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Abstract: Using prediction-error identification methods, this paper proposes a measurement
data-driven approach to monitor power system oscillations at a power plant, identify a data-
based model using an input signal and redesign the plant’s power system stabilizer damping
controller to mitigate the observed oscillations under ambient conditions and multiple operating
points. The advantage of the proposed methodology is that the damping performance can be
monitored continuously and the redesign only requires measurements at the power plant along
with the controllers structure, which are known by the power plant operator.
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1. INTRODUCTION

Poorly damped electromechanical oscillations appear in
power systems due to decreasing stability margins emerg-
ing from limited power transmission capacity, changes in
the grid’s operating conditions, loss of transmission cor-
ridors, etc. Such oscillations can be of local nature, i.e.,
resulting from the excitation of the main dynamics of a
power plant connected to the reminder of the grid, or
spread across “wide-areas”, such as inter-area oscillations
(Klein et al (1991)). A typical countermeasure to deal with
such oscillations is to equip different power system appa-
ratus with the so-called Power System Stabilizer (PSS)
or Power Oscillation Dampers (POD) (Rogers (1999)).
Damping control systems, i.e., PSSs and PODs, are placed
preceding other control loops, such as the voltage control
loop (i.e., the Excitation Control System (ECS)) in syn-
chronous machines or voltage regulators in Static VAR
Compesantors and the like (see Rebello et al (2020)).
The purpose of this is to use the actuators within ex-
isting control systems to reduce oscillations and ensure
the stability of the connection to the grid (in the case of
a single power plant) or an entire interconnected region.
However, to achieve this goal, these damping controllers
should be well tuned to maintain adequate damping, and
if left without calibration, may lead to major grid stability
issues.
Because the structure of these controllers is fixed, the value
of their parameters must be set through design studies
before being implemented in the field. Existing approaches
to design and tuning damping control systems largely
depend on grid simulation models. However, this poses
the challenge of maintaining validated models for multiple
potential operating points (OPs). This is a major difficulty,

especially for the European interconnected grid, as shown
by recent events (ENTSO-E (2017, 2018)).
Meanwhile, the rise in the availability of power system
measurements, including but not limited to Phasor Mea-
surement Units (PMUs), allows monitoring changes in
modes frequencies and damping. This ability to monitor
power system dynamics can be beneficial not only for
“wide-area” monitoring, but also to observe and poten-
tially mitigate local dynamics (Mishra et al (2022)). In
the previous work of the authors (see Bombois and Van-
fretti (2023)) propose a data-based PSS redesign method
that can be applied when the power system undergoes
a disturbance (i.e. loss of a power line). In this work,
we extend this approach to consider multiple operating
points under ambient conditions. It should be noted that
adequate damping performance is not only of interest
during large system disturbances, but also as the power
plant moves from one operating point (OP) to another,
possibly increasing the system’s stress. Power plants expe-
rience this on a regular basis, every hour, and even more
frequently when they are involved in the real-time markets
for energy and ancillary services. Naturally, it would be
very attractive for plant owners and operators to monitor
and maintain satisfactory damping performance levels at
all times and in all operating conditions, which is explored
in this paper.

2. PROBLEM STATEMENT AND PROPOSED
METHODOLOGY

2.1 Problem Statement

To specify the problem we are trying to solve, consider
the block diagram shown in Fig. 1 that represents an
electrical generator of a power plant equipped with a
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Fig. 1. Block Diagram of a Power Plant’s Electrical Gen-
erator Equipped with a PSS.

