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Abstract— Synchrophasor data from real world power systems 

are exposed to numerous adverse cyber-and-physical conditions 

that can negatively impact its fitness for use in PMU 

applications. While the most significant impairments like GPS 

signal loss, instrument transformer failures, data drop-offs, etc., 

have been studied in the literature, it is challenging to address 

other more complex nuisances that impact data quality. This is 

the case of differences in how clock synchronization, time-

disciplining and phasor estimation is performed by different 

PMU vendors, that while frequently disregarded, have 

important implications on the data’s fitness for use in PMU 

applications. In particular, ambient data applications, which 

have increasingly become a focus for tracking grid performance 

indicators, are extremely sensitive to periodic clock errors. 

Using synchrophasor and waveform data from Dominion 

Energy’s power system, this article gives an in-depth analysis of 

the substaintial effect of seemingly minor device clock errors on 

measurement signal content.  

Index Terms— Clock error, Spectral analysis, Bicoherence 

 

I. INTRODUCTION 

The increased use of power electronic-based resources 
such as renewable energy, FACTS devices, and the continued 
increase in new types of loads such as data centers, has 
resulted in unprecedented dynamic performance challenges, 
particularly localized issues caused by wrongly tuned 
controllers. The lack of transparent, portable and inter-
operable dynamic models makes it difficult for utilities to 
perform conventional model-based analysis, leaving 
measurements as the only source from where to derive 
actionable information. Because a typical power system 
mostly operates in ambient conditions characterized by small 
and persistent random perturbations [1], taking a proactive 
approach to device performance monitoring necessitates 
the1eveloppment of techniques capable of extracting and 
analyzing the underlying system’s dynamic purely from 
measurement data [2], [3]. In this regard, frequency domain 
measurement analysis approaches [4] have proven to be 
effective, owing to the fact that ambient dynamic 
characteristics resemble that of a stochastic linear system.  

Working with real-world ambient data is difficult since the 
signals’ power content of relevant dynamics is far lower than 

what is observed during events (i.e. transients or large 
disturbances). As a result, even small discrepancies with the 
IEEE Std. for Synchrophasor Measurements for Power 
Systems (IEEE C37.118.1-2011) [5] can have a significant 
impact on the observed ambient response exposed by the data 
and, as a result, data-driven applications. For example, 
discrepancies in frequency estimation techniques inside PMUs 
from different suppliers [6] will largely impact inertia 
monitoring [7].  

Concerns related to time stamp corruption are the most 
challenging to address. The IEEE C37.118 std defines a Total 
Vector Error (TVE) limit of 1%, which equates to a phase 
angle error of 0.5730 (degrees) or a time synchronization 
inaccuracy of 21.6 𝜇𝑠 at 60 Hz or 31.8 𝜇𝑠 at 50 Hz. The 
majority of the existing body of work focuses on detecting 
more conspicuous issues, such as GPS signal loss [8], and 
their effects on applications. A related but inconspicuous issue 
that arises in ambient applications, notably modal analysis, is 
the drift in time stamps supplied by the internal oscillator of 
PMUs between two consecutive GPS time stamps (once a 
second). Our prior work on this topic [9] focuses on detecting 
and correcting spectral spikes in phase angle at multiples of 1 
Hz, appearing as sharp horizontal lines in Fig. 1. The resulting 
conjecture from our previous work was that the impact of 
these periodic clock errors was limited to such spectral spikes. 
However, recent wide area studies on synchrophasor data in 
Dominion Energy’s system have revealed new intriguing 
phenomena.  

 

Fig. 1. Voltage Angle Derivative Spectrogram Showing Atypical Patterns 

Figure 1 shows atypical symmetric patterns (17:00:00-
23:00:00) of the phase angle dynamics in the time-frequency 
plane of a 500 kV nuclear power plant. These patterns will be 
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dissected herein, as they were eventually found to be pertinent 
to the aforementioned periodic clock errors, and thus, 
expanding the previously proposed conjecture. 

This paper is organized as follows. Section II of this paper 
gives a brief background in signal processing techniques used 
in our work. Section III briefly describes the source of 
periodic clock errors as well as a theoretical analysis of the 
problem illustrated using both real measurements and 
synthetic signals. Finally, Section IV proposes an approach to 
distinguish periodic clock errors from actual power system 
dynamics by exploiting bicoherence.  

II. BACKGROUND 

A. Power Spectral Density (PSD) 

PSD describes how the signal’s power is distributed over 

frequency. Letting 𝑥(𝑛) denote samples from a zero mean 

wide sense stationary (WSS) ergodic process, the 

autocorrelation function 𝑟(𝑘) is defined and estimated as, 
𝑟(𝑘) = 𝐸(𝑥(𝑛)𝑥(𝑛 + 𝑘)) ∀𝑘 ∈ 𝑍 

𝑟̂(𝑘) = lim
𝑁→∞

∑
𝑥(𝑛)𝑥(𝑛 + 𝑘)

𝑁

𝑁−1

𝑛=0

 

(1) 

where, 𝐸(∙) is the expectation operator, the ∙ ̂ operator 

represents an estimate and 𝑁 is the length of a sampled data 

window. PSD value 𝑆(𝑓) at frequency 𝑓, is then defined as, 

𝑆(𝑓) = ∑ 𝑟(𝑘)𝑒−𝑗2𝜋𝑓𝑘

∞

𝑘=−∞

, |𝑓| ≤
1

2
 

𝑆̂(𝑓) = lim
𝑁→∞

1

𝑁
|𝑋(𝑓)|2 

 

(2) 

where 𝑋(𝑓) = ∑ 𝑥(𝑛)𝑒−𝑗2𝜋𝑓𝑛𝑁−1
𝑛=0 . Here, we use Welch’s 

method [4] to obtain a low variance estimate of 𝑆(𝑓). It works 
by dividing the data window into parcels and averaging 
spectrum estimates over them, sacrificing frequency resolution 
to reduce the estimate’s variance. 

B. Bispectrum and Bicoherence 

Higher order moments are natural generalizations of the 

autocorrelation. For the above process, a general 𝑝𝑡ℎ order 

cumulant (second order is autocorrelation) is defined as, 

𝑐𝑝(𝑘1, … , 𝑘𝑝−1) = 𝐸(𝑥(𝑛)𝑥(𝑛 + 𝑘1) … 𝑥(𝑛 + 𝑘𝑝−1)) 

𝑐𝑝̂ = lim
𝑁→∞

1

𝑁
∑ 𝑥(𝑛)𝑥(𝑛

𝑁−1

𝑛=0

+ 𝑘1) … 𝑥(𝑛 + 𝑘𝑝−1) 

(3) 

The Bispectrum [10], given in (4), is defined as the Fourier 

transform of the 3rd order cumulant and can yield insights into 

quadratic coupling between different frequency terms in the 

signal, usually resulting from nonlinearities. 

𝐵(𝑓1 , 𝑓2) = ∑ ∑ 𝑐3(𝑘, 𝑙)𝑒−𝑗2𝜋(𝑓1𝑘+𝑓2𝑙)

∞

𝑘=−∞

∞

𝑙= −∞

 

𝐵̂(𝑓1 , 𝑓2) = 𝑋(𝑓1)𝑋(𝑓2)𝑋∗(𝑓1 + 𝑓2) 

(4) 

Finally, bicoherence 𝑏(𝑓1, 𝑓2) ∈ [0,1], is a measure of 

phase coupling between frequencies 𝑓1, 𝑓2 and 𝑓1 + 𝑓2. In 

other words, it captures if ∠𝑋(𝑓1 + 𝑓2) − (∠𝑋(𝑓1) + ∠𝑋(𝑓2)) 

is constant and is defined as,   

𝑏2(𝑓1, 𝑓2) =
|𝐵̂(𝑓1, 𝑓2)|

|𝑋(𝑓1)𝑋(𝑓2)|2|𝑋(𝑓1 + 𝑓2)|2 
(5) 

Note that in the case of signals with finite length, the 

frequency domain of the bicoherence is bounded by Nyquist’s 

frequency. As discussed in [11], bispectrum of the output 

𝑥(𝑡) of a stable linear system driven by Gaussian inputs 

𝑢(𝑡)~𝑁(0,1) can be shown to be 0 as follows, 
𝑋(𝜔) = 𝐺(𝜔)𝑈(𝜔) 

𝐸(𝑢(𝑡)𝑢(𝑡 + 𝑇1)𝑢(𝑡 + 𝑇2)) = 0 

=> 𝐸(𝑈(𝜔1)𝑈(𝜔2)𝑈∗(𝜔3)) = 0 

=> 𝐵(𝜔1, 𝜔2) = 𝐸(𝑋(𝜔1)𝑋(𝜔2)𝑋∗(𝜔1 + 𝜔2))

= 𝐺(𝜔1)𝐺(𝜔2)𝐺∗(𝜔1)𝐸(𝑈(𝜔1)𝑈(𝜔2)𝑈∗(𝜔1 + 𝜔2)) = 0 

(6) 

Here, 𝑋(𝜔) is the Fourier transform of 𝑥(𝑡) and 𝐺(𝜔) 

represents the transfer function of the system. Before 

proceeding, it is important to mention that ambient field 

measurements may violate the stationarity assumptions (in 

mean and spectrum)  [1], which are required by the estimators 

in this section. This is a result of ever-changing operating 

conditions. That being said, operating conditions generally 

evolve over long time scales, resulting in a quasi-stationary 

spectrum with an approximately linear trend, which allows 

for using long enough windows (up to 30 mins) after simple 

detrending to obtain a sufficiently low variance spectral 

estimates for ambient data applications [12].   

III. CLOCK ISSUES 

A. Abnormal Observations in Real Measurements 

 
Fig. 2. Voltage Magnitude and Angle Spectrum 

 
Fig. 3. PMU Voltage and Current Angle Spectra 

To understand Fig. 1, we first start with a 10 min window 

at 08:00:00, a portion of the spectrogram with less “activity”. 

The most prominent feature is exhibited by the voltage angle 

spectrum in Fig. 2, characterize by sharp peaks/spikes at 1 Hz 

and its multiples [9], which are barely visible in the voltage 

magnitude spectrum. Additionally, odd harmonics appear to 

be significantly more dominant than even harmonics, pointing 

to a symmetry between positive and negative cycles. Next, 

from Fig. 1, we analyze a 10 min window at 18:00:00, which 

appears to be significantly different, most likely due to 

operating changes in the power system around 17:00:00. 

Comparing the voltage and corresponding current phase 

angles reported by the same device, in Fig. 3, we see that a 

unique feature of these spectra are peaks around 0.4 Hz and 



0.6 Hz. In addition, similar peaks are present at 𝑘 ×
1 ±0.4/0.6_Hz. Finally, observe how these spikes are not 

visible in the angle difference, implying that the underlying 

mechanism behind these affects the V-I pair equally. 

B. Effect of Clock Errors on Measurement Spectra 

Let the “true” time be denoted by 𝑡 and what the clock 
reports by 𝜏, which is corrupted. For small errors, 𝜏 = 𝑡 +
𝜖𝜙1(𝑡) for some small 𝜖. Here, 𝜙1(𝑡) is a function arbitrarily 
normalized in ∈  [−1,1]. For small 𝜖, an inverse function 
𝜓(𝜏) = 𝜏 + 𝜖𝜓1(𝜏) exists that can recover the true time, 𝑡, 
from the corrupted one, 𝜏. Now, if true system trajectory is 
𝑥(𝑡), what is observed is 𝑥(𝜓(𝜏)), a perceived distortion. This 
is illustrated next. 

Example 1: Let 𝑥(𝑡) = cos (2𝜋 × 0.2 × 𝑡) and 𝜙(𝑡) = 2𝑡 ⇒

 𝜓(𝜏) = 𝜏/2. Here, the clock is significantly twice as fast as 

the true time 𝑡 and therefore, the perceived dynamics appear 

slow, at half the frequency 𝑥(𝜓(𝜏)) = cos (2𝜋 (
0.2

2
) 𝜏). 

To understand how differently the observed dynamics are 

from true dynamics, we obtain a Taylor expansion of the 

observed dynamics 𝑥(𝜓(𝜏)), 

𝑥(𝜓(𝜏)) = 𝑥(𝜏) + 𝑥̇(𝜏) × 𝜖𝜓1(𝜏) + 𝑂(𝜖2). (7) 

Note that observed dynamics are comprised of 𝑥(𝜏), that is 

identical to the true system trajectory plus a term that 

multiplies its derivative to the clock errors 𝜖𝜓1(𝜏). This term 

is responsible for anomalies in the spectra seen in Fig. 3. 

Next, we aim to understand the structure of 𝜓1(𝜏) as it 

exists. The clock time stamps 𝜏 are generated by individual 

device oscillator, which is disciplined periodically (with a 

period 𝑇) using GPS time stamps (once a second) obtained 

from Global navigation satellite system (GNSS) station clock 

via IRIG-B signal. Thus, 𝑡 − 𝜏 = 𝜖𝜓(𝜏) drops to 0 after ever 

𝑇 seconds (as fast as 1 second). Therefore, we can write it as 

a Fourier expansion 𝜓1(𝜏) = ∑ (𝑎𝑘𝑒𝑗𝑘𝜔0𝜏 +𝑘

𝑎𝑘
∗ 𝑒−𝑗𝑘𝜔0𝜏) ∀𝑘 ∈ 𝑍+ where 𝜔0 =

2𝜋

𝑇
 rad/s. These individual 

oscillatory components of the clock error will be referred to 

as clock modes herein. Substituting in the equation above, 

𝑥(𝜓(𝜏)) ≈ 𝑥(𝜏) + 𝜖𝑥̇(𝜏) × ∑ (𝑎𝑘𝑒𝑗𝑘𝜔0𝜏 + 𝑎𝑘
∗ 𝑒−𝑗𝑘𝜔0𝜏)𝑘 . (8) 

Because our analysis is in the frequency domain, 

obtaining the corresponding Fourier transform of (8) gives,  
 𝑋𝜓(𝜔) = (1 + 𝜖𝑎0𝑗𝜔)𝑋(𝜔) 

+𝜖 ∑ [
𝑎𝑘𝑗(𝜔 − 𝑘𝜔0)𝑋(𝜔 − 𝑘𝜔0)

+𝑎𝑘
∗ 𝑗(𝜔 + 𝑘𝜔0)𝑋(𝜔 + 𝑘𝜔0)

]

𝑘>0

 

(9) 

where 𝑋(𝜔) and 𝑋𝜓(𝜔) are Fourier transforms of 𝑥(𝜏) and 

𝑥(𝜓(𝜏)) respectively. For the time being, assume that the true 

signal power 𝑋(𝜔) is concentrated at some 𝜔1 i.e. |𝑋(𝜔 ≠
𝜔1)| = 0. From (9), the apparent dynamics on the other hand 

will have non-zero power at 𝜔1 ± 𝑘𝜔0∀𝑘 as well depending 

on |𝑎𝑘|. Thus, periodic errors in clock creates new spectral 

components by interacting with actual system dynamics, 

which explains the symmetric spectral peaks to the left and 

right of 1 Hz, 2 Hz…(clock mode frequencies 𝑘 × 𝜔0/2𝜋) in 

Fig. 3. Another observation that can be made from (9) is that 

𝑎𝑘, a component of a clock error can only be observed at 𝜔 

through |(𝜔 − 𝑘𝜔0)𝑋(𝜔 − 𝑘𝜔0)|, which is the amplitude of 

𝑑𝑥(𝜏)

𝑑𝜏
 at (𝜔 − 𝑘𝜔0). Thus, 𝑎𝑘 cannot appear at its 

corresponding frequency 𝑘𝜔0 unless, 
𝑑𝑥

𝑑𝜏
 has a constant term 

(called a trend), in other words, 𝑥(𝜏) = 𝑏0 ≠ 0 + 𝑦(𝜏). This 

is a bit of a surprise since both Fig. 2 and Fig. 3, that show 

real world data, have prominent peaks at 𝑘𝜔0 = 𝑘2𝜋 ∀𝑘 but 

do not have trends. Before analyzing the source of trends, let 

us understand the effect of the magnitude of clock errors and 

the trend through two examples. 

 

Example 2: Let the true measurement 𝑥(𝑡) be an output of a 

second order discrete time stochastic linear system model 

defined by 𝑥(𝑡) = ∑ 𝑐𝑖𝑥(𝑡 − 𝑖∆𝑡) +𝑖=1:2 𝑏𝜀(𝑡)~𝑁(0,1) [4]. 
Here, 𝑥(𝑡) emulates typical ambient dynamics with a single 

arbitrarily placed mode at 0.2 Hz with a low 1% damping. 

Assume the clock error 𝜏 − 𝑡 = 𝜖𝜙1(𝑡) = 𝜖
1+cos(2𝜋×1×𝑡)

2
 

with period 𝑇 = 1 sec. Consider two different values of 𝜖 =
1 × 10−1 and 𝜖 = 2 × 10−1. The power spectral density of 

𝑥(𝜓(𝜏)) in Fig. 4 shows that as the clock error becomes 

smaller, the error components 𝑎𝑘 observed in the frequency 

domain also decrease. In addition, observe that while 𝜙1(𝑡) 

has a single 1 Hz component, 𝜓1(𝜏) also includes harmonics 

(see Fig. 5). Thus, |𝑎𝑘| ≠ 0 for 𝑘 > 1 as well. These clock 

frequencies (0 Hz, 1 Hz, 2 Hz…) now interact with system 

dynamics characterized by the 0.2 Hz mode to yield 

components at 𝑘 ± 0.2 𝐻𝑧 ∀𝑘. However, because 𝑥(𝑡) has a 

fixed zero mean or no trend, we do not observe the clock 

modes at 1 Hz, 2Hz… themselves. 

 
Fig. 4. Example 2, Corrupted (Synthetic) Signal Spectrum 

 
Fig. 5. Example 2, Periodic Clock Error 

 
Fig. 6. Example 3, Corrupted (Synthetic) Signal with a Linear Trend 

Example 3: Next, we demonstrate the effect of adding a 

trend to data. Let 𝑥𝑛𝑒𝑤(𝑡) = 2𝑡 + 𝑥(𝑡) = ∑ 𝑐𝑖𝑥(𝑡 −𝑖=1:2

𝑖∆𝑡) + 𝑏𝜀(𝑡)~𝑁(0,1) . Before estimating the spectrum, 

𝑥𝑛𝑒𝑤(𝑡) is detrended assuming a linear trend and the result is 

plotted in Fig. 6. A comparison of Fig. 6 with Fig. 4 

demonstrates the role of trend in placing the effect of 𝑎𝑘 at 



𝑘𝜔0 itself ∀𝑘.  Moreover, these spectral peaks grow with the 

increase in clock error. Here, it is important to mention that 

detrending cannot undo the effect of clock error. 

C. Effect of Corruption at the Source (Waveform Data) 

This section discusses how the stage at which the clock 

errors enter in the data pipeline has a major impact in the 

observed time (corrupted). It also clarifies the difference of 

the effect of clock errors on amplitude vs clock errors in the 

phase angle in PMU data and, finally, the source of trends in 

real world measurements. 

To illustrate these issues, consider power system signals 

such as voltages and currents modeled in their purest form, 

waveform data, which is the input to a PMU’s estimation 

algorithm. The power system dynamics observed by PMUs 

are modulated in both amplitude and phase of a carrier wave 

at frequency 𝑓𝑐 ≈ 60 𝐻𝑧 [2], 

𝑥𝑤𝑎𝑣(𝑡) = 𝐴(𝑡)𝑒𝑗𝜃(𝑡) 

𝜃(𝑡) = 2𝜋𝑓𝑐𝑡 + 𝜌(𝑡) 

(10) 

where, 𝐴(𝑡) and 𝜃(𝑡) are the amplitude and phase of the 
waveform signal and 𝜌(𝑡) represents frequency dynamics. 
Now, synchrophasor estimates [13] reported by PMUs aim to 
capture 𝐴(𝑡) and 𝜌(𝑡) + 2𝜋(𝑓𝑐 − 60)𝑡 from waveform data. 
It is now necessary to determine whether the clock errors 
corrupt the synchrophasor data directly or indirectly (if the 
waveform data is corrupted). For this, we plot the spectrum of 
the voltage waveform data previously analyzed window in 
Fig. 3 in Fig. 7. Any oscillatory components in 𝐴(𝑡) and/or 
𝜃(𝑡) will appear as symmetric side bands of the carrier peak at 
𝑓𝑐 ≈60 Hz, corresponding to 𝑓𝑐 ± 𝑘𝑓𝑚𝑜𝑑𝑒  ∀𝑘 where 𝑓𝑚𝑜𝑑𝑒  is 
the oscillation frequency. Observe how the most prominent 
sidebands occur for 𝑓𝑚𝑜𝑑𝑒 = 1 Hz that as we know correspond 
to the clock modes. The same clock modes can be seen around 
the second (120 Hz) and higher harmonics of 𝑓𝑐. Thus, this 
confirms that the periodic clock error enters “upstream” (at the 
waveform stage), which results in corrupted phasors. 

 
Fig. 7. Real-World Voltage Waveform Data Spectrum 

To compare the relative level of impact on 𝐴(𝑡) vs 𝜃(𝑡), 
we need to understand how these signals, or rather their 
derivatives, typically behave as shown by (8). During ambient 
conditions, 𝐴(𝑡) moves in a narrow band around a constant 

operating point (e.g. 500 kV) and therefore, 𝐴̇(𝑡) is extremely 
small in comparison to 𝐴(𝑡), resulting in an even smaller 

effect from the clock. On the other hand, 𝜃̇(𝑡) = 2𝜋𝑓𝑐 + 𝜌̇(𝑡) 
has a large term from the trend 2𝜋𝑓𝑐𝑡 resulting from the power 
systems operating at ≈ 60 𝐻𝑧. Thus, 𝜃(𝑡) is closer to 
Example 3 while 𝐴(𝑡) is closer to Example 2 and 
consequently, the phase angles exhibit relatively larger 
spectral spikes, as confirmed by Fig. 2.  

IV. DISTINGUISHING FROM TRUE SYSTEM DYNAMICS   

Having explained the mechanism behind clock errors 

distorting the observed dynamics and resulting in spurious 

modes in frequency domain, we now concentrate on how to 

discern them from true system dynamics. The approach 

proposed in this section exploits the fact that any form of 

spurious modes created from clock errors have a nonlinear 

coupling between them.  

From (6), we know that a linear time invariant system 

driven by white noise (a good approximation to true ambient 

dynamics) has zero bispectrum. Corrupting those 

measurements with periodic clock errors still results in a zero 

bispectrum. This can be proved by substituting 𝑋(𝜔) from (6) 

in (9) to obtain 𝑋𝜓(𝜔). Because all the terms in 𝑋𝜓(𝜔) are of 

degree 1 in 𝑈(𝜔) and consequently, of degree 3 in the 

bispectrum estimate in (4), using 𝐸(𝑈(𝜔1)𝑈(𝜔2)𝑈(𝜔3)) = 0 

from (6) yields 0. On the other hand, the presence of a trend 

contributes to zero-degree terms in 𝑈(𝜔) in 𝑋𝜓(𝜔) and 

consequently some non-zero even degree terms in 𝑈(𝜔) the 

bispectrum expression, resulting in a non-zero value.  

 

 
Fig. 8. Bicoherence of Clock-Corrupted (Synthetic) Signal with  

Linear Trend (Example 3) and without a Trend (Example 2) 

This can be confirmed through bicoherence plots for data 

from Example 2 and Example 3 in Fig. 8. Focusing on 

Example 3’s bicoherence plot, because the clock modes 𝑎𝑘∀𝑘 

have fixed phases, there is a high bicoherence among the 

clock frequencies (𝑘 × 1 Hz). Next high bicoherence is 

observed between clock mode frequencies and 0.2 Hz. 

Therefore, any spectral peaks at (𝑘 × 1) ± 0.2 Hz are deemed 

spurious. This also results in a high bicoherence between the 

clock modes and their created spurious modes. 

Next, we offer a general guideline to distinguish between 

spurious clock-generated system modes and true system 

dynamic stability issues, manifested as poorly damped system 

modes. Note that automating such analyses for use in real-

world applications is infeasible and generally requires human 

expert analyst. First, any kind of undamped oscillation, such 



as clock error or true dynamics is characterized as narrow 

band peaks in PSD plot, which would warrant a deeper 

analysis. As discussed before, clock errors, would primarily 

be seen in phase angle, similar to angular electromechanical 

oscillations. These will occupy higher frequencies as well 

unlike poorly damped angular oscillations, that are usually < 

1 Hz. This alone is not sufficient to distinguish between them 

owing to the influx of converter interfaced resources 

operating in a wide range of frequencies. Next we note that 

true modes do not interact with each other thereby resulting 

in 0 bicoherence. Therefore, if there is a sizable bicoherence 

between the frequencies of interest (possible undamped 

oscillations) and any other modal frequencies (that are not 

their harmonics), this is sufficient justification to categorize 

the problem as spurious in nature and clock related rather 

than related to system dynamic. Note that estimating the 

clock errors is necessary in order to "reverse" the effect of 

clock corruption, which will be explored in future. 

 
Fig. 9. Bicoherence for Fig. 3 

 
Fig. 10. Spectrogram Fig. 1 < 2 Hz 

Finally, we perform bicoherence analysis on the real-world 

phase angle measurements corresponding to Fig. 1 and Fig. 3. 

The voltage phase angle data needs to be pre-processed. This 

is achieved by applying to it a derivative operation to remove 

the slow, non-stationary trend, while retaining the 

bicoherence values corresponding to ambient dynamics 

(derivative introduces a fixed phase shift). The bicoherence 

obtained is shown in Fig. 9. Next, the spectrogram of Fig. 1 is 

magnified for clarity and shown in Fig. 10. Starting from the 

lowest frequency, 0.4 Hz mode at 18:00:00 corresponds to 

Branch 1 in the spectrogram. It shows a high coupling with 

clock modes and also itself, which points towards a potential 

second harmonic [14]. From the spectrogram, one can see the 

second (harmonic) branch (labeled Branch 2) is at double the 

frequency and very similar in trajectory. Note that this the 

resulting peak around 0.8 Hz was not observed in the 

spectrum earlier (Fig. 3). Next, we can see the 1 Hz clock 

mode having strong coupling with 0.4 Hz, resulting in 

Branches 3 and 4 in the spectrogram at 0.6 and 1.4 Hz 

respectively around 18:00:00. The clock mode also shares a 

high bicoherence with these two branches as seen previously. 

V. DISCUSSION AND FUTURE WORK 

This work presents a detailed analysis of how periodic 
clock errors affect phasor measurements, particularly those of 
phase angles, to the extent that they are no longer fit for use’ 
in ambient synchrophasor analytics. Bicoherence's ability to 
distinguish between clock modes and real system dynamics 
has also been demonstrated. Future research will explore 
estimating clock errors.  
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