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Abstract— Techniques for time-frequency analysis can be used to 
identify, isolate, and track the emergence of numerous underlying 
power system dynamic processes just from measurements. These 
are especially useful for drawing meaningful conclusions from 
data obtained under ambient conditions, when power system 
phenomena can be less obvious in the time domain. However, 
because spectrograms have typically been evaluated by visual 
inspection, it is impossible to routinely perform assessment on 
large amounts of data. More crucially, relying just on visual 
inspection could result in missing crucial dynamics due to human 
error, e.g., setting incorrect color scaling. To address these issues, 
this work proposes an approach to automatically identify regions 
of interest on spectrograms over large data sets, which reflect the 
underlying power system’s dynamic behavior. Results for actual 
synchrophasor measurements from the Dominion Energy system 
are obtained to show the effectiveness of the proposed method. 

Index Terms--Spectrogram, Synchrophasors, Oscillations  

I. INTRODUCTION 
With the growth of renewable generation, utilities are faced 

with major challenges, one of them being a limited ability to 
anticipate dynamic performance issues, particularly due to the 
performance of local inverter-based resources (IBRs) 
controllers and other power electronic-based devices. These 
issues arise from the lack of access to transparent and accurate 
models and changing grid conditions that would require a more 
frequent performance monitoring and control tuning. What 
makes this even more complex is the inherently different nature 
of these devices when compared to well-understood 
synchronous machines. As a result, it is frequent to encounter 
power dynamic behavior that are challenging to understand. 
Luckily, with the proliferation of synchrophasor technology 
[1], it has been possible in theory to discover the various 
dynamic phenomena at play.  

Large disturbance transients/events that allow to assess the 
dynamic performance of power system components are rare, 
even though they are excellent for providing insights into the 
behavior of the underlying system. Furthermore, it is frequently 
too late when a specific dynamic process erupts into an unstable 
oscillation event, which in turn calls for an immediate and 
costly fix. In our experience, before significant disturbances 
occur, there are several clues left from the preceding “normal” 

operating conditions and therefore, there is a need to be able to 
automatically extract relevant information from ambient 
conditions [2]. In this regard, spectral analysis techniques have 
proven valuable [3] for ambient data analysis, owing to the 
stochastic linear nature of the system in ambient conditions.  

Power system transient/event analysis has benefited greatly 
from the use of time-frequency analysis techniques like the 
short term Fourier transform (STFT), wavelets, and others [4] 
by providing insights into the evolution of event characteristics 
and also by distinguishing them from the regular behavior. 
Surprisingly, these are underutilized in synchrophasor ambient 
data analysis, where the major focus of this field has been in 
electromechanical mode estimation. Since wide area modes, 
have largely stationary properties such as frequency and 
damping, only a sub-set of time-frequency analysis techniques 
are exploited. Unfortunately, this does not hold true for local 
control dynamics, which can be nonstationary. As a result, 
time-frequency analysis techniques are more suited for 
identifying and characterizing dynamic behaviors from 
measurements because they allow us to characterize power 
system dynamics (modes) using time-frequency traces over a 
broader frequency range rather than for single or a few specific 
frequencies. Additionally, some dynamics are only possible to 
understand by integrating the temporal component in modal 
analysis. As an example, Fig. 1 spectrogram is generated from 
the voltage magnitude at a STATCOM in the Dominion Energy 
system  [5]. One might believe that the underlying system has 
numerous oscillatory dynamics ranging from 1-4 Hz if it were 
processed independently frame by frame. A time-frequency 
representation, however, exposes connections between traces 
that maybe product of harmonic relationships. This example’s 
mode becomes progressively less damped as the network’s 
current imbalances increase (i.e., the three-phase network 
currents are not fully balanced). The absence of labeled 
historical data in the form of dominant modes and their 
attributes (frequency, damping, etc.) at each epoch is the sole 
significant obstacle preventing machine learning from 
automatically understanding such relationships [6].  

This brings us to the main contribution in this paper, which 
is to develop a simple approach to automatically capture 
frequencies in real world measurements corresponding to 
dominant dynamic behaviors that evolve over time. This will 



allow utilities to discover and characterize new dynamic 
processes, track previously discovered ones, to detect ones 
tending to instability and finally, generate labels in historical 
data to enable machine learning applications for possibly 
learning preventive operational solutions to unmodeled 
dynamic issues. To the best of our knowledge, this problem has 
not been addressed in the power system literature. 

II. BACKGROUND 

A. Spectrum of Power System Ambient Dynamics  
Power system ambient dynamics can be characterized by a 

time varying linear system driven by a white noise input [2]. 
The time-varying component results from the changing 
operating conditions that are brought on by changes in load, 
generation dispatch, etc, with the main assumption for 
modeling being that the system will respond within its linear 
regime. Under this assumption, it is common to model the 
system using a linear time-invariant for the period of analysis 
(~20-30 mins). However, control modes may change quickly, 
which may require to study ambient dynamics as a generalized 
time-varying linear system driven by stationary white noise 
𝑢𝑢(𝑡𝑡)~𝑁𝑁(0,1). The output 𝑥𝑥(𝑡𝑡) for such systems is, 

𝑥𝑥(𝑡𝑡) = �ℎ(𝑡𝑡, 𝜏𝜏)𝑢𝑢(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏 (1) 

where ℎ(𝑡𝑡, 𝜏𝜏) represents the time varying impulse response 
and is defined as response at time 𝑡𝑡 for impulse input at 𝑡𝑡 − 𝜏𝜏. 
Cramer’s representation of [7] of stationary process 𝑢𝑢(𝑡𝑡) gives,  

𝑥𝑥(𝑡𝑡) = �ℎ(𝑡𝑡, 𝜏𝜏)�𝑒𝑒𝑗𝑗𝑗𝑗(𝑡𝑡−𝜏𝜏)𝑑𝑑𝑑𝑑(𝜔𝜔)𝑑𝑑𝜏𝜏 = �𝑒𝑒𝑗𝑗𝑗𝑗𝑡𝑡𝐻𝐻(𝑡𝑡,𝜔𝜔)𝑑𝑑𝑑𝑑(𝜔𝜔) (2) 

where, 𝑑𝑑(𝜔𝜔) is a zero mean stochastic process with 
orthogonal increments i.e. 𝐸𝐸(𝑑𝑑𝑑𝑑(𝜔𝜔1)𝑑𝑑𝑑𝑑∗(𝜔𝜔2)) = 𝛿𝛿(𝜔𝜔1 −
𝜔𝜔2)𝑆𝑆𝑢𝑢(𝜔𝜔1)𝑑𝑑𝜔𝜔1 , 𝑆𝑆𝑢𝑢(𝜔𝜔) represents 𝑢𝑢(𝑡𝑡)′𝑠𝑠 power spectral 
density, which is equal to 1 (constant) in this case, 𝐻𝐻(𝑡𝑡,𝜔𝜔) =
∫ℎ(𝑡𝑡, 𝜏𝜏)𝑒𝑒−𝑗𝑗𝑗𝑗𝜏𝜏𝑑𝑑𝜏𝜏  and 𝐸𝐸(. ) is the expectation operator. The 
time varying spectrum/evolutionary spectrum [7] for 𝑥𝑥(𝑡𝑡), 
denoted by 𝑆𝑆(𝑡𝑡,𝜔𝜔) is then derived as |𝐻𝐻(𝑡𝑡,𝜔𝜔)|2. Here, the 
dynamic modes/oscillations of the underlying system, appear as 
peaks (local maxima) in 𝑆𝑆(𝑡𝑡,𝜔𝜔), which we are interested in 
capturing. Note that the discrete system parameters such as 
network topology are accounted for by assuming 𝑆𝑆(𝑡𝑡,𝜔𝜔) to be 
piecewise continuous in 𝑡𝑡.   

B. Time-Frequency Analysis from Measurements 
The aim of time-frequency analysis is to estimate what 

phenomenon happens (spectral characteristics) at what time in 
a signal. These operate by decomposing the measurement 
signal into several constituent components, which usually 
correspond to distinct underlying phenomena in the actual 
system. From computational viewpoint as well as the simplicity 
in implementation and analysis of the final result, of particular 
interest are linear class of techniques [8]. In these, the signal is 
characterized by inner products with a pre-assigned family of 
templates. Normally, these templates are skewed in time and 
frequency plane to distinguish between multiple phenomena at 
different times and time scales. In this work, we use STFT, 
which is defined for 𝑥𝑥(𝑡𝑡) as,  

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺{𝑥𝑥}(𝑡𝑡,𝜔𝜔) = 𝑋𝑋(𝑡𝑡,𝜔𝜔) = �𝑥𝑥(𝜏𝜏)𝑤𝑤(𝜏𝜏 − 𝑡𝑡)𝑒𝑒−𝑗𝑗𝑗𝑗𝜏𝜏𝑑𝑑𝜏𝜏 (3) 

where 𝑤𝑤(𝑡𝑡) is the window function, designed to have a 
compact support in time i.e., there exists a finite 𝑇𝑇 s.t. 

∫ 𝑤𝑤2(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑇𝑇
2

−𝑇𝑇2
≈ ∫ 𝑤𝑤2(𝑡𝑡)𝑑𝑑𝑡𝑡∞

−∞ . Finally, spectrogram is defined as 

the magnitude squared of STFT coefficients i.e., |𝑋𝑋(𝑡𝑡,𝜔𝜔)|2. 
Substituting ambient dynamics and taking expectation, 

𝐸𝐸(|𝑋𝑋(𝑡𝑡,𝜔𝜔)|2) 
= ���𝑒𝑒𝑗𝑗𝑗𝑗1(𝜏𝜏1−𝜏𝜏2)𝐻𝐻(𝜏𝜏1,𝜔𝜔1)𝐻𝐻∗(𝜏𝜏2,𝜔𝜔1)𝑤𝑤(𝜏𝜏1 − 𝑡𝑡)𝑤𝑤(𝜏𝜏2

− 𝑡𝑡)𝑒𝑒−𝑗𝑗𝜔𝜔(𝜏𝜏1−𝜏𝜏2) 𝑑𝑑𝜔𝜔1𝑑𝑑𝜏𝜏1𝑑𝑑𝜏𝜏2 

(4) 

Now, assume that 𝑇𝑇 is chosen according to how fast the 
underlying modes/spectrum change i.e., 𝐻𝐻(𝜏𝜏,𝜔𝜔) ≈ 𝐻𝐻(𝑡𝑡,𝜔𝜔) =
∀ω ∀ 𝜏𝜏 ∈ �𝑡𝑡 − 𝑇𝑇

2
, 𝑡𝑡 + 𝑇𝑇

2
�, 

𝐸𝐸(|𝑋𝑋(𝑡𝑡,𝜔𝜔)|2) ≈ �|𝐻𝐻(𝑡𝑡,𝜔𝜔1)|2|𝑊𝑊(𝜔𝜔 − 𝜔𝜔1)|2𝑑𝑑𝜔𝜔1 (5) 

Thus, spectrogram gives an estimate of the time varying 
spectrum 𝑆𝑆(𝑡𝑡,𝜔𝜔) = |𝐻𝐻(𝑡𝑡,𝜔𝜔)|2 convolved with the window 
function in frequency domain, resulting in spectral smoothing. 
Now, an increased time resolution (small 𝑇𝑇) comes at the 
expense of lowered frequency resolution according to 
uncertainty principles in time-frequency analysis, which will 
pose a challenge when dealing with very fast changing spectra. 
Note that while many other advanced techniques exist [8] for 
obtaining a better estimate, our contribution lies in detecting 
regions of interest/ peaks in the time-frequency plane and is 
independent of the specific technique for spectral estimation.  

III. PROPOSED METHODOLOGY  
In this section, we propose a methodology to discern 

oscillatory dynamics/modes in the time-frequency space. Let us 
denote the true time varying spectrum of ambient dynamics by 
𝑆𝑆(𝑡𝑡, 𝑓𝑓) and its estimate �̂�𝑆(𝑡𝑡, 𝑓𝑓), obtained from the spectrogram. 
The underlying dynamic behaviors that we wish to capture can 
be loosely characterized by a set 𝑃𝑃 of spectral peaks 𝑃𝑃 =
{(𝑡𝑡∗,𝑓𝑓∗) ∈ 𝑅𝑅2|𝜕𝜕𝑓𝑓𝑆𝑆|𝑡𝑡∗,𝑓𝑓∗ = 0,𝜕𝜕𝑓𝑓2𝑆𝑆|𝑡𝑡∗,𝑓𝑓∗ < 0}.  

