-Gasca and Chow (1999) is employed to the ex-
tracted IMF in order to identify modes. Next, calculate
the damping of the mode closest to the critical system
mode (i.e. 0.8 Hz is the frequency of the inter-area mode
in the examples herein).

In sum, the data generation and labeling approach using
simulation models used herein is:

(1) Calculate the initial condition of the power system
(i.e. obtain a power flow solution).



(2) Sample the contingency to be applied using realistic
contingency generation Bogodorova et al. (2020) and
simulate the behavior of the power system.

(3) The measured voltage angles in the buses of interest
are pre-processed. The signal is detrended as shown
in Fig. 1.

(4) Label the trajectories identifying the state of the
system. An example of the VMD decomposition and
the detrended signal is shown in Fig. 1

3.3 Offline Training

To validate the formulated hypothesis (see Section 2), an
Encoder Serrà et al. (2018), a hybrid DNN architecture
that is designed for time-series data classification tasks,
is chosen. Encoder (Fig. 2) consists of fully connected
layers with an attention layer. Each of three convolutional
layers includes respectively 128, 256, 512 filters, with the
length of a 1D convolution window of sizes 5, 11, and 21
correspondingly. The operations within the hidden layers
are given by:

x = Convk3(Convk2(Convk1(x0)))

u = ATN(x[:, :, : 256] ∗ S(x[:, :, 256 :]))

y = S(IN(W⊗ u+ b))

(5)

where IN is the Instance Normalization operation, k1, k2, k3
is the number of output filters; ATN is the attention
mechanism, S is the softmax function. IN normalizes
and scales outputs of the previous layer. In contrast to
batch normalization, this normalization does not operate
on batches, but rather normalizes the activation of a single
sample, making it suitable for recurrent neural networks
Ulyanov et al. (2016). Meanwhile ATN directs the NN
to pay more attention to the small, significant parts of
the data. To implement ATN , the data is divided into
two equal parts: x[:, :, : 256] and x[:, :, 256 :] (see (5)). The
softmax function is then applied to one of the parcels, and
the two parcels are multiplied. This allows each element of
the softmax-treated parcel to act as a weight for the other
one. This mechanism enables the model to learn which
parts of the time series are essential for the classification
task.

The goal of the deep learning model is to minimize a loss
function known as categorical cross entropy. The training
set is composed of a collection of values {x(n), y(n)}Nn=1.
The objective is to find the parameters of the model (e.g.
W, b in equations (5)) that minimize the categorical cross
entropy error function LCE , and is given by

LCE = min

N∑
n=1

C∑
c=1

yc,(n)log(ŷc,(n)) (6)

where ŷ(n) is the classification result of the input values
x(n) for the trained model, C is the number of classes, and
N is the number of training cases.

To solve (6), the Adam optimizer was chosen with a
learning rate equal to 0.00001.

3.4 Online Assessment

For online SSSA, the previously trained Encoder is em-
ployed to classify the test cases using voltage angle mea-
surements. With a set of bus voltage angle phasor measure-
ments, it is straightforward to calculate the corresponding

layer output values h1, h2, ..., yT given by (2) using the
trained NN parameters. To transform the output of the
Encoder, yT ∈ (0, 1), into a stability index, a class sepa-
ration threshold δ = 0.5 is defined so that the test cases
with yT < δ are considered stable and otherwise unstable.

3.5 Evaluation Metrics

The training of the DNN has been performed using the
accuracy metric, while precision and recall were measured
on the testing data to validate the resulting model’s qual-
ity. The class in which unstable cases belong is assigned
as a positive class. The choice of positive class greatly
influences on which class the precision and recall metrics
will be focused on.

Accuracy. This metric defines a general performance of
the model across all classes.

accuracy =
NTP +NTN

NTP +NFP +NTN +NFN
(7)

whereNTP is the total of unstable cases correctly classified
as unstable; NTN is the total of stable cases correctly
classified; NFP is the number of stable cases misclassified
as unstable; NFN is the number of unstable cases misclas-
sified as stable.

Precision. This metric evaluates accuracy of the model
in classifying the data as a positive sample, which is, by
our choice, an unstable case. Precision is defined as the
ratio between true unstable samples and the total number
of samples that are classified by the model as unstable,
including those that are false unstable.

Recall. This metric evaluates the number of correct un-
stable predictions on all relevant unstable predictions.

precision =
NTP

NTP +NFP
, recall =

NTP

NTP +NFN
(8)

In other words, recall evaluates missed correct predictions
from the class that is labeled as unstable that is more
important to be classified correctly.

Train on Synthetic, Test on Real Data (TSTR) &
Train on Real, Test on Synthetic Data (TRTS)
Esteban et al. (2017). These are the techniques used
to assess whether the augmented data (referred to as
”synthetic data” in the names of the methods) are suitable
for use as additional training data for the selected NN. For
the purposes in this work, the approach can be applied
in two ways: when the VMD-decomposed data is used
for training but the original detrended data is applied for
testing, and vice versa. The resulting evaluation metrics,
such as accuracy, recall, and precision, are compared with
those received in the original data.