PSS. Here, ω(t) is the rotor shaft speed measurement,
which is used by the PSS to derive a damping signal
u(t), which is applied to the field control loop through the
Automatic Voltage Regulator (AVR). The AVR will thus
modulate Efd(t), the generator’s field winding voltage,
to damp oscillations while at the same time controlling
the terminal voltage Vt(t) of the generator. Note that the
impact of any changes in the power grid will be reflected
in Vt(t) and ω(t). The signal v(t) represents the influence
of the random load changes e(t) on ω(t). Finally, r(t) =
0 ∀ t, except when a probing experiment is performed for
identification. With this context, let us define the following
linear representation of the power system (see also Fig. 1)
from the point-of-view of the PSS controller:

ω(t) = G0(s)u(t) + v(t) (1)
u(t) = −K(s)ω(t) + r(t) (2)

where K(s) is the continuous-time transfer function (TF)
of the PSS controller, and with ω(t), u(t), v(t) and r(t)
as defined in the preceding paragraph. In (1), G0(s)
represents the dynamics of the power system between u(t)
and ω(t) and therefore embeds the dynamics of the AVR,
generator and of the power grid to which the generator is
connected. At each operating point, we can assume that
these dynamics can be represented by a linear TF G0(s)
(this TF will be different for each operating point). As
already mentioned, the process disturbance v(t) represents
the effect of the random load changes on ω(t) and is here
considered as filtered white noise. Using (1)-(2), we have
the following expression of ω(t) in closed loop:

ω(t) = T0(s)r(t) +M0(s)v(t), (3)
where

T0(s) = G0(s) / (1 +K(s)G0(s)) , (4)
M0(s) = 1 / (1 +K(s)G0(s)) . (5)

2.2 Procedure 1 — Oscillation Monitoring

Let us now discuss our monitoring and data-based con-
trol design procedures. The objective of the monitoring
procedure is to evaluate the damping ability of the PSS
controller. This requires to verify that all the complex
poles of the closed-loop system (3) have a damping coeffi-
cient larger than a given threshold ξreq. Let us for further
reference denote ξmin(K,G0) as the smallest value of these
damping coefficients. Therefore, we wish to verify that
ξmin(K,G0) > ξreq. In what follows, we will also use an
alternative notation for ξmin(K,G0), i.e., ξmin(Z0), where
Z0 is any closed-loop TF related to (3), e.g., T0. If the
monitoring procedure detects a drop in the performance
of the PSS controller, a new PSS controller will be de-
signed (see Procedure 3). In the monitoring procedure, we
must thus determine an estimate of ξmin(K,G0). For this
purpose, let us first observe that, in normal operation (i.e.,
when r(t) = 0), we have that ω(t) = M0(s)v(t) and this

signal contains information on the performance of the PSS
controller.
The first step in the monitoring procedure is thus to deter-
mine a time-series model of M0(s)v(t) using discrete-time
data ω[n] collected in normal operation. The discrete-time
sequence ω[n] can indeed be modelled as ω[n] = H0(z)e[n]
where H0(z) is a discrete-time monic, stable, inversely
stable TF and e[n] a white noise. Using the discrete-time
data ω[n], we can then identify an Autoregressive Moving
Average (ARMA) model Ĥ(z) of H0 (and an estimate of
the variance of e[n]). Therefore, the performance of the
current PSS controller K can be assessed. For this purpose,
we inspect the damping of the complex poles of Ĥ(z)
and determine the minimal value of their damping, i.e.,
ξmin(Ĥ) which is an estimate of the minimal damping of
the loop (1)-(2). Furthermore, we can also determine an
uncertainty interval around this estimate (see Peri et al
(2016) for details).

2.3 Procedure 2 — Probing-Based Identification

Next, if the estimated ξmin(Ĥ) (and its uncertainty inter-
val) are deemed not satisfactory (i.e., smaller than ξreq), we
proceed to determine a model of G0 in order to redesign
the PSS. To this end, we excite the closed-loop system
using a probing signal r(t). Since G0 may be unstable, we
propose to use an indirect closed-loop approach for this
purpose. Using discrete-time data ZN = {r[n], ω[n] |n =

1, , N}, a parametric model T̂ of T0 can be identified using
prediction-error identification. Before proceeding to the
update of the PSS controller, the model T̂ of T0 can be
used to compute ξmin(T̂ ) and to verify whether a controller
update is really necessary. The latter will be the case if also
ξmin(T̂ ) is smaller than ξreq. Here also, the uncertainty
interval of ξmin(T̂ ) can be considered (see Bombois and
Vanfretti (2023) for details).