A. Practical Challenges 
Identifying 𝑃𝑃 from �̂�𝑆(𝑡𝑡, 𝑓𝑓) is not straightforward in practice. 

First, the tradeoff between time and frequency resolution leads 
to problems such as the merging of closely spaced modes and 
the spreading of some modes' energy across a range of 
frequencies. For instance, modes with fast-varying frequencies 
in 0–2 Hz and 10–12 Hz regions in Fig. 8 prevents them from 
having a distinct spectral peak. Thus, the definition of 𝑃𝑃 is 
modified to now represent a set of neighborhoods with locally 
maximum spectrum values, instead of clearly distinct peaks. 
Remember that we can always post-process 𝑃𝑃 to further 
characterize its structure (e.g., we can collapse these 
neighborhoods wherever possible to a single frequency value.), 
which will be explored in future.   

Secondly, the stochastic nature of ambient dynamics will 
result in a noisy �̂�𝑆, which could either result in spectral regions 
classified as relevant dynamics or dynamic behaviors 
corresponding to poorly observed, less excited and/or well 
damped modes being lost in the noise. Fig. 1 shows one such 
low energy mode labeled “2”. Careful preprocessing is required 
to make the relevant dynamics stand out.  



 
Figure 1 Test Spectrogram, key dynamics – 1. Time varying control mode 
and harmonics, 2. Fast varying low amplitude mode 3. 6-8 Hz dynamics 4. 

Arc furnace broad band effect 

The proposed approach is comprised of three major steps: 
(i) obtaining a low variance estimate of time-frequency plot, (ii) 
pre-processing the spectrogram to enhance mode dynamics and 
finally, and (iii) detecting relatively high energy regions that 
represent time-varying dominant dynamics. A 24 hour voltage 
magnitude spectrogram from a 115 kV STATCOM shown in 
Fig. 1 is used to gain visual insight into each step of our 
approach. The STFT is computed with non-overlapping, 5-
minute Hann windows. To minimize the impact of different 
magnitude scaling on dynamics, the spectrum values are plotted 
in decibels rather than real values. We will use the subscript 𝑑𝑑𝑑𝑑 
on spectrum variables to represent the 10 log10(. ) operation. 
The colormap range is set to 2-98 percentile of these values.  

B. Low Noise Spectrum Estimate 
The previously stated spectrogram estimate from STFT 

coefficients performs badly, especially in terms of variance. It 
should be noted that this cannot be resolved by arbitrarily 
smoothing the generated spectrogram using filters because 
doing so may cause the spectral peaks to become flat. In this 
work, we use Welch’s method [3], which averages the 
periodograms obtained from shorter segments of the same data 
window, thus reducing variance at the expense of frequency 
resolution, which can be accounted for as discussed before. 

 
Figure 2 Welch Spectrogram 

 
Figure 3 Welch vs Periodogram 5 Min Window at 7 PM 

 
Figure 4 Left: Baseline removed spectrogram Right: non-flat baseline 

In this work, the Welch’s spectrogram is obtained by 
dividing each non-overlapping 5 min window into 1 min 
windows (1/5th the frequency resolution) with 50% overlap, 
thereby maintaining the same time-resolution as the STFT in 
Fig. 1. The noise suppression properties can be seen in Fig. 3 
where a column representing 5 min bock of data starting at 7 
PM of the two spectrograms is compared. Welch’s technique 
reveals the higher peaks in the 2-4 Hz range, which where were 
barely noticeable in the original spectrum. 

C. Spectrogram Preprocessing 
In real-world power grids, in addition to the oscillatory 

ambient dynamics of interest, there are many additional 
undesirable behaviors that may hinder the detection of the 
former. One such behavior results from slow trends in the 
measurements caused by changing operating conditions. While 
a lot of approaches have been proposed for detrending 
synchrophasor data [2], it is difficult to completely remove 
them in practice because the ground truth is unknown. 
Furthermore, there are non-oscillatory dynamics characterized 
by real eigen values. Both will have the effect of a non-flat 
spectral baseline, especially at lower frequencies < 1 Hz as 
shown in Fig. 4 for the 7:17-7:22 PM part of spectrum of Fig. 
2. These can occasionally interfere with the detection of 
spectral peaks and leak into the identified regions of interest. 
Step changes in operating conditions, such as changing the 
voltage setpoint in a generator or switching a capacitor, are 
another group of behaviors that may not be of relevance but 
exhibit high spectrum values and can be mistaken for dynamics 
of interest. These have a brief broadband effect, like the vertical 
stripes in Fig. 1 (labeled 4).  

By estimating and eliminating the spectral baseline of 
�̂�𝑆𝑑𝑑𝑑𝑑(𝑡𝑡, 𝑓𝑓), it is possible to solve both issues.   Here, the spectral 
baseline 𝑑𝑑(𝑡𝑡, 𝑓𝑓) can be defined as a smooth, under-
approximation of the spectrum. Note that 𝑡𝑡 here represents the 
5 min blocks being processed to obtain the spectrogram. Our 
previously proposed approach [9], which is employed in this 
work at each 𝑡𝑡, estimates 𝑑𝑑(𝑡𝑡, 𝑓𝑓) by solving the following 
optimization problem, 

𝑚𝑚𝑚𝑚𝑛𝑛𝑑𝑑(𝑡𝑡,𝑓𝑓) �𝑤𝑤(𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡,𝑓𝑓)) × 𝑒𝑒𝑒𝑒𝑒𝑒2(𝑡𝑡,𝑓𝑓)
𝑓𝑓

+ 𝜆𝜆��∇f2𝑑𝑑(𝑡𝑡, 𝑓𝑓)�
2

𝑓𝑓

 (6) 

where, the residual 𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡, 𝑓𝑓) =  �̂�𝑆𝑑𝑑𝑑𝑑(𝑡𝑡, 𝑓𝑓) − 𝑑𝑑(𝑡𝑡, 𝑓𝑓), 𝑤𝑤(𝑒𝑒𝑒𝑒𝑒𝑒) =
𝑝𝑝(𝑒𝑒𝑒𝑒𝑒𝑒 ≥ 0) + (1 − 𝑝𝑝)𝑒𝑒𝑒𝑒𝑒𝑒(< 0) and ∇f2(. ) is the double 
difference operator w.r.t. 𝑓𝑓. The parameter 𝑝𝑝 forces the baseline 
to be below the spectrum while 𝜆𝜆 penalizes curvature. A small 
value of 𝜆𝜆 runs the risk removing relevant system dynamics 
such as 6-8 Hz in Fig. 4 for the blue estimate. The results of 
baseline removal on the spectrogram of Fig. 2 are also shown 
in Fig. 4. Observe that the vertical lines (labeled 4 in Fig. 1) are 



completely removed, thereby making the relevant dynamics 
much easier to discern. 

D. Detecting Points of Interest Using Image Thresholding 
Mode dynamics at each time are characterized by local 

maxima in the spectrum. Broadly speaking, there are two ways 
of identifying these viz. using a robust peak detection technique 
such as [10] or solving the problem as an image thresholding 
problem [11]. In this work, we explore the latter owing to the 
simplicity in terms of the number of hyperparameters to tune. 
The simplest technique for binarizing photos is thresholding. 
Each pixel is compared to a corresponding threshold value to 
determine whether to keep it or discard it. Although a variety of 
thresholding methods have been created over time, none of 
them are universally applicable to all kinds of images. 
Histogram-based approaches, which take advantage of the 
distribution of pixel intensities for the provided family of 
images, are of special relevance in terms of simplicity. 
However, understanding the nature of pixel intensity (read 
𝑆𝑆𝑑𝑑𝑑𝑑(𝑡𝑡,𝜔𝜔)) histograms produced by our power system ambient 
data spectrograms is necessary to apply these techniques. To 
this end, we first define a cumulative probability measure 
𝜇𝜇(𝑑𝑑) = ∫∫ 𝐼𝐼(𝑆𝑆𝑑𝑑𝑑𝑑(𝑡𝑡,𝑗𝑗)≤𝑧𝑧)𝑑𝑑𝑡𝑡𝑑𝑑𝑗𝑗

∫ ∫𝑑𝑑𝑡𝑡𝑑𝑑𝑗𝑗
 where 𝐼𝐼(. ) is an indicator function. 

Simply put, 𝜇𝜇(𝑑𝑑) refers to the number of (𝑡𝑡,𝜔𝜔) pairs for which 
𝑆𝑆𝑑𝑑𝑑𝑑(𝑡𝑡,𝜔𝜔) ≤ 𝑑𝑑. The histogram then gives the empirical 𝑑𝑑𝑑𝑑

𝑑𝑑𝑧𝑧
. 

Let us first understand 𝜇𝜇(𝑑𝑑) for some relevant stationary 
processes. For i.i.d 𝑥𝑥(𝑡𝑡)~𝑁𝑁(0,𝜎𝜎2), 𝑆𝑆𝑑𝑑𝑑𝑑(𝜔𝜔) = 20 log10 𝜎𝜎 =
𝜎𝜎𝑑𝑑𝑑𝑑 and therefore, 𝜇𝜇(𝑑𝑑) = 1∀𝑑𝑑 ≥ 𝜎𝜎𝑑𝑑𝑑𝑑=> 𝑑𝑑𝑑𝑑

𝑑𝑑𝑧𝑧
= 𝛿𝛿(𝑑𝑑 − 𝜎𝜎𝑑𝑑𝑑𝑑) i.e. 

a unimodal distribution (one peak).  Next, consider 𝑁𝑁 ≪ ∫𝑑𝑑𝜔𝜔 
number of undamped sinusoids with measurements noise 
𝑛𝑛(𝑡𝑡)~𝑁𝑁(0,𝜎𝜎2) i.e., 𝑥𝑥(𝑡𝑡) = ∑ 𝐴𝐴𝑖𝑖𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝑖𝑖𝑡𝑡 + 𝜙𝜙𝑖𝑖)𝑖𝑖=1:𝑁𝑁 + 𝑛𝑛(𝑡𝑡). 
𝑆𝑆𝑑𝑑𝑑𝑑(𝜔𝜔) = 10 log10(∑ 𝐴𝐴𝑖𝑖2𝛿𝛿(𝜔𝜔 −𝜔𝜔𝑖𝑖)𝑖𝑖=1:𝑁𝑁 + 𝜎𝜎2). 𝜇𝜇(𝑑𝑑) ≈
1 ∀𝑑𝑑 ≥ 𝜎𝜎𝑑𝑑𝑑𝑑 i.e., approximately unimodal. Here, the histogram 
peak is at 𝜎𝜎𝑑𝑑𝑑𝑑 while the oscillatory portion 𝐴𝐴𝑖𝑖′𝑠𝑠 are towards the 
right tail of the distribution since 𝑆𝑆𝑑𝑑𝑑𝑑(𝜔𝜔𝑖𝑖) > 𝜎𝜎𝑑𝑑𝑑𝑑. Finally, for a 
linear system with a transfer function 𝐻𝐻(𝜔𝜔) driven by a white 
noise input with variance 𝜎𝜎2, 𝑆𝑆𝑑𝑑𝑑𝑑(𝜔𝜔) = 20log10|𝐻𝐻(𝜔𝜔)| +
𝜎𝜎𝑑𝑑𝑑𝑑. The resulting distribution tends to be unimodal for finite 
number of observable poles, which is true in practice. In this 
case, the histogram peak/mode represents the driving noise 
spectrum 𝜎𝜎𝑑𝑑𝑑𝑑 + 𝑘𝑘, where 𝑘𝑘 is a constant. To comprehend how 
these findings apply to spectrograms produced by non-
stationary ambient dynamics, it is important to note that the 
pixel distribution will be unimodal if the relevant dynamics' 
(high spectrum values) coverage area is much less than that of 
the background. This holds true since time-frequency analysis 
operates by choosing an appropriate template/basis to obtain a 
sparse representation of the signal. Note that baseline removal 
has an added advantage of aligning the noise floors across 
various timeframes, thereby further assuring unimodality.   

Finally, we adopt one of the most popular techniques to 
threshold unimodal images as proposed by Rosin [11]. It works 
by drawing a straight line connecting the peak of the histogram 
to the first empty bin, then locating the point on the histogram 
that is furthest from this line to serve as the threshold, as 
illustrated in Fig. 5 by black dotted line. Fig. 6 shows the results 
for thresholding applied to Fig. 4 based on its pixel distribution 

shown in Fig. 5. The suggested framework effectively captures 
all dynamic behaviors with hardly any false positives. Despite 
these positive results, it's important to understand the method's 
underlying assumptions. First, it assumes that the dominant 
class of pixels (histogram peak), which in our instance 
represents the noise floor as previously described, has a lower 
intensity than the pixels we want to detect. Second, there is a 
discernible corner at the major histogram peak. Now, any 
significant dynamics that are not sparsely represented in the 
spectrogram, typically because of the technique's subpar 
frequency resolution, may potentially interfere with that. A fast 
varying dynamics shown in Fig. 9 results in the 0-2 Hz 
obfuscated region in Fig. 8 and Fig. 10, which adds the red 
highlighted region in the histograms in Fig. 7. These can easily 
be dealt with by an improved time-frequency analysis technique 
or through a more aggressive baseline removal (lower 𝜆𝜆). 

 
Figure 5 Rosin's Image Threshold for Spectrogram 

 
Figure 6 Binarized Spectrogram 

IV. RESULTS 
To contextualize the proposed methodology, we provide a 

two more examples from the Dominion Energy’s real-world 
synchrophasor data in Fig. 8 and Fig. 10. First, we discuss their 
common dynamics. Firstly, there is an 8 Hz mode, which is only 
active from sunrise to sunset, found to be from a transmission 
level solar plant [12]. Analysis of point of wave data showed it 
to be at 22 Hz, showing up at 8 Hz due to aliasing. The region 
in 0-2 Hz does not have a clear frequency resolution as 
mentioned before due to low magnitude oscillations with fast 
varying fundamental frequency, as shown in Fig. 9. The 
broadband effect of arc furnace response is also common to 
both. Now, let us focus on their unique characteristics.   

First case shown in Fig. 8 is that of a voltage magnitude of 
a data center load region. It has a ~ 14 Hz oscillation from 2-4 
AM resulting. Besides that, there are repeating and persistent 
peaks at 1 Hz and its multiples. These are a result of a periodic, 
once a second voltage sag [13]. Another, difficult to 
characterize dynamics are visible as a blurred region in 10-12 
Hz range. Further analysis revealed a once a second ringdown 
of a 10.5-11 Hz mode.  Finally, starting at around 16:00 Hrs, 
the spectral baseline shifts up, likely due to some local device 



connecting or disconnecting. The binarized spectrogram 
obtained through the proposed approach can capture every key 
feature of this spectrogram. The second case is at 115 kV side 
of a distribution substation. A defining feature of its 
spectrogram (in Fig. 10) is an oscillation with large variations 
in frequency. Analyzing more days showed this pattern to be 
random, later traced to a manufacturing plant. In our 
experience, such behaviors are commonly observable whenever 
power electronic drives are involved. Furthermore, there are 
very low energy, easy to miss periodic components such as the 
one labeled 5. The proposed approach is again able to capture 
all the relevant dynamics, even the lowest energy ones, while 
being robust to estimation noise. 

 
Figure 7 Spectrum Distribution 

 

 
Figure 8 Data Center – 1. forced oscillation 2. intermittent ringdown 

dynamics 3. solar dynamics 4. periodic voltage sag 5. fast varying mode  

  
Figure 9 Time Varying 0-2 Hz Mode 

V. DISCUSSION AND FUTURE WORK 
A methodology for automatically capturing essential 

spectrogram regions that correlate to relevant power system 
dynamic behavior is proposed in this work. Future research will 
examine adding more structure to the identified regions such as 
time-frequency traces, harmonic coupling, etc. 

 

 
Figure 10 Industrial Load – 1. industrial motor drive 2. fast varying mode 3. 

solar mode 4. arc furnace 5. low energy undamped oscillation  
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