4. DISTRIBUTIONS SIMILARITY KERNEL
MAXIMUM MEAN DISCREPANCY TEST

To verify whether the VMD-decomposed data are good to
serve as augmented data for NN training, the input data
distribution similarity test has to be applied. The Kernel
MaximumMean Discrepancy (KMMD) is one of the recent
statistical tests developed to determine if two samples of
input data are drawn from different distributions and has



Fig. 2. Encoder neural network architecture

been effective in machine learning applications Gretton
et al. (2006).

The maximum mean discrepancy (MMD) is a measure
of similarity between two distributions with given ob-
servations X = {x1, ..., xm} and Y = {y1, ..., yn}. It is
determined by using a function from the class F . Let F be
a unit ball in a universal reproducing kernel Hilbert space
H, defined on the compact metric space X with associated
kernel k(·, ·), then MMD[F , X, Y ] is defined as:

MMD[F , X, Y ] =
[ 1

m2

m∑
i,j=1

k(xi, xj)−
2

mn

m,n∑
i,j=1

k(xi, yj)+

1

n2

n∑
i,j=1

k(yi, yj)
] 1

2

(9)
where k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ - kernel in kernel Hilbert
space. The most common kernel function that is applied
in this test is the Radial Basis kernel function (Gaussian).
The similarity metric MMD[F , X, Y ] = 0 if two distribu-
tions are equal X = Y .

The uniform convergence bound for the empirical MMD
(see (9)) that defines a threshold of the hypothesis test is
based on the Rademacher complexity Cortes et al. (2013)
and presented below under the assumptions that m = n,
|k(x, y)| ≤ K, distributions are the same:

MMDb[F , X, Y ] > m− 1
2

√
2E[k(x, x)− k(x, x′)] + ϵ

> 2(K/m)1/2 + ϵ
(10)

both with probability less than exp(− ϵ2m
4K ). Thus, a hy-

pothesis test of level α for the null hypothesis X =
Y (i.e. MMD[F , X, Y ] = 0) has acceptance region

MMDb[F , X, Y ] <
√

2(K/m)(1 +
√
2logα−1) according

to Corollary 16 in Gretton et al. (2008). The boundary
of this region is later named Rademacher. This bound-
ary is relaxed compared to the asymptotic boundary of
the unbiased estimate of MMD2

u. According to Corol-
lary 18 in Gretton et al. (2008), a hypothesis test of
level α for the null hypothesis that two distributions are
the same X = Y has the acceptance region MMD2

u <

(4K/
√
m)
√
log(α−1). The boundary of this region is later

named the asymptotic boundary.

5. CASE STUDIES AND ANALYSIS

Several case studies have been developed to test the hy-
pothesis of using VMD-decomposed data as augmented
data for SSSA. The KMMD distribution similarity test
is applied in two variants of the relaxed Rademacher
boundary and the tight asymptotic boundary. The test is

validated on the same distribution data that were split into
two sets, on the original detrended data and randomly gen-
erated, and on the original and the augmented set to test
the hypothesis. If the VMD-decompoded data come from
a distribution similar to the original detrended voltage
angle phasor data, additional DNN performance metrics
are computed for the original and the augmented data.
These are TSTR and TRTS metrics that are explained in
Section 3.5.

5.1 Testing distributions similarity using Kernel Maximum
Mean Discrepancy Test

Distribution similarity testing results comparing the de-
trended and decomposed voltage angle data are presented
in Fig. 4 and Table 1. Each data set consists of 7878
samples with each sample length of 400 points with the
recording rate 60 samples per second.

The KMMD similarity tests are performed as detailed in
Section 4. The MMDs calculated with the bounds are pre-
sented in the same color showing the correspondence with
the same test result. When the MMD value is smaller than
the boundary value, the hypothesis rejection is considered
true, otherwise false. The tests are evaluated for different
confidence levels that correspond to the significance level
α. The meaning of significance level is the probability to
reject hypothesis when it is true. In Figure 4 the case of
comparison of the distributions of the decomposed data
and the randomly generated data is used as a baseline. In
this case, the values of MMD or MMD2 are significantly
higher than the relaxed Rademacher and tight asymptotic
boundaries, respectively. Thus, the hypothesis that the
data originate from the same distribution is rejected.

Another test is performed to validate the proposed
methodology on the detrended data that is divided into
two parts. Both tests with the relaxed and tight bound
have shown that the hypothesis cannot be rejected for all
levels of significance. Thus, both case studies reflect the
expected performance of the distribution similarity tests.

