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Abstract 
This paper presents a measurement-based 

analysis of a 1.5 Hz forced oscillation triggered during 

a reactive power capability test conducted at a power 

plant in Dominion Energy’s power system. Owing to 

the slow evolving nature of the critical mode, it is 

demonstrated how time-frequency analysis of the 

period leading to the oscillation holds crucial 

information for finding the oscillation’s source. 

Furthermore, it is shown how the use of wavelets 

enables to more granular analysis of the evolution and 

impact of the forced oscillation – a capability that will 

help Dominion better monitor and regulate the 

dynamic components of an evolving grid. 

 

Keywords: Forced oscillations, time-frequency 

analysis, synchrophasor  

1 Introduction  

Dominion Energy has been investigating and 

developing data-driven processes to supplement the 

conventional model-based analysis of power system 

dynamics (Wang et al., 2022; Xu et al., 2023). 

Furthermore, in certain situations, it is used as a first 

resort due to the rising deployment of synchrophasor 

technology coupled with challenging modeling issues 

that remain unresolved. Today’s power grid is 

experiencing an ever growing number of extraordinary 

oscillations that are triggered locally, including forced 

oscillations (Sarmadi & Venkatasubramanian, 2016). 

The appearance of different types of unwanted 

dynamics (Mishra et al., 2022; Wang et al., 2022) can 

be attributed in part to system integration design 

challenges, including the increasing reliance in black-

box models that lead to suboptimal control design. 

This is becoming evident in the case of controllers for 

converter-based resources (Wang et al., 2022) that are 

typically installed in weak portions of the system (due 

to the low-cost of land) and a lack of 

incentives/requirements in controller and overall plant 

performance monitoring. Fortunately, when it comes 

to traditional synchronous machine-based power 

plants, their models are in general well understood and 

are systematically validated periodically 

(approximately every two years) as enforced by 

various standards (PJM - Planning Modeling 

Submissions (MOD-026, 027 & 032), n.d.) so that they 

are accurately represented in different simulation 

software tools for engineering studies.  

 

 

 
Figure 1. PMU Measurements of Real (P) and 

Reactive Power (Q) from Substation A (Test Plant, 
see Figure 2) Entire Test Window (bottom), 

Zoomed In (top). 

One such standard is MOD 25-2 (MOD-025-2, 

n.d.), whose purpose is to ensure that accurate 

information on generator capability (gross net, real 

and reactive power) and synchronous condenser 

capability (reactive power) is available for planning 

models, which Dominion uses to assess Bulk Electric 

System (BES) reliability. The expected outcome of the 

test is the characterization of generator’s capability 
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curves in the PQ plane, which include thermal limits 

as well as under and over excitation limiters on the 

excitation system. If during the test, the plant/unit fails 

to reach the expected output, an engineering analysis 

is to be performed to understand the root cause. The 

present work demonstrates how measurement data can 

provide an efficient means for such analysis and 

proves to be indispensable in certain scenarios.  This 

case being investigated also shows that the use of 

highly accurate simulation models, such as that of a 

synchronous generator, does not necessarily lead to a 

well-controlled system. Furthermore, the use of 

conventional simulation models did not lead to 

accurate or relevant predictions of real-time behavior 

observed from measurement data, as presented in this 

paper. Our stance is that there is a great need for an 

alternate approach to assess power system operations 

thoroughly, and thus, going beyond conventional 

physics-based modeling and simulation studies is 

essential for the future of understanding and managing 

the grid.  The measurement data analyzed here 

involved a region of the power system reaching small 

signal security limits before the plant could meet the 

expected output as shown in Figure 1.    

It is important to highlight that the time-period 

before the test is just as significant as that during the 

test itself when studying this type of scenario. The pre-

test behavior is characterized by small random 

perturbations with a slowly changing equilibrium and 

a stable linear response around it, referred to as 

ambient conditions (Pierre et al., 1997). Spectral 

analysis techniques (Stoica & Moses, 1997)  have 

provided effective means to extract and analyze 

underlying dynamic processes independently and have 

proven to be effective in analyzing wide area 

oscillations in real world power systems (Hauer et al., 

2007) (Kosterev, 2019; Pierre et al., 2012). On the 

other hand, during the test the system is marginally 

stable and therefore exposes different characteristics. 

Locating the source of undamped periodic motion 

(forced oscillation) is a challenging problem. 

particularly in situations with resonance between 

system modes and the forcing. In this regard, methods 

such as that of “energy flow” proposed in (Chen et al., 

2013), could yield misleading results (Zhi & 

Venkatasubramanian, 2021) when the passivity 

condition w.r.t. the energy function formulation is 

violated. In non-resonance cases, which comprise 

most local oscillation events (such as the one being 

analyzed here), a simple approach using mode shapes 

of carefully chosen signals proves to be sufficient.      

The contribution of this work is to propose an 

analysis methodology that can enable a human analyst 

to investigate similar real world forced oscillation 

cases beyond the quantification aspects (i.e., what is 

the oscillation frequency and its location). More 

importantly, it demonstrates how time-frequency 

analysis (using Wavelets) of the time-period leading to 

the oscillation can yield additional insights, which is a 

key contribution of our work. The remainder of this 

paper is organized as follows, Section 2 introduces the 

MOD-25 test location and its surroundings in 

Dominion Energy’s system, Section 3 provides a 

background in signal processing techniques used in 

this work as well as a brief theoretical analysis of their 

application to ambient data from the test. The analysis 

results are presented in Section 4, followed discussion 

in Section 5. 

2 Emergence of a Forced Oscillation 

During MOD-25 Testing 

2.1 Study System 

The focus of this analysis is a 500 kV region of 

Dominion’s network, as shown in Figure 2. The green 

lines represent the 500 kV network, while 115 kV 

network is shown by red lines. The MOD 25 test was 

conducted on unit S of substation A, a power 

generation facility with three identical 435 MVA 

Combustion Turbine (CT) generator units (A, B, and 

C) and one 795 MVA steam unit, denoted as “S”. A 

similar power generation facility is present at 

substation B, while substation C has a ±125 MVAR 

STATCOM, which are the two other important 

dynamic resources in the region. PMU measurements 

at 30 Hz are available at A, B, C and D for the time-

period of interest, albeit with significant data dropouts. 

 
Figure 2. One Line Diagram, 500 kV (green), 115 kV 
(red). 

2.2 Oscillation Event 

Because each unit in substation A exceeds a 20 

MVA rating, the MOD-25 standard required that the 

real power (P) and reactive power (Q) capability of 

each unit had to be assessed individually rather than as 

an aggregate. In accordance with this requirement, on 

August 2021, unit S was gradually brought to its 

minimum output of 320 MW, followed gradually 

reducing its voltage setpoint to operate at leading 
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power factor. The engineers performing the test 

brought it to a halt after about 3 minutes of observing 

sustained oscillations of about ±200 MW at the plant, 

starting from 15:36:38 UTC as shown in Figure 1. This 

forced oscillation does not propagate far from source 

and only interferes with local dynamics. An initial 

hypothesis drawn by the plant’s test engineers was that 

this oscillation was due to the plant fighting against the 

nearby STATCOM at C, which is shown to be 

incorrect in the analysis presented in Section 4.  

3 Spectral Analysis Background 

Power system measurements from normal 

operation (ambient condition) can be approximated by 

a stochastic linear system. In this work, the time-

period of analysis is separated depending on the 

system behavior. There are two major time-periods for 

our analysis, pre-event and during event. Pre-event is 

marked by a gradually changing voltage setpoint, and 

therefore a change in the plants’ operating condition, 

eventually leading close to instability and thus, better 

represented by a time-varying linear system. 

Meanwhile, during the oscillation event, the system 

experiences a sustained oscillation and the signal’s 

power is relatively stationary as the plant operator 

immediately halted the test on observing the 

oscillations. This separation in the analysis of time-

periods allows us to choose the most appropriate 

signal processing tools to analyze them.  

3.1 Power Spectral Density 

Let the power spectral density (PSD) S(ω) (Stoica 

& Moses, 1997) of a stochastic signal x(t) be defined 

as its expected power distribution over frequency, i.e.,  

∫ 𝑆(𝜔)𝑑𝜔 = 𝑙𝑖𝑚
𝑇→∞

1

𝑇
∫ 𝐸(|𝑥(𝑡)|2)𝑑𝑡

𝑇
2

−
𝑇
2

 

(1) 

where 𝐸( ) is the expectation operator. Sustained 

oscillations at fixed frequencies will be 

distinguishable as Dirac delta terms. The system will 

be characterized by a time-invariant PSD and 

therefore, it is a good tool to characterize the 

underlying system dynamics from the available 

measurements. Now, in practice, because only a single 

measurement set from the plant’s test is available, 

Welch’s method (Stoica & Moses, 1997) is used. 

Welch’s method realizes the expectation operator by 

dividing the data window into smaller blocks and 

averaging the PSD estimate across them. This 

sacrifices frequency resolution in exchange for an 

estimate with lower variance. 

3.2 Time-Frequency Analysis using 

Wavelet Transform 

The main challenge in applying the PSD for the 

entire pre-event testing time-period is that the system 

has a time-varying spectrum and therefore, a PSD 

estimate would not be able to gain much insight into 

the evolution of system, i.e., to characterize the 

oscillation mode going from stable to critically stable. 

Consequently, time-frequency analysis techniques (a 

class of linear techniques) that aim to track the time-

varying spectrum (Priestley, 1988) are more 

appropriate. These techniques take the inner product 

of the signal with a family of pre-assigned signal 

templates skewed in both time and frequency. 

However, there is a trade-off between time and 

frequency resolutions. The Continuous Wavelet 

Transform (CWT) (Daubechies, 1990), which is 

employed in the present work, can provides a good 

trade-off favoring frequency resolution. This is 

achieved by assuming that low frequency dynamics 

change less rapidly than high frequency ones and 

therefore increasingly favoring frequency resolution 

over time resolution at lower frequencies. Starting 

with a function called the mother wavelet 𝜓(𝑡), 

templates denoted by 𝜓𝑎,𝑏(𝑡) are created using 

translation and dilation operators on it as follows: 

𝜓𝑎,𝑏(𝑡) = 𝑎−
1

2 𝜓((𝑡 − 𝑏)/𝑎).  Here, 𝑎 (scale factor) 

has the effect of stretching 𝜓(𝑡) (shift towards lower 

frequencies) while 𝑏 (shift factor) introduces a phase 

shift, i.e., translating in time. Finally, the 

corresponding wavelet coefficient 𝑊(𝑎, 𝑏) for a signal 

𝑥(𝑡) is obtained as, 

𝑊𝑥(𝑎, 𝑏) = ∫ 𝑥(𝑡)𝜓̅𝑎,𝑏(𝑡)𝑑𝑡 
(2) 

where,  ( )̅̅ ̅̅ ̅ is the complex conjugate operator. The 

mother wavelet, 𝜓(𝑡), is designed to have a compact 

time and frequency support, i.e., translating and 

scaling it is comparable to    a band pass filter paired 

on the windowed original signal. In the present work, 

we use the Morlet wavelet, which consists of complex 

sinusoid modulated with a Gaussian 𝜓(𝑡) =

𝑒^(−
(2𝜋2𝑡2)

𝑘0
2 ) × (𝑒𝑗2𝜋𝑡 − 𝑒−

𝑘0
2

2 ), where the envelop 

factor 𝑘0, which is set to 6, controls the number of 

oscillations in the wave packet, i.e., frequency 

dependent window width. 

3.3 Application to Pre-Event Ambient Data 

Next, it is important to understand the information 

contained in the CWT coefficients when applied to the 

pre-event time-period leading to the oscillation. The 

measurements from this time-period can be modeled 
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as outputs from a time-varying linear system driven by 

stationary Gaussian white noise input 𝑢(𝑡)~𝑁(0,1) 

as, 

𝑥(𝑡) = ∫ ℎ(𝑡, 𝜏)𝑢(𝑡 − 𝜏)𝑑𝜏

= ∫ 𝑒𝑗𝜔𝑡𝐻(𝑡, 𝜔)𝑑𝑧(𝜔) 

(3) 

 

where ℎ(𝑡, 𝜏) is the time-varying impulse response 

representing the effect of input at time 𝑡 − 𝜏 on the 

output at time 𝑡, 𝐻(𝑡, 𝜔) = ∫ ℎ(𝑡, 𝜏)𝑒−𝑗𝜔𝜏𝑑𝜏, defining 

the time-varying power spectral density of 𝑥(𝑡) as 

|𝐻(𝑡, 𝜔)|2 and 𝑧(𝜔) being a 0 mean stochastic process 

with orthogonal increments, i.e., 𝐸(𝑑𝑧(𝜔)) =
0, 𝐸(𝑑𝑧(𝜔)𝑑𝑧∗(𝜔1)) = 𝛿(𝜔 − 𝜔1)𝑑𝜔. Here, the 

peaks of the time-varying spectrum will correspond to 

the evolving modes of the underlying power system. 

The wavelet coefficients for this system are, 

 

𝑊𝑥(𝑎, 𝑏) = ∬ 𝑒𝑗𝜔𝑡𝐻(𝑡, 𝜔)𝜓̅𝑎,𝑏(𝑡)𝑑𝑡𝑑𝑧(𝜔). 
 

(4) 

 

Assume that the time support of the mother 

wavelet 𝜓(𝑡) is ±∆𝑇 s, while its frequency support is 

𝜔0 ± ∆𝜔 𝑟𝑎𝑑/𝑠. Consequently, for 𝜓𝑎,𝑏(𝑡), these are 

𝜔_0/𝑎 ±
∆𝜔

𝑎
  and 𝑏 ± 𝑎∆𝑇, respectively. Let the 

critical mode’s (the one becoming unstable) 

fundamental frequency be denoted as 𝜔𝑐𝑟𝑖𝑡(𝑡) during 

the time-period of analysis and assume that it largely 

overlaps with the frequency band corresponding to the 

scale parameter value 𝑎∗. Since the setpoint is changed 

slowly during the test, the signal in that frequency 

band (representing both the critical mode and other 

dynamics) can be assumed to be quasi stationary, i.e., 

𝐻(𝑡, 𝜔) ≈ 𝐻(𝑏, 𝜔)∀(𝜔, 𝑡) ∈ (
𝜔0

𝑎∗  ±
∆𝜔

𝑎∗  , 𝑏 ±

𝑎∗∆𝑇)∀𝑏, transforming Eq. (4) to  

 

𝑊𝑥(𝑎∗, 𝑏) ≈ ∫ 𝐻(𝑏, 𝜔) (𝜓̂𝑎∗,𝑏(𝜔))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑑𝑧(𝜔) 

𝐸(|𝑊𝑥(𝑎∗, 𝑏)|2)

≈ ∫|𝐻(𝑏, 𝜔)|2|𝜓̂𝑎∗,𝑏(𝜔)|
2

𝑑𝜔 

 
 

(5) 

 

where  ( )̂   is the Fourier transform. Thus, 

𝐸(|𝑊𝑥(𝑎, 𝑏)|^2) at 𝑎 = 𝑎∗ represents a weighted sum 

of the underlying signal spectrum in the corresponding 

time window |𝐻(𝑏, 𝜔)|2 with the weights given by 

spectrum of the corresponding wavelet. Now, as the 

critical mode approaches zero damping and 

consequently becoming marginally stable, the integral 

in Equation (5) will be dominated by the term 

|𝐻(𝑏, 𝜔𝑐𝑟𝑖𝑡(𝑏))|
2

|𝜓̂𝑎∗,𝑏(𝜔𝑐𝑟𝑖𝑡(𝑏))|^2, i.e., a scaled 

spectrum of critical mode dynamics (Brincker et al., 

2001). Thus, scalogram coefficients are sufficient for 

tracking the evolution of that mode towards instability.  

4 Analysis 

4.1 Wide Area Voltage Analysis 

First, it is necessary to understand the 

fundamental frequency of the triggered oscillations. 

This is achieved by plotting the PSD estimates for the 

voltage magnitude measurements of substation A for 

the pre-testing time-period and during event window, 

which are contrasted in Figure 3. As it can be seen, 

there was only one faintly observable mode at 

approximately 5 Hz prior to the test, however, when 

the test is carried out, a 1.5 Hz high energy component 

is introduced together with its harmonics at 3 and 4.5 

Hz, and the original 5 Hz component vanishes. As a 

result, the 1.5 Hz frequency is unlikely to resonate 

with the system, and a simple mode shape analysis 

would be sufficient to identify the source.  

 
Figure 3. Voltage Magnitude PSD Pre-Event 

(black), Event (red). 

 

 

Figure 4. Voltage Magnitude Mode Shape (top), 

CSD Singular Values (bottom). 
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Next, using frequency domain decomposition 

(FDD) (Brincker et al., 2001), the 1.5 Hz mode shape 

is estimated from the 500 kV voltage magnitude 

measurements to pinpoint the oscillation’s source, as 

shown in Figure 4. According to the estimated mode 

shape, substation A's 500 kV voltage magnitude has a 

higher participation in the oscillation than the other 

substations nearby. Additionally, substation C 

oscillates almost in phase with others while having a 

much smaller contribution to the oscillation. This 

shows that the STATCOM at substation C is 

effectively controlling its terminal voltage, which 

results in suppressed oscillations, and that it is not 

actually oscillating against the test units at substation 

A, which nullifies the hypothesis of the plant 

operators. FDD also provides information about the 

presence of multiple modes at the same frequency, 

given by the singular values of the cross spectral 

density matrix as plotted in the bottom plot in Figure 

4. As the figure show, there is only one significant 

peak at 1.5 Hz, indicating that only one mode is being 

observed.  

4.2 Analysis of Line Flows for Source 

Localization 

 

 
 

 
Figure 5. Q Flow 1.5 Hz Mode Shape (top) and Q 
Flow Measurements (bottom). 

The fact that the voltage magnitude 

measurements at the 500 kV level are tightly coupled 

and coherent makes it incredibly challenging to 

identify the source(s) of the oscillations. On the other 

hand, MVA flows can be quite helpful in this analysis 

owing to the power balance constraints from KCL. 

Here we adopt a systems approach (Chompoobutrgool 

& Vanfretti, 2013), which can be summarized as 

follows. In general, if the oscillation is local with no 

resonance, the source’s P/Q output should have the 

highest participation in the oscillation with other 

control devices acting as a sink, contributing with 

smaller, out of phase inputs to the network to suppress 

the oscillation in voltage/angle. The 1.5 Hz mode 

shape obtained from Q flows is shown in the top plot 

in Figure 5. It shows that the Q oscillation amplitude 

that emerges from A is significantly larger than all the 

other individual 1.5 Hz Q flow mode shapes, which 

points towards A being the likely source. Additionally, 

it equally separates into two components that move 

towards the nearby generator B and substation D. This 

is unexpected because B is electrically closer to A and 

has an AVR within the generator, which should have 

been the main sink for this oscillation, but this was not 

the case. A close examination of the Q output of B (see 

bottom plot in Figure 5), reveals that this nearby power 

plant has a negligible contribution to the voltage 

regulation/control of this oscillation or its effects. 

Therefore, this power plant is circumvented, and the 

oscillation propagates to the other parts of the network. 

4.3 Finding the Culprit Unit inside 

Substation A 

Figure 1 shows that the final triggered oscillations 

involve a mode becoming unstable with the system 

trajectory settling on a limit cycle (observed as 

oscillations during the event). With sufficient data to 

support the claim that the oscillation originates from 

A: is it possible to understand the nature of the 

instability solely through measurements?  

Answering this question requires a measurement 

time-period during which the critical mode is stable 

and observable to gain a sense of the participation of 

the various generator units inside plant A. This is 

because once an oscillation becomes critically stable, 

the resulting measurements represent the system’s 

large signal/nonlinear response, where the actual 

modal properties may be lost. As seen previously in 

Figure 3, the pre-event spectrum did not have a 

spectral peak in the modal frequency range of 1.5 Hz. 

However, this only means that a majority of and not 

the entirety of the pre-event time window used for 

estimating the spectrum had an unobservable critical 

mode, which was lost with the averaging applied by 

Welch’s method. Thus, an estimate of the time-

varying spectrum is obtained first through a wavelet 

scalogram, as shown in Figure 6. This was obtained 

from plant A’s net PQ output during the 1-minute 

time-period leading to the event. Note that the CWT 
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scalogram plot’s frequency axis is set to the central 

frequency relevant for each scale.  

Analyzing Figure 6 would suggest that the nature 

of instability is angular in nature because the mode 

appears earlier in P than in Q. This is improbable, 

though, owing to the critical mode’s frequency being 

too high for electromechanical mode of a plant as large 

as this (Rogers, 1996). Additionally, please note that 

the plant’s net PQ output on the high side (500 kV) is 

plotted, which may not be the best observer for these 

dynamics at the generator level (Brincker et al., 2001). 

Therefore, it is necessary to contrast these results to 

those obtained from voltage magnitude measurements 

of the generator units in substation A, as shown in 

Figure 7. Recall that at substation A, there are three 

identical 435 MVA CT generator units (A, B, and C) 

and one 795 MVA steam unit, S. 

 

 

 
Figure 6. Plant A Net Output Scalogram. 

Because units A, B and C are similar, only unit A 

is analyzed. The oscillation in the terminal voltage is 

observed only at unit S before it becomes unstable and 

is consequently large enough to impact all the other 

units. This reduced observability could be due to the 

unit step up transformers playing the role of filters 

and/or the response of the AVRs at the other units (A, 

B and C). However, for this to happen, the Q outputs 

of those units would need to respond (and therefore 

observe the mode), which is not the case as shown in 

Figure 8. In addition, observe in Figure 8 that the MW 

oscillations at unit S start precisely at the same time as 

V (and Q) oscillations. Therefore, keeping the 

oscillation frequency in mind, it is certain that the 

mode is a result of the local AVR response of unit S. 

Consequently, the P oscillations at unit S are triggered 

due to P-V dynamic coupling.  

The last phenomena to comprehend is the nature 

of the limit cycle that unit S enters after the system 

becomes unstable, which is difficult to confirm 

without the help of simulation models. However, 

based on our experience, limit cycles resulting from 

unstable voltage controllers interacting with limiters 

(Reddy & Hiskens, 2005) are far more common than 

super critical Hopf bifurcation in real-world power 

systems. 

 

 
Figure 7. Generator Terminal Voltage Scalograms.   
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Figure 8. PQ Output of Units in Substation A. 

4.4 Retuning Culprit Unit and Subsequent 

Process Changes 

One of the key conclusions of this investigation 

was that the culprit unit’s power system stabilizer was 

not tuned to cover light load points in the generator’s 

leading region.  Indeed, the common industry practice 

has been to tune and test stabilizers only at full load 

lagging conditions.  Dominion had the stabilizer 

subsequently retuned to cover this previously 

neglected, but critical, load region. As a result, 

Dominion determined that all future tuning and testing 

work for excitation systems must be conducted also 

under light loading. Consequently, the tuning process 

now covers a more complete region of the generator’s 

allowable operating points. The result has led to a 

more comprehensive tuning and validation process, 

thus improving local and zone-wide stability. The 

findings also have more far-reaching benefits as the 

consulting firm that tuned the stabilizer is preparing a 

proposal to include these new requirements in NERC’s 

excitation system validation standard. 

5 Conclusions and Future Work 

This work presents an analysis of a forced 

oscillation using synchrophasor data that emerged 

during a reactive power capability test at a power plant 

in Dominion Energy’s system. The proposed approach 

uses time-frequency analysis techniques to extract the 

otherwise overlooked information in the time-period 

prior to the oscillation, which is critical to pinpoint the 

source down to the unit level as well as nature of the 

instability resulting in the final oscillation. Future 

work will aim to verify the emergence of the mode 

because of the test generator reaching its AVR limits 

and entering a limit cycle during the test.   
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