2.4 Procedure 3 — PSS Redesign

If the damping is indeed insufficient we decide to update
the PSS controller using a model Ĝ of G0. Using (4), this
model can be deduced from T̂ using:

Ĝ(z) = T̂ (z) /
(
1−K(z)T̂ (z)

)
(6)

where K(z) is the discrete-time version of the current PSS
controller K(s). We have thus now a model Ĝ of the open-
loop system G0. With that model, we can use any control
design technique to determine the new PSS controller.
As an example, we can use the technique proposed in
Bombois and Vanfretti (2023), which seeks to determine
the PSS controller Knew yielding the highest value of
ξmin(Knew, Ĝ) for the loop [Knew Ĝ] while satisfying H∞
constraints that both limit the control efforts and ensure
robustness.
In this paper we propose to combine the three procedures
described above and apply it on a rolling basis for multiple
(k = 1, . . . , nOP ) OPs, where nOP is any number of
operating points, as illustrated next.



3. RESULTS

3.1 Simulation Models and Scenarios

This section starts by presenting the models and simu-
lation scenarios used for the illustration of the proposed
method in the subsequent sections.

3.1.1. Simulation Model. To illustrate the proposed
methodology, we use a modified version of the classi-
cal two-area four-machine Klein-Rogers-Kundur (hereafter
KRK ) model from Klein et al (1991), implemented using
the Modelica language and available from the open-source
OpenIPSL library (see de Castro et al (2023)). The model
is shown in Fig. 2, where the power plant of interest is
shown enclosed by a red dashed square showing with a
blue arrow where the input signal, r(t), is applied and
where data of the speed ω(t) is obtained. The simulation
model includes the following component models: GENROU
for the electrical generator SEXS for the AVR (see Siemens
(2017)), a Type II PSS and a Type II turbine-and-governor
model (see Milano (2010)); with the other plants using
similar models. This model can be linearized at any point
of dispatch and at any point in time, the linearization is
performed according to Baur et al (2009) using the Dymola
software (see Druck et al (2002)).

3.1.2. Simulation of Ambient Conditions. Recall from
Fig. 1 that the power system is operating under ambient
conditions, where the random variation of loads excite the
grid’s dynamics. To this end the model in Fig. 2 includes
two inputs to excite the power system, namely eLoad7(t)
and eLoad9(t). To model the random load variations ap-
plied to these inputs, we follow the recommendations in
Klöckner et al (2017) to model a zero-mean Gaussian
white noise with standard deviation of 0.025 with a 0.01 s
sampling period to sample the random numbers.

3.1.3. Simulation of Multiple Operating Points. Finally,
to simulate multiple OPs, i.e., different dispatch points at
which the plant is operated, the required power output of
the plant is varied by ramping uPm(t), which is shown
in the red dashed square of Fig. 2, while at the same
time ramping the power demand of Load 9 using the
input eLoad9(t). These simulation scenarios are designed
so that as the power dispatch (and load) are increased, the
system’s damping will reduce, and vice versa ( see Rogers
(1999)), while at the same time exciting the system’s
dynamics though the random loads. The ramping rates
at which the plant is ramped-up/down are consistent with
those of modern natural gas plants with values provided
in Xu et al (2017).
A timing diagram showing how the simulation scenarios
are created considering ramping to obtain new OPs, the
application of r(t) and the new PSS design is shown in
Fig. 3. The power plant is operating at P ≈ 7.00 per
unit (p.u., 100 MVA base) at tA = 0 min. and transi-
tions to a new OP at tα = 7.5 min, where the proposed
methodology starts being applied. As the system moves
to different OPs, the power system is near an equilibrium
at tα,β,γ,δ,ψ = [7.5, 25.0, 40.0, 55.0, 67.5] where the power
dispatch is Pα,β,γ,δ,ψ = [7.83, 8.29, 8.02, 7.73], where pro-
cedure 1 is applied. Meanwhile, procedure 2 is applied

in the periods tB−C = [12.5, 17.5], tD−E = [27.5, 32.5],
tF−G = [42.5, 47.5] and tH−I = [57.5, 62.5]. If it is decided
that the PSS redesign should be applied, i.e., if Procedure
3 is to be followed, this will take place in tKx

, where
x = 0, 1, ..., 4 and K0 represents the original PSS.
To illustrate, in Fig. 4, results from simulating the power
system as the power plant transitions between multiple
OPs with a dispatch of Pα,β,γ,δ,ψ at tα,β,γ,δ,ψ as shown in
the top plot, according to the timing in Fig. 3. Meanwhile,
the pseudo-measurements of ω(t) are shown in the middle
plot. In addition, in the bottom of Fig. 4, the input signal
r(t) is shown. It can be observed that the simulation
scenario is set up such that a probing experiment is
performed according to the timings in Fig. 3, regardless
if a new control design is needed or not. This is done to
ease the simulation process. In this simulation, the PSS
controller is parametrized with two constants kw and tw:

K(s) = kw [(tw)/(1 + tws)] . (7)
The original controller K0 has parameters kw,0 =5.0
and tw,0 =5.0 s As will become clear later, K0 is in
operation until tK1

=20.0 min., when a newly designed
controller Knew,1 = K1 will be applied and kept through
the reminder of the simulation. The probing signal is
still applied, although it is not required (see later). This
will indeed serve to assess the performance of the new
controller in more detail.

3.2 Illustration of Procedure 1

Applying Procedure 1 as described Section 2.2 to the am-
bient data collected from ω[n] between t =[7.5,12.5] min.,
Ĥ was estimated as shown in Fig. 5 in (blue) compared to
the true H0 (red). It was obtained using an ARMA model
structure from Matlab’s System Identification Toolbox
by setting the armax function with na=nc=8.

Ĥ gives a fit of 87.74%. This fit is quite good considering
the low model order of 8 used as compared to the higher
order of H0 which contains 52 states. Using a higher order
model does not give better results, as there are several
modes that are not observable by ω(t) in any case (see
Vanfretti and Chow (2010)). Procedure 1 also gives:

ξmin(Ĥ) = 0.0564 and IĤ = {0.0, 0.0876}. (8)
Note that the true value is ξtrue=0.0591 and what it is
obtained from (8) is only 4.5 % lower, while the true
value is contained within the upper bound of IĤ . This
indicates that the damping is insufficient for a ξreq=15%.
This assessment gives the confidence of applying the next
step of the methodology, as discussed below.

3.3 Illustration of Procedure 2

Having found that the damping is not adequate, Procedure
2 is applied as described in Section 2.3. To this end the
probing signal r (which is here a multisine) is applied and
data for ω[n] and r[n] from t =[12.5,17.5] min are collected.
To estimate T̂ using this data, a Box-Jenkins model with
parameters nb=nc=nd=nf=6 and nk=0 is selected, achieving
a fit of 89.84%.
This yields T̂ shown in Fig. 6 in red (with its uncertainty
shaded in red). The figure also compares the true T0
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Fig. 6. T0 and T̂ estimated for t=[12.5,17.5] min

(obtained from the linearized model) with T̂ . We can note
that at the dominant oscillation’s frequency, 7.7 rad/s
(≈1.22 Hz), the estimated model has high-accuracy and
low uncertainty. In addition, the estimated model Ĝ ob-
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Fig. 7. G0 and Ĝ estimated from T̂ and K0 for t=[12.5,17.5]
min

tained using (6) using T̂ and K0 is shown in Fig. 7 (in
red) and compared with the true G0 (in blue). It can be
observed in this figure how Ĝ closely matches G0 (espe-
cially for the mode at 7.7 rad/s).

Next, from T̂ we compute:
ξmin(T̂ ) = 0.0615 and IT̂ = {0.0604, 0.0628}, (9)

noting that IT̂ has narrower uncertainty than the one ob-
tained with blind identification (IĤ), with the lower bound
of 0.0604 being only 2.2% higher than the true damping
value ξtrue= 0.0591. Having confirmed that {ξmin(T̂ ) ∧
IT̂ } < ξreq, we now redesign the PSS using Procedure 3.

3.4 Illustration of Procedure 3

Using Ĝ identified in Procedure 2 (see Fig. 7), we have
a good quality model to perform PSS redesign using
Procedure 3 as described in Section 2.4. Applying the
method proposed in Bombois and Vanfretti (2023), gives
a new controller K1 with parameters kw,1=49.6273 and
tw,1=0.3801 s.
Before applying the new controller, we compute:
ξmin(K1, Ĝ) = 0.3230 & Inew,1 = {0.2741, 0.3305}, (10)

which are larger than ξreq=15.00%, and consequently, it
is decided to apply the new PSS design at t=20 min., as
it provides a damping of 32.30% with bounds larger than
ξreq.
The new controller has thus high damping ability when
applied to the model Ĝ. This is also the case when this
controller is applied to the true G0. Indeed, ξmin (K1, G0)
= 26%. Note that this value is slightly lower than the lower
bound in Inew,1 (see (10)). This small discrepancy can be
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explained by the fact that the uncertainty intervals are
derived based-on a full-order model assumption, which is
not fully satisfied in our case.

3.5 Redesigned Controller Performance Analysis

3.5.1 Verification using Blind Identification. We replace
K0 by the new controller K1. While this controller is
operating under ambient conditions, it is possible to use
ambient data to verify the performance of K1, that is,
to verify that ξmin (K1, G0) is satisfactory. This can be
achieved by applying Procedure 1 again with data from
t=[1200-1350]. To this end, we use an ARMA model with
na=nc=8 to estimate ĤK1 using blind identification; this
gives ĤK1 shown in Fig. 8 in magenta, compared to
H0,K1

(in cyan) and for contrast also to Ĥ0,K0
(in red)

and to H0,K0
(in blue) (which are also shown in Fig. 5).

Comparing Ĥ0,K0
(red) with ĤK1

(magenta) reveals that
the designed controller has effectively removed the peak at
7.7 rad/s (≈1.22 Hz) by providing substantial damping.
As can be observed in Fig. 8, the mode at ω =7.7 rad/s
(which results from interactions between the power plants
g1 and g2) is no longer the one with the smallest damping.
The mode with the smallest damping is a lower frequency
mode at ≈2.4 rad/s. This is the so-called inter-area mode
(see Klein et al (1991)). The model ĤK1 can be used
to see that this mode has a damping equal to 24.74%
i.e., ξmin(ĤK1) = 24.74%. Therefore, the monitoring pro-
cedure confirms that K1 is very likely to have sufficient
damping ability. Note also that this estimate of the min-
imal damping is very close to the minimal damping of
H0,K1 since ξmin(H0,K1) = 25.91%. This is precisely what
was observed in Section 3.4, i.e., ξmin (K1, G0) =26%.
Remark. Besides the two modes discussed above, the
power network described in Fig. 2 also has an additional
mode. This third mode results from interactions between
the power plants g3 and g4 i.e., plants located at the other
end of the power network (Klein et al, 1991). This mode
is almost unobservable at the location of the power plant
g1 (see the tiny peak that appears at ≈ 13.2 rad/s in
the frequency response of both H0,K0

(blue) and H0,K1

(cyan)). Since it does not influence the dynamics that can
be observed at g1, this third mode cannot be identified (it
therefore does not appear in ĤK0 and ĤK1). This is not a
problem because the objective of the PSS controller at g1
is to only damp the two observable modes at g1. The third
mode has, e.g., to be addressed by another PSS controller
located at g3 or at g4. For all these reasons, we have not
considered this third mode when computing ξmin (K1, G0)
and we will do so in the sequel.
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Fig. 9. H0 and Ĥ at Multiple Operating Points

3.5.2 Procedure 1 at Multiple Operating Points. In the
previous subsection, our monitoring procedure has thus
confirmed that K1 has sufficient damping ability at the
operating point α. Let us now test our monitoring pro-
cedure when the system with the new PSS controller K1

is operating under ambient conditions at other operating
points (OPs) (i.e., with a different G0). In Fig. 4, this sit-
uation is simulated during the intervals tβ−D=[25.0, 27.5],
tγ−F=[40.0, 42.5] and tδ−H=[55.0, 57.5] minutes, corre-
sponding to the dispatch levels of Pβ,γ,δ ≈ [8.29, 8.02, 7.73]
p.u.
At these three operating points, we apply Procedure 1,
similar to what was done in Section 3.2. The estimated Ĥ
and the true system H0 corresponding to these three oper-
ating points are shown in Fig. 9. To show the improvement
when replacing K0 by K1, we also represent in this figure
the H0 and Ĥ for OP α when K0 was the PSS controller
(i.e., the H0 and Ĥ represented in Fig. 5).
Observing Figure 9, it is clear that the new PSS controller
K1, which performs well at OP α (see Fig. 8), also performs
well at the operating points β, γ and δ.
In fact, similar to what was observed in Fig. 8 for OP
α, the sharp peak at ≈7.7 rad/s when K0 is used (red
curve in Fig. 9) disappears in the TFs H0 obtained with
K1 at the operating points β, γ and δ. Furthermore, as
was also observed for OP α in the previous subsection, the
mode corresponding to the minimum damping with the
new controller K1 is the one located at ≈2 rad/s. Figure
9 also shows that this mode is well damped in OPs β, γ
and δ.
Let us now see whether our monitoring procedure (Proce-
dure 1) allows us to confirm this result. Using the iden-
tified TFs Ĥ at the OPs β, γ and δ, we can estimate
the minimal damping ξmin(H0) achieved by K1 at these
operating points by ξmin(Ĥ). Since ξmin(Ĥ) ≈ 25% for the
three operating points, our monitoring procedure would
rightly conclude that K1 achieves sufficient damping at
these operating points.
Remark. The robustness of the controller K1 is notice-
able. Note in fact that the power system operates at a
much larger dispatch at OP β than at OP α (OP at which
K1 has been designed).

3.5.3 Procedure 2 at Multiple Operating Points. In the
previous subsection, the monitoring procedure (Proce-
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Fig. 10. T0 and T̂ at Multiple Operating Points

dure 1) has indicated that the performance of K1 is also
satisfactory in the OPs β, γ and δ. According to the
methodology proposed in Section 2, probing-based iden-
tification will therefore normally not be applied. However,
for the sake of completion, we have decided to perform this
probing-based identification (Procedure 2). Therefore, we
collect data during the probing periods tD−E , tF−G and
tH−1 and, similarly to Section 3.3, we apply the second
procedure to these time periods. The results are presented
in Fig. 10 in a similar manner as in Fig. 9, replacing
H0 (resp. Ĥ) by T0 (resp. T̂ ). The red curve (OP α)
corresponds thus to the closed-loop TF T0 with the original
controller K0

It is clear that the observation of the different graphs of T0

in Fig. 10 leads to the same conclusions as the observation
of the different graphs of H0 in Figure 9 i.e., that K1 is a
satisfactory controller.

Note also that the models T̂ remain a good representation
of T0 (see Fig. 10).

4. CONCLUSION

This paper showed that, using both blind and probing-
based identification techniques, it is possible to monitor
the dominant oscillatory modes of a power plant operating
under ambient conditions and at multiple dispatch points.
Moreover, it was shown that by performing probing-based
identification, a high-quality data-driven model can be
obtained to perform PSS redesign, without the need of
any conventional simulation models. In addition, it is
shown that such a design can be successful in maintaining
adequate damping at multiple OPs.
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