Finally, the test result on the detrended and VMD-
decomposed data using the Rademacher boundary is that
the hypothesis cannot be rejected. In other words, the
distributions are locally similar enough to consider the
data to be of close origin. The VMD-decomposed data
can be used as augmented data. However, the test with
the asymptotic boundary resulted in the hypothesis being
rejected. Therefore, considering the different test results
(see Table 1), deep learning model performance validation
is performed using the TSTR and TRTS metrics.



Table 1. The hypothesis testing results

Data Set 1 Data Set 2 MMDb

with

Rademacker

bound

MMDu

with

Asymptotic

bound

Detrended Detrended Not Rejected Not Rejected

Decomposed Randomly generated Rejected Rejected

Detrended Decomposed Not Rejected Rejected

5.2 Training of the deep learning model Encoder on
detrended and decomposed data of the 769-bus power
system model

To address the main hypothesis in this work (see Section
2), the metrics TSTR and TRTS (see Section 3.5) are
employed. In addition, accuracy, precision and recall are
employed to evaluate the Encoder’s performance on differ-
ent training and testing data. The idea is that if the data
sets both contain the main features that distinguish the
state of the system, and the difference in the distributions
is not significant, the resulting performance do not change
or change in an acceptable range. The case study has been
carried out on 5252 training samples and tested on 2626
samples. The results are summarized in Table 2. The En-
coder’s training results for the solely detrended or decom-
posed data are very similar in terms of accuracy and recall,
holding the largest difference of 1 % in precision value. The
intuition behind this difference is that the ratio between
the number of false unstable cases and true unstable cases
is larger when the Encoder is trained on the decomposed
data. However, for the other two cases that use different
data for training and testing, the change in performance
of the Encoder is more prominent, especially in precision
and recall metrics values. Although the difference between
cases with the same data and different data for training
and testing in accuracy is around 1 %, the precision differs
up to 5 % and the recall is up to 7 %. The biggest drop in
performance is for the case where the training is performed
on the VMD decomposed data, meaning less rich data than
the original detrended data set. This result is logical if the
Encoder learns fewer patterns during the training than it
is present in the test data.

0 5000 10000 15000
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Fig. 3. Performance of the Encoder on data size

Finally, a study on the merged original and augmented
data is carried out to observe the performance of the
Encoder depending on the size of the data set. In Figure 3
the performance on the joint data (the original detrended
and the augmented VMD-decomposed data) has shown a

Table 2. Performance of the Encoder using
TSTR and TRTS metrics

Train:

Detrended,

Test: Detrended

Train:

Decomposed,

Test:

Decomposed

Train:

Detrended,

Test:

Decomposed

Train:

Decomposed,

Test: Detrended

Accuracy, % 98.71 98.51 97.33 97.22

Precision, % 97.07 96.03 91.53 92.80

Recall, % 93.62 93.30 89.25 86.70

stable high performance when the data size is larger than
5500 samples. Therefore, even though the data sets are not
completely from identical distributions according to the
statistical test results in Table 1, the VMD-decomposed
data merged with the original data set of the voltage angle
data gives as good performance as the base case with the
detrended data.

6. CONCLUSION

In this paper we propose to use variational mode decom-
position to produce the augmented data for training the
deep neural network to perform a small signal assessment
for a large power system. By analogy to rotation, cropping,
and flipping of an image, the decomposed components of
the signal may serve as a means to augment the limited
data set with valuable dynamics.

To validate the hypothesis that VMD-decomposed data
can serve as augmented data for the neural network, the
KMMD statistical test of distribution similarity is per-
formed. The results of the testing have shown that the
VMD-decomposed data can be considered as augmented
data under relaxed conditions posed by the Rademacher
boundary. The additional validation of the proposed aug-
mentation has been performed using TSTR and TRTS
metrics.

The outcome has shown good performance of the En-
coder neural network used on the newly formed data. The
Encoder has demonstrated a consistently positive perfor-
mance with the increasing data size, which includes the
additional “augmented” data.

REFERENCES

Bogodorova, T., Osipov, D., and Vanfretti, L. (2020).
Automated design of realistic contingencies for big data
generation. IEEE Transactions on Power Systems,
35(6), 4968–4971.

Cortes, C., Kloft, M., and Mohri, M. (2013). Learning
kernels using local rademacher complexity. Advances in
neural information processing systems, 26.

Dorado-Rojas, S.A., Fachini, F., Bogodorova, T., Laera,
G., de Castro Fernandes, M., and Vanfretti, L. (2023).
ModelicaGridData: Massive power system simulation
data generation and labeling tool using Modelica and
Python. SoftwareX, 21, 101258.

Dragomiretskiy, K. and Zosso, D. (2013). Variational mode
decomposition. IEEE transactions on signal processing,
62(3), 531–544.

Esteban, C., Hyland, S.L., and Rätsch, G. (2017). Real-
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