
Guidelines and Use Cases for Power Systems Dynamic Modeling
and Model Verification using Modelica and OpenIPSL

Giuseppe Laera1 Luigi Vanfretti1 Marcelo de Castro Fernandes1 Sergio A. Dorado-Rojas1

Fernando Fachini1 Chetan Mishra2 Kevin D. Jones2 R. Matthew Gardner2 Hubertus
Tummescheit3 Stéphane Velut3 Ricardo J. Galarza4

1ECSE, Rensselaer Polytechnic Institute, Troy (NY), USA,
{laerag,vanfrl,decasm3,dorads,fachif}@rpi.edu

2Dominion Energy, Richmond (VA), USA,
{chetan.mishra,kevin.d.jones,matthew.gardner}@dominionenergy.com

3Modelon, Glastonbury (CT), USA & Lund, Sweden,
{hubertus.tummescheit,stephane.velut}@modelon.com

4PSM Consulting, Inc., Guilderland (NY), USA, rgalarza@psm-consulting.com

Abstract
This paper offers systematic guidelines for modeling
power systems components in the phasor time-domain us-
ing the Modelica language and their verification. It aims
to share the authors’ experience in power system model-
ing with Modelica and the approaches used to meet the
high expectations of the power industry w.r.t. to the mod-
els’ simulation results. While the modeling guidelines
are generic, the verification procedure includes the valida-
tion against a domain-specific commercial software tool
called PSS®E that is the de facto tool used for power sys-
tem transmission planning and analysis. To formalize the
proposed approaches, a schematic description of the pro-
cesses of model implementation and validation is elicited
through flowcharts. Challenging use cases are presented to
point out some of the major difficulties that can be faced
in the modeling steps because of unclear or missing doc-
umentation of the models’ dynamics in the reference tool.
Finally, unique features of the Modelica language that al-
low for power system modeling and verification unavail-
able in traditional tools are illustrated.
Keywords: Modelica, OpenIPSL, PSS®E, Dymola, Mod-
elon Impact, SystemModeler, OpenModelica

1 Introduction
This paper aims to formalize the process of power sys-
tems dynamic modeling and model verification using the
Modelica language. The mail goal is to provide, for
the first time, a formal description of the steps neces-
sary for complete re-implementation of power systems
components of closed-source commercial software like
PSS®E in the Modelica language. A generic method-
ology for re-implementing existing models from differ-
ent software tools and domains can be derived from the
proposed steps. Key use cases that have been challeng-
ing to implement and verify are presented to highlight
the value of the proposed approaches for model imple-

mentation and validation. Moreover, it is shown how
the self-documenting nature of object-oriented equation-
based modeling offered by Modelica provides unique ad-
vantages for human and computer readable model imple-
mentation, as compared to existing modeling tools that do
not always offer transparency regarding the dynamic be-
havior implemented in their tools. In this collection of ex-
amples, models for the OpenIPSL library1 have been con-
sidered and validated against PSS®E. Finally, we empha-
size the value of the open-access standardized Modelica
specification as a key enabler of open-access standards-
based interoperability (Gómez et al. 2020), showing how
the newly implemented models can be re-utilized in multi-
ple Modelica-standard-compliant tools without a need for
re-implementation.
The reminder of this paper is organized in four sections:
Introduction describing some motivations and contribu-
tions, Guidelines formalizing in flowcharts the process of
models implementation and validation, Use Cases illus-
trating the proposed approaches with examples of imple-
mented models and Future Work and Conclusions with
some final comments.

1.1 Motivations
Modeling of power systems has always been fundamen-
tal for the design, operation and planning of electric net-
works. To help all the players of the electric power sys-
tems sector to perform their studies and analyses, over
the last decades several software tools have been devel-
oped. The de facto tools used by industry include propri-
etary software like PSS®E, PSCAD, EMTP-RV, Power-
Factory, etc., that require the user to become an expert of
their functionalities and poses intimate tool-and-domain
specific knowledge to be productive. In addition, each
tool has its own way of defining the data used to char-
acterize their discretized model (i.e. “data format”) mak-

1https://github.com/OpenIPSL/OpenIPSL

ing it inflexible when attempting to share models and data
between tools (Hongesombut et al. 2005). Another draw-
back is represented by the inconsistency of dynamic simu-
lation results between different simulation platforms. This
is due to the need to re-implement models in each simu-
lation platform, which has tremendous costs. As reported
by the Australian Energy Market Commission 2, the order
of magnitude costs for model implementation in each indi-
vidual tool can reach almost $500,000.00 in the case of ex-
isting components with power electronic interfaces, such
as wind and solar, thus making it challenging to study the
effects of the integration of renewable energy resources.
Therefore, the idea to remove ambiguity in power systems
modeling was suggested in (Vanfretti et al. 2013) by us-
ing the object-oriented equation-based modeling language
Modelica (Tiller 2001). Following this innovative idea a
power systems library called OpenIPSL has been devel-
oped (Baudette et al. 2018). The library continues to be
maintained and expanded based on the concepts of regres-
sion testing and Continuous Integration (CI) (Rabuzin,
Baudette, and Vanfretti 2017), that allow the models to
be verified against a traditional commercial software tool
like PSS®E giving the user of the power systems com-
munity the confidence about its reliability for performing
dynamic simulations and studies.

1.2 Previous Works

The proposed process for testing newly implemented
models in Modelica and their verification make use of a
Single Machine Infinite Bus (SMIB) equivalent system
model (Zhang et al. 2015). This model is typically used
to test the implementation of new models and designs of
control strategies, which has been emphasized in the liter-
ature (Chaudhary and Singh 2014; Kumar 2018; Jayapal
and Mendiratta 2010; Wang et al. 2015). This small net-
work is useful in describing the key behavior of a power
plant within a power system for most practical purposes. It
offers a good framework for studying basic power systems
stability concepts and the application of different control
techniques to understand their effects on the network.

Regarding the development of new open-source soft-
ware for power systems studies several examples based
on different languages have been reported in the litera-
ture. During the 1990’s and 2000’s, MATLAB saw an
exponential adoption in academia, resulting in a num-
ber of power system simulation software, such as MAT-
POWER (Zimmerman, Murillo-Sánchez, and Thomas
2010), focusing on steady state computations and the
Power System Analysis Toolbox that offers an array of
analysis types, both steady state or dynamic (F. Mi-
lano 2005). With the rise of Python, a new generation
of Python-based tools for modeling, analysis and opti-
mization of electric power systems have been developed.
Among these, pandapower (Thurner et al. 2018) which

2Online: https://tinyurl.com/aemc-rule2017

aids with steady state computations. GridCal3 is another
platform for power systems research and simulation based
on Python, again, focusing on steady state computations.
Meanwhile, another Python-based tool for power system
simulation is ANDES (Cui, Li, and Tomsovic 2020). It
is an open-source Python library for power system mod-
eling, computation, analysis, and control and it uses a
hybrid symbolic-numeric framework for numerical anal-
ysis. What these software have in common is that they
define both their models in discretized form, interlinking
a specific numerical solver (e.g. Newton solver for steady
state analysis or trapezoidal integration for dynamic sim-
ulation) during implementation.

In recent years, the Julia language has been gain-
ing popularity by the modeling and simulation commu-
nity (Elmqvist, Henningsson, and Otter 2016). Nat-
urally, Julia packages for power system modeling and
simulation of power systems have also emerged, with
PowerSimulationsDynamics.jl for power system dynam-
ics and for power systems operations called PowerSim-
ulations.jl (Henriquez-Auba et al. 2021). While these
packages do require the user to specify their models in
discretized form and target a specific solver, as in the
case of the MATLAB and Python-based tools described
above, they do require the user to specify models with
pre-defined data structures and the resulting models can
only be used with the solvers available within the Julia
ecosystem (Henriquez-Auba et al. 2021), not to mention
the models have not been validated against any other ref-
erence software tool.

Regardless, as each of the afromentioned tools define
their own approach for model implementation, the means
to define parameter data and support only specific solvers,
the results obtained will be different.

In contrast, Modelica facilitates the re-use of models
among different Modelica-compliant tools by defining in-
teroperable libraries, with the models of each component
implemented separately and without the need of a nu-
merical solver. There are several power system analy-
sis libraries based on Modelica, (Winkler 2017) gives an
overview of all available open-source libraries for power
system dynamic analysis and highlights the advantages
and disadvantages of each library. Note that most li-
braries listed are for positive sequence phasor-based dy-
namic simulation. In addition, it is worth mentioning
MSEMT: an advanced Modelica library for power system
electromagnetic transient studies (Masoom et al. 2021).
This paper enhances and expands the OpenIPSL library,
which focuses on power system models in the phasor-
domain that have been validated against PSS®E. In that
regard, some recent examples of models validation for re-
newable energy sources and battery energy storage sys-
tems are given in (Fachini et al. 2021).

3https://github.com/SanPen/GridCal

https://tinyurl.com/aemc-rule2017
https://github.com/SanPen/GridCal

1.3 Contributions
The use of the object-oriented equation-based modeling
language, Modelica, allows for unambiguous power sys-
tems modeling. The flexibility of the language offers
options to model a component, either by using typical
block diagram representations or by defining mathemati-
cal equations that describe its dynamic behavior. The clas-
sical approach to validate a component’s dynamics is by
creating a small reference power network model, like an
SMIB as used herein. As shown in Section 3, using the
Modelica language it is also possible to validate each in-
dividual sub-system component within a model by using
the reference tool’s output signals and connecting them to
the inputs of the newly implemented model. This simpli-
fies the modeling process as it allows to isolate the specific
individual part of the model that is being implemented in
Modelica, instead of having to use it in a small reference
power network as it is necessary for the traditional soft-
ware tools to perform simulations.

Explicitly, the contributions of this paper are as fol-
lows:

• To formalize the model implementation approach used
for component model development in Modelica to
meet the requirements of the power industry.

• To formalize the software-to-software model valida-
tion process for Modelica model validation against ref-
erence domain-specific tools, illustrated with the de
facto standard in the power industry, PSS®E software.

• To propose an approach to validate sub-system model
components without the need to define entire system
models in Modelica by replaying the reference tool
simulation results into the Modelica model.

• To illustrate the proposed approach with challenging
implementation and validation use cases.

• Synthesizing the know-how described above into
guidelines which fully elicit the model implementa-
tion and validation process using flowcharts.

0.0 MW 0.0 MW

0.0 Mvar 0.0 Mvar

pwLine

0.0 MW 0.0 MW

0.0 Mvar 0.0 Mvar

pwLine3

0.0 MW 0.0 MW

0.0 Mvar 0.0 Mvar

pwLine4

INF

5e-05 MW+j1e-05 MVA

constantLoad

p
w

F
a
u
lt

GEN1 LOAD GEN2

FAULT

0.0 MW 0.0 MW

0.0 Mvar 0.0 Mvar

pwLine1 pwLine2

SHUNT

SPEED_HP

PMECH_HP

PMECH_LP

IEEEG1

SPEED

ISORCE

ETERM

ANGLE

PMECH0

PELEC

EFD0

XADIFD0

PMECH

EFD

GENROE

cte1

k=0

const3

k=-Modelica.Constants.inf
const4

k=Modelica.Constants.inf

VUELVOEL

ECOMP

VOTHSG

EFD0

EFD

XADIFD

VOTHSG2

VT
VUEL2VUEL3

ESST1A
V_S1

V_S2

VOTHSG

PSS2A

Constant network configuration

Component or subsystem for

implementation

Figure 1. SMIB template in Modelica.

2 Guidelines
In this section the approach of modeling power systems
components in Modelica is described.

2.1 Template Models for Modeling and Vali-
dation

A basic example of electric power system network is the
SMIB. Its block diagram in Modelica is given in Figure
1. This system is used to model a power plant with its
controls connected to the rest of the grid through trans-
mission lines and substations represented by buses. This
small network also defines the model to standardize the
testing of different device models implemented in Model-
ica and having PSS®E models as reference.

In Figure 1, in the red block, a complete power plant
is modeled with a generator, connected to bus GEN1, and
its controls. The grid is represented by the generator con-
nected to bus GEN2. Between GEN1 and GEN2 other
power systems components are considered like lines, a
load and a ground fault. The bus SHUNT also allows to
connect other components to this small network. Depend-
ing on the type of power systems component to model, the
configuration of the generating unit (red block) connected
to bus GEN1 varies whereas the configuration of the rest
of the network (green block) remains the same.

In the sequel, components in the red block of Figure
1 will be implemented and validated. Note that for all the
tests, the remainder of the power system in the green block
of Figure 1 remains unchanged.

2.2 Model Implementation Guide
The modeling implementation process is defined in Fig-
ures 2 and 3. While the approach is generic, the process
depicted considers PSS®E the reference software tool. In
Figure 2 the process of implementation starts with the as-
signment of a model to implement (a). The identification
of available technical information (b) about the model is
necessary to the model implementation in Modelica. If
the PSS®E manuals do not present sufficient information
about the model’s dynamics then it is necessary to find
additional literature (c) that can help understanding how
the models were implemented within the reference tool.
Once the documents describing the model have been iden-
tified, collected and analyzed by finding the block dia-
grams and/or the equations of the model (d), it is possible
to determine if the building blocks of the model are al-
ready present in the OpenIPSL library (e). It might be re-
quired to implement missing blocks or functions (f) before
building the entire component model with the appropriate
initialization of its sub-blocks (g). To assess the validity
of the model to implement, a small test network (SMIB)
is used in both Modelica and the reference software, and
generating the reference results from PSS®E (h). That
means the SMIB network with the target model needs to
be assembled both in PSS®E (i) and Modelica (l). After
that the software-to-software validation can be performed

a

b
c

d

e f

g

h
i

l

m n

Figure 2. Flowchart of the process of implementation of power
systems models.

31 2 4

5678

9

10

11 12

13

Figure 3. Flowchart of the process of software-to-software val-
idation of power systems models.

(m) following the model validation guide (n) (see Figure
3).

2.3 Model Validation Guide
The process of model validation is defined through the
flowchart in Figure 3 and it comes after the process of
Figure 2. After assembling the SMIB in PSS®E it is nec-
essary to obtain the steady state computation results of a
“power flow” (1), export them (2) and provide them as
initial guess values to solve the initialization problem of
the corresponding SMIB in the Modelica compliant soft-
ware tool (3). The OpenIPSL library used in this vali-
dation process describes the dynamic behavior of power
system components therefore it relies on external tools for
the power flow calculations necessary for initializing the
models. The import of the power flow results can be made
manually or automatically (Dorado-Rojas et al. 2021), the
latter increasing numerical accuracy and reducing human
errors. Next, the scenario for the dynamic simulation in
both tools can be defined (4) and a dynamic simulation of
the SMIB in both softwares can be run (5). Once the re-
sults are generated the quantities to compare can be chosen
(6) and exported in the appropriate format (7) to be used
in another tool, for example CSV Compare4 (8). Tools
like CSV Compare allow to quantify the discrepancies be-
tween the simulation software tools after defining an ac-
ceptable tolerance level (see Figure 4). If the errors be-
tween the quantities to compare are within the tolerance
band (9) then the validation is complete (10). If the er-

4https://github.com/modelica-tools/csv-compare

Figure 4. Example of the use of the CSV Compare tool.

rors are bigger than the defined tolerance then more de-
bugging (11) of the model is required. A better insight of
the model dynamics can be obtained by comparing sub-
component inputs, outputs and states of the implemented
model (an example is given in Section 3) with the analo-
gous signals from the SMIB in PSS®E (12). The iterative
process continues until the difference between signals is
lower than the tolerance (13), meaning that the validation
is completed. This process can be part of a continuous
integration and regression methodology, such as the one
described in (Baudette et al. 2018).

3 Use Cases
In this section some key use cases of the implementation
of power system components are described following the
steps in Section 2. The verification illustrated through the
plots of some quantities includes a software-to-software
validation between PSS®E and different Modelica com-
pliant platforms.

3.1 Power System Stabilizer PSS2A model
3.1.1 Implementation
An example of the difficulties faced when implementing
a standard power system model like those of power sys-
tem stabilizers (PSSs) PSS2A and PSS2B is given in this
section. The reference software tool PSS®E comes with
several manuals to help understanding the implementation
and behavior of the different components present in its li-
braries. In some cases, like for the aforementioned PSSs
models, the documentation is insufficient and not help-
ful to understand the behavior of one of the blocks of the
models. In particular, this block is the ramp tracking filter
highlighted in Figures 5 and 6.

An initial implementation of the ramp tracking filter in
Modelica revealed to be not accurate compared to PSS®E
implementation. This result led to additional investiga-
tions about the ramp tracking filter block. Because the
PSS®E documentation does not offer more details, then
the idea of analysing the continuous time trajectories of
the states of this block was used. This idea was derived

Figure 5. Block diagram of PSS2A from PSS®E manual
(Siemens Industry 2013).

Figure 6. Block diagram of PSS2B from PSS®E manual
(Siemens Industry 2013).

considering the available information, that needs to be ap-
propriately selected, included in the simulation results of
a SMIB test system in PSS®E with one of the PSSs. So
from PSS®E it is possible to analyze the dynamics of the
ramp tracking filter block through its input, output and
states. A visual illustration of the implemented corrections
when the filter model was debugged is given in Figure 7.

Figure 7. Original and new block diagram representation of the
ramp tracking filter for the Modelica implementation.

The Modelica code for the ramp tracking filter model
is given in Listing 1. With this kind of implementation
several features of the Modelica language have been used.
The language is object-oriented and, in this case, it allows
for the creation of arrays of transfer functions to build
the model. This implementation is transparent and self-
documented without leaving any uncertainty about the dy-
namics of the component as opposed to the de facto stan-
dard proprietary tools of the power systems domain that
are not always well documented, or as in this case, the
documentation of the software was erroneous. In addition
to that, the level of abstraction and portability with the
Modelica language is superior.

1 model R a m p T r a c k i n g F i l t e r "Ramp− t r a c k i n g f i l t e r "
2 ex tends Model ica . B locks . I n t e r f a c e s . SISO ;
3 import Model ica . B locks . C o n t i n u o u s ;
4 p a r a m e t e r Rea l T_1 ;
5 p a r a m e t e r Rea l T_2 ;
6 p a r a m e t e r I n t e g e r M = 5 " >=0 , M*N<=8 " ;

7 p a r a m e t e r I n t e g e r N = 1 " >=0 , M*N<=8 " ;
8 p a r a m e t e r Rea l y _ s t a r t = 0 " Outpu t s t a r t v a l u e " ;
9 f i n a l p a r a m e t e r Boolean by pa s s = i f M == 0 or N == 0 then t r u e

e l s e f a l s e " Boolean p a r a m e t e r " a n n o t a t i o n (E v a l u a t e =
t r u e) ;

10 C o n t i n u o u s . T r a n s f e r F u n c t i o n TF1 [M] (b= f i l l ({ 1 } ,M) , a= f i l l ({ T_2
, 1 } ,M) , each y _ s t a r t = y _ s t a r t) i f by pa s s == f a l s e "
C o n d i t i o n a l component " ;

11 C o n t i n u o u s . T r a n s f e r F u n c t i o n TF2 [N] (b= f i l l ({ T_1 , 1 } ,N) , a= f i l l ({
T_2 , 1 } ,N) , each y _ s t a r t = y _ s t a r t) i f by pa s s == f a l s e "
C o n d i t i o n a l component " ;

12 equat ion
13 i f M == 0 or N == 0 then
14 u = y ;
15 e l s e i f M == 1 then
16 c o n n e c t (u , TF2 [1] . u) ;
17 f o r i in 1 :N−1 loop
18 c o n n e c t (TF2 [i] . y , TF2 [i + 1] . u) ;
19 end f o r ;
20 c o n n e c t (TF2 [N] . y , TF1 [1] . u) ;
21 c o n n e c t (TF1 [1] . y , y) ;
22 e l s e i f N == 1 then
23 c o n n e c t (u , TF2 [1] . u) ;
24 c o n n e c t (TF2 [1] . y , TF1 [1] . u) ;
25 f o r i in 1 :M−2 loop
26 c o n n e c t (TF1 [i] . y , TF1 [i + 1] . u) ;
27 end f o r ;
28 c o n n e c t (TF1 [M− 1] . y , TF1 [M] . u) ;
29 c o n n e c t (TF1 [M] . y , y) ;
30 e l s e i f M == 1 and N ==1 then
31 c o n n e c t (u , TF2 [1] . u) ;
32 c o n n e c t (TF2 [1] . y , TF1 [1] . u) ;
33 c o n n e c t (TF1 [1] . y , y) ;
34 e l s e
35 c o n n e c t (u , TF2 [1] . u) ;
36 f o r i in 1 :N−1 loop
37 c o n n e c t (TF2 [i] . y , TF2 [i + 1] . u) ;
38 end f o r ;
39 c o n n e c t (TF2 [N] . y , TF1 [1] . u) ;
40 f o r i in 1 :M−2 loop
41 c o n n e c t (TF1 [i] . y , TF1 [i + 1] . u) ;
42 end f o r ;
43 c o n n e c t (TF1 [M− 1] . y , TF1 [M] . u) ;
44 c o n n e c t (TF1 [M] . y , y) ;
45 end i f ;
46 end R a m p T r a c k i n g F i l t e r ;

Listing 1. Modelica code for Ramp Tracking Filter model

The implementation of the ramp tracking filter has been
tested first with the component alone as in the system of
Figure 8. A ramp signal has been applied as input and the
following parameters: T1 = 0.5, T2 = 0.1, M = 5, N = 1
for the filter have been used. The choice of the parame-
ters of the ramp tracking filter has been derived from the
reference example of Figure 11. By varying those param-
eters it is possible to obtain the desired ramp tracking be-
havior (Bérubé and Hajagos 2007; Berube, Hajagos, and
Beaulieu 1999).

The results of the test in Figure 8 are given in Figure 9.

3.1.2 Validation
The new implementation of the ramp tracking filter has
been introduced in the PSS2A component model. The
Modelica model of PSS2A corresponding to the one in
Figure 5 is given in Figure 10.

Original_RampTrackingFilter

1+sT
(1+sT)

1

2
M

N

Ramp

duration=2 s

New_RampTrackingFilter

1+sT
(1+sT)

1

2
M

N

Figure 8. Ramp tracking filter test with the original and final
version (see Figure 7).

Figure 9. Results of the ramp tracking filter test: reference ramp
signal (red), original Modelica implementation of ramp tracking
filter (blue) and final new implementation of ramp tracking filter
(black) (see Figure 7).

Leadlag1

1+sT

1+sT
K

1

2

Leadlag2

1+sT

1+sT
K

1

2

SimpleLag1

K

1 + Ts

SimpleLag2

K

1 + Ts

add

+
+1

+K_S3

add1

+
+1

-1

k=K_S1

gain limiter

uMax=V_STMAX

rampTrackingFilter

1+sT
(1+sT)

1

2
M

N

derivativeLag

Ks

1+sT

derivativeLag1

Ks

1+sT

derivativeLag2

Ks

1+sT

derivativeLag3

Ks

1+sT

V_S2

V_S1

VOTHSG

Figure 10. Block diagram of PSS2A in Modelica.

Figure 11. SMIB test system for PSS2A in PSS®E.

pwLine

pwLine3 pwLine4

INF

50 MW+j10 MVA

constantLoad

p
w

F
a
u
lt

GEN1 LOAD GEN2

FAULT

pwLine1 pwLine2

SHUNT

SPEED

ISORCE

ETERM

ANGLE

PMECH0

PELEC

EFD0

XADIFD0

PMECH

EFD

GENROE

zero

k=0

VUELVOEL

ECOMP

VOTHSG

EFD0

EFD

XADIFD

VOTHSG2

VT
VUEL2VUEL3

ESST1A

minusInf

k=-Modelica.Constants.inf

plusInf

k=Modelica.Constants.inf

V_S1

V_S2

VOTHSG

PSS2A

Figure 12. SMIB test system for PSS2A in Modelica.

Figure 13. Results comparison between the Modelica SMIB
with the original (see Figure 7) and final implementation (see
Listing 1) of the ramp tracking filter and the SMIB from PSS®E.

Figure 14. Generator terminal voltage at bus GEN1 of the sys-
tem in Figure 12.

The component PSS2A has then been tested in a small
network like a SMIB. The PSS®E benchmark system is
illustrated in Figure 11.

The corresponding SMIB implementation in Modelica
is given in Figure 12.

The tested scenario for the SMIB consists of a 3 phase
fault to ground applied at bus FAULT at t = 2s for 0.15s.
The results are plotted in Figure 13.

A multi-platform software-to-software validation of
PSS2A using the same SMIB system in Figure 12 with
the same scenario is given in Figures 14, 15, 16 and 17.
The simulations in the different tools have been performed
with the same tolerance (1e-06) and the same output inter-
val length (0.001s).

Another feature of the Modelica language is the
possibility to implement models in the traditional way
using block diagrams, like PSