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Abstract—This paper presents a practical method for detecting
step changes in real-world synchrophasor measurements based
on three fundamental theories. Step changes can be caused by
shunt switching, generator set point changes, and other changes
in grid apparatus, and they are important for understanding the
grid’s response to inverter-based resources. To precisely localize
step changes, a nonorthogonal discrete wavelet transformation
(DWT) based on smoothed gradient estimation is used. A detector
based on a multiscale point-wise product of wavelet coefficients is
proposed, which takes advantage of the broadband characteristic
of step changes in the wavelet coefficient space. This product
also suppresses undesirable signal components, thereby reducing
false positives. Finally, Rosin’s unimodal thresholding is used
to provide an adaptive threshold for the step detector. The
effectiveness of the proposed approach is demonstrated on
synthetic signals and real-world synchrophasor data obtained
from Dominion Energy’s power grid.

Index Terms—step detection, synchrophasors, nonorthogonal
wavelets, multiscale products, Rosin thresholding.

I. INTRODUCTION

Phasor measurement units (PMUs) provide high-precision,
synchronized time-series data from multiple locations, al-
lowing utilities to increase their understanding of the grid
telemetry and an ability to identify system issues. PMUs could
prove to be particularly useful for dealing with the growing
number of oscillations caused by inverter-based resources
during weak grid conditions, as well as conventional power
plants. Exploiting PMUs to continuously monitor the grid’s
response to local plant interactions can essentially enable the
use of new control schemes, thus preventing such oscillations
[1]. In addition, a potential problem that could arise due
to weakened power grid conditions is voltage stability. To
address this, data-driven techniques use an approximate model
(Thevenin equivalent [2]) of the grid as seen through a load bus
to assess voltage stability. A major obstacle in solving these
monitoring problems in practice is that there are numerous
components interacting with the grid simultaneously, so it
is essential to select the suitable data window, where the
relevant grid dynamics are predominant. When concerned in
monitoring deteriorating grid conditions, this can be addressed
by finding instances with step changes in relevant variables
(e.g. voltage magnitude, active/reactive power of a power
plant, etc.), which is the focus of this paper.

Many PMU applications exploit signal processing tech-
niques as an effective means of extracting and analyzing

relevant features of the power grid that are present in the mea-
surement data. These have proven to be effective in assessing
dynamic performance driven by data from normal operation
(ambient conditions) [3], [4]. The authors of [5] propose event
detection and classification algorithms by extracting unique
signal attributes in the time domain. In [6], an orthogonal
wavelet transformation is used for event detection in real-
world applications. Constructing an ”event” detector typically
requires selecting an appropriate set of basis functions (in this
case, mother wavelet) to act as filters to extract a significant
component from the signal. After that, it is necessary to deter-
mine an appropriate threshold for the ’filtered signal,’ which
is a difficult task in itself and is only vaguely discussed in
previous research, relying on prior knowledge about ambient
data and thus addressed herein.

Step and edge detection algorithms have conventionally
relied on smoothed gradient estimation of signals. Within
this context, the Gaussian derivative has gained popularity
as a technique among filtered derivative methods [7]. Since
the selected scale has a considerable impact on detection
performance, derivative estimation with simultaneous multi-
scale smoothing was proposed in [8]. On the other hand,
it is recognized that wavelets are implemented to detect
local signal regularity and singularity on different scales [9].
Therefore, bridging the gap between wavelet transformation
and the smoothed gradient estimation in multi-level smoothing
could be a potential solution for enhanced step/edge detec-
tion. To this end, an efficient nonorthogonal discrete wavelet
transformation (DWT) was proposed in [10] that utilizes a
smoothed gradient estimation and adjusts the smoothing level
depending on the (dyadic) scale. In order to achieve this,
splines in wavelet transformation that imitate the derivative
of the Gaussian estimator are employed to maintain regularity
information for each point at each scale in time and identify the
singularities. This technique is also called Mallat and Zhong
(MZ)-DWT. It is important to emphasize that MZ-DWT is
capable of recognizing various points of abrupt changes in the
signal, including step-like shapes. In this paper, we extend this
approach by analyzing multiscale wavelet transformations. The
MZ-DWT is able to maintain a strong relationship between
different scales while still keeping the same time frame for
all scales. Thus, multiscale point-wise products [11] can be
used to amplify multiscale peaks associated with steps in



measurement data while simultaneously dampening noise and
other sharp variations [8].

The application of the multiscale product theory reduces
noise, leading to a data set with few step-related features, such
as sharp peaks, and many values close to zero. Consequently,
the distribution function of this data set is unimodal, primarily
centered around zero, with a negligible peak at the end of
the tail. This feature allows us to utilize Rosin’s unimodal
thresholding technique [12], which effectively differentiates
the group of zeros (noise signatures) from the step-related
signatures, thus greatly improving the automated detection
process. In the following section, the proposed methodology
is given in Section II. The Numerical Analysis is presented in
Section III. Finally, we conclude the paper in Section IV.

II. PROPOSED STEP DETECTION APPROACH

A. Nonorthogonal Discrete Wavelet Transform

The step/edge detection methods work by first smoothing
the signal at different scales and then detecting points of
abrupt changes by examining the derivatives of the signal.
Within this context, the derivative of Gaussian has become
an effective method among the edge detection approaches,
calculating the gradient after applying a Gaussian smoothing
function in different scales [7]. The authors of [10] introduce
a discrete wavelet transformation equipped with smoothed
derivative estimation and Gaussian to detect edges, which we
briefly present as follows.

The smoothing function ϕ(t), such as Gaussian, is defined
as a function for which the integral equals 1 and as t tends to
infinity, it converges to zero. The derivative of the Gaussian
function is denoted as θ(t) = dϕ(t)

dt . The derivative of this
smoothing function shares the property of wavelets, as its
integral equals zero, represented as

∫ +∞
−∞ θ(t) dt = 0. Subse-

quently, the wavelet transforms are computed by convolving
the signal g(t) with a re-scaled wavelet, given as

Wsg(t) = g(t) ∗ θs(t) (1)

where θs(t) = θ(t/s)
s , introducing a re-scaled derivative of

Gaussian function at the scale s. Now, the wavelet transform
is modified as

Wsg(t) = g(t) ∗ (sdϕs

dt
)(t) = s

d

dt
(g(t) ∗ ϕs)(t). (2)

The equation (2) operates as a derivative estimation of the
smoothed signal at the scale s, meaning that the local extrema
of this transformation are corresponding with the inflection
points of g(t) ∗ ϕs. The degree of smoothing depends on the
adjusted scales. However, selecting scales varying on dyadic
sequence

(
2j
)
j∈Z is the superior choice when compared to

continuous scale s, minimizing the computational burden. The
discrete filters N and M define the characteristics of the
quadratic wavelet. The subsequent algorithm is used to com-
pute the Discrete Wavelet Transform (DWT) for the discrete
synchrophasor measurements [10].

Algorithm 1: MZ-DWT
Data: Synchrophasor measurements, discrete filters of quadratic

splines (N,M ), number of scales (J).
Result: Discrete wavelet transforms in different scales
Initialization; j = 0
while j < J do

− Wd

2j+1 g = 1
λ j

Sd

2j
g *Mj ;

− Sd

2j+1 g = Sd

2j
g *Nj ;

− j = j + 1
end

In Algorithm 1, λj denotes the normalization coefficient for
the quadratic wavelet. The finite responses of the filters N and
M associated with the quadratic wavelet are provided in the
Appendix of [10].

B. Multiscale Products

Researchers have examined how the noise and singularity
in the signal behave at different wavelet scales using the
Lipschitz regularity concept [13]. Singularities have a greater
degree of Lipschitz regularity, meaning that they follow a more
consistent behavior compared to noises. For instance, the step
change on the measurements has a Lipschitz regularity of
zero, while structures less smooth than a step possess negative
regularity. On the other hand, white noise appears almost
singular, maintaining a uniform regularity that equates to -0.5.

A theory is introduced that relates the evolution of wavelet
transformation magnitude with Lipschitz regularity of the
signal [14]. A signal denoted as g(t) is considered uniformly
Lipschitz c (0 < c < 1) within the range [t1, t2] if and
only if there exists a positive constant N for all values
in the range, the wavelet transformation is constrained as
|W2jg(t)| ≤ N(2j)c.

This constraint indicates that as the scale increases, the
wavelet transforms’ magnitude increases when c is positive.
Conversely, the magnitudes of the wavelet transform get
smaller as the scale increases for the negative value of c.
By adopting MZ-DWT, The signal’s singularities change over
different scales, with noticeable peaks, while noise diminishes
significantly across the scales. Thus, we can visualize that
when the DWT is multiplied at consecutive scales, it magnifies
the characteristics of edges while diminishing the impact of
noise. Thus, the multiscale product of B scales is defined as

mB(t) =

B∏
i=1

Wsg(t). (3)

C. Unimodal Thresholding

Rosin’s method is developed for thresholding unimodal
distribution data and is recognized as a remarkably straight-
forward approach [12]. This method assumes that there is a
dominant group within the data, resulting in a prominent peak
positioned toward the lower section of the histogram relative to
the second population. The second population may not exhibit
distinguishable peaks but should indicate a reasonable degree
of separation from the main peak.

A typical distribution function, which usually has one
obvious peak, is shown in Fig. 1. To define the thresholding,



Fig. 1. The frequency distribution used for fidning the threshold

we need to fit a realistic distribution function to the histogram
of our data, allowing us to work with the data points on this
function.To find the function, we employ the kernel density
estimate (KDE) approach. Next, the straight line is sketched
from the highest point of the distribution function to the end of
the final populated bin in its histogram. The threshold point is
optimized in such a way that the perpendicular distance (shown
with a red line) between the blue line and the optimal point on
the distribution function is maximized. Then, the green dotted
line gives the value of the threshold at the optimal point of the
intersection with the x-axis. These steps are performed with
Rosin’s algorithm.

III. NUMERICAL ASSESSMENT

In this section, the competence of the proposed framework is
shown by conducting analysis of synthetic data and field PMU
data in the utility’s service territory. Synchrophasors’ data with
30 samples per second (sps) are available through the digital
fault recorders at substations. We select positive sequence
voltage magnitude data to examine our approach. We also
employ two effective thresholding methods for comparison
[15]: 1) the mean plus three times the standard deviation,
referred to as SD, and 2) the median plus three times the
median absolute deviation, named as MAD.

A. Case 1

We are creating a comprehensive signal including steps,
large spikes, ramping and noises. All these types of variations
are seen in real-world phasor measurements. The Algorithm
1 is used for obtaining the wavelet transformations. The
dyadic wavelet transformations of the signal, as shown in
Fig. 2(a), are obtained and illustrated in Figs. 2(b) to 2(e).
This transformation, empowered by the derivative of Gaussian
(quadratic spline), indicates the derivative estimation of the
original signal at different levels of smoothing. Our proposed
method preserves the length of the transformation as the
original signal, keeping the regularity information at each
sample (time) on every scale.

The first scale, shown in Fig. 2(b), includes high frequency
variations including the large spikes on the signal located at
sample 75 and 140. The features corresponding to large spikes
in the original signal are represented as two consecutive spikes
in opposite directions. Specifically, when a spike in the signal
is pointing downward, the wavelet transformation represents
it with an initial spike in the negative direction. Conversely,
when the spike is pointing upward in the measurement, its
transformation is depicted on the positive side of the y-axis.

This distinctive feature associated with signal’s spikes can also
be seen on the second scale, but it becomes less pronounced
from the third scale. Similarly, noises are being filtered more
efficiently on the larger scales. Consequently, the increased
smoothing on larger scales lead to a reduction in the magnitude
of local extrema seen due to noises.

In addition, the signal includes four small step changes
happening in samples 30, 60, 100 and 150. The effect of
these steps can be seen better on the larger scales because
the convolution of the signal with derivative of the smoother
function eliminates the small and narrow fluctuations on the
signal. More specifically, the step occurring in sample 30
moves upward and all transformations in four scales show this
step with local maxima. Other three steps are also character-
ized with local extrema in the downward direction across all
scales of wavelet transforms. The MZ-DWT help in preserving
edge-like features and closely finding instance of occurrence.

The multiscale relationships are clearly observable in the
presence of the step changes. To enhance multiscale peaks
associated with the steps and then establish a robust threshold,
the multiscale point-wise product is implemented. Fig. 3 shows
the result of this product for scales 3 and 4. All scales
together or other scales can be chosen, but in smaller scales,
we see more false local extrema, even though the steps are
localized more accurately. Also, fewer local extrema can be
seen when larger scale is selected, but the accuracy in locating
the steps’ time of occurrence reduces slightly. The product
of two adjacent scales (3 and 4) is considered in this case
and following cases, preserving both advantages of detection
and localization by suppressing noise and sharpening step-
like features [9]. Now, the product of scales is characterized
statistically to establish a robust threshold for differentiating
the step-related changes from other variations. This is because
when we have large spikes or severe noises on the signal, their
impact can still be seen on the product of the scales although
they are becoming smaller shapes on this transformation. Thus,
one may interpret them as step changes in the multiscale
product series because they are essentially smaller maxima.
This fact necessitates the use of a threshold to distinguish
steps from other transient and sharp variations. Since the
product of scales comprises many values close to zero and
only a few values larger than that (associated with edges), its
histogram follows a unimodal pattern centered around zero.
That’s why Rosin’s unimodal thresholding is selected. We first
fit a function to the histogram using KDE. As shown in Fig.
3, the unimodal threshold can effectively catch four peaks
associated with small steps, while separating smaller peaks
associated with large spikes and noise below the dotted red
threshold line. However, Fig. 3 demonstrates that SD threshold
only detects two steps, while MAD threshold exhibits a
conservative performance by detecting all steps and one large
spikes, resulting in a false alarm.

B. Case 2

In this scenario, the voltage time-series are recorded by a
PMU situated on the substation of the 115 kV solar power



Fig. 2. An illustration of MZ-DWT, showing (a) the comprehensive signal,
and (b) to (e) the initial four scales of the DWT.

Fig. 3. The product of scales and the computed threshold for Case 1

plant. The sampling rate of the PMU is 30 sps, and we select
the recorded samples in 90 seconds. As shown in Fig. 4(a),
the voltage indicates some oscillations that appears in this
region close to the solar power plant. A step change with an
approximately small magnitude of 0.005 p.u. (0.33 kv) occurs
around 15:59:02. The wavelet transformations are shown in
different scales on Figs. 2(b) to 4(e). All transformations
indicate large spikes moving upwards when the step rises.
Moreover, the multiscale products are indicated in Fig. 5,
damping the noises and variations with higher frequencies
associated with oscillations. The time of the step change is also
closely maintained in the product of scales. The robustness
of the threshold is again indicated in Fig. 5 since it could
differentiate the undesired variations from step-related sudden
changes on the multiscale product time-series. Furthermore,
SD detects the step accurately, while MAD shows a conser-
vative performance by detecting all steps and several spikes
associated with oscillations and noises, resulting in several
false alarms.

C. Case 3

In this section, we illustrate the line voltage recorded by a
PMU located in a real-world substation. We have downsam-
pled to 1 sps to evaluate our approach under slower dynamics.
The field voltage measurements are shown in Fig. 6(a) for
two hours. This signal consists of two small steps and two
relatively large steps. The first step change, which resulted in
the largest measurement change, is due to the CB switching
in the local under-study substation. This is why the voltage
steps up more compared to other step changes caused by other
sources. The magnitude of the step can be used as an identifier
for locating the source of the changes.

Fig. 4. An illustration of MZ-DWT, showing (a) the voltage time-series, and
(b) to (e) the initial four scales of the DWT.

Fig. 5. The product of scales and the computed threshold for Case 2

At each dyadic scale, a uniform sampling of the transfor-
mation is computed in the wavelet domain, as shown in Figs.
6(b) to 6(e). The step changes are detected precisely on scales
three and four of wavelet transforms because the smoothing
with the Gaussian at higher scales vanishes noises and abrupt
pulses while preserving step-related features. On the other
hand, two small steps are not distinguishable at scale 1, as
this scale contains higher-frequency information. However, the
impact of small steps can still be detected at scale 2. Since the
extrema appear due to steps in wavelet transformations and are
transmitted across scales 3 and 4, the product of these extrema
tends to reinforce the voltage signal response. Fig. 7 clearly
indicates that the point-wise product effectively preserves the
step responses and closely pinpoints the step rise-time.

The Rosin’s thresholding effectively separates four step-
related changes from other variations. Fig. 7 shows that SD
is unable to detect the small step signature, while MAD
exhibits a conservative performance by detecting several noise-
related features. Note that there are limited options available
for thresholding unimodal distributions, which is why we
recommend using Rosin’s method.

D. Orthogonal Daubechies Wavelet

Daubechies 1 (db1) with an orthogonal basis is selected to
discuss its performance in the problem due to its promising
performance in detection [6]. The db1 wavelet is sensitive
to sharp changes, which is intuitive as it uses a step-like
wavelet. We also examined db2-db8, showing poorer detection
performance compared to db1, which was also proved in [6].
Fig. 8 illustrates the db1 transformation for case 3, where the
scales are not of the same length, unlike the results of the over



Fig. 6. An illustration of MZ-DWT, showing (a) the voltage time-series, and
(b) to (e) the initial four scales of the DWT.

Fig. 7. The product of scales and the computed threshold for Case 3

complete MZ-DWT. As a result, db1 cannot precisely localize
the time of the changes. Furthermore, we cannot find a single
scale that can pinpoint all four steps with different magnitudes
simultaneously, whereas the proposed MZ-DWT effectively re-
veals these evolving step features on various scales, especially
larger ones. Additionally, the proposed product theory and
threshold are not applicable to db1 with orthogonal scales with
varying lengths that cannot preserve edge features on different
scales at same data points. As a result, the process of these
transforms and choosing an appropriate scale for detection can
be a challenging task for real-world data analytics. Then, the
thresholding needs to be done separately on each scale for
db1 and other orthogonal wavelets, which may lack sufficient
information about small steps commonly found in ambient
data analysis, leading to poor detection performance.

Fig. 8. The db1 transformation, showing four scales from (a) to (b).

IV. CONCLUSIONS

This paper proposed an effective framework for detecting
step-like patterns in real-world synchrophasor data, which is
a growing need for power system studies in the utility. Many
changes in the system manifest as steps in the synchrophasor
data, and accurate detection of these steps greatly aids in
identifying the type and source of changes, understanding
controller responses, detecting events, and classifying them
to enhance situational awareness.

The nonorthogonal wavelet transformation, based on
smoothed gradient estimation, was used to identify singulari-
ties in the signals. Then, motivated by the Lipschitz regularity
concept, multiscale product theory was applied to effectively
extract step-related features by filtering out noise. Finally, the
Rosin threshold provided effective detection performance to
complete the automation loop. The proposed approach was
able to detect the small and large step changes in synchropha-
sor data effectively while providing information on the instant
of the step changes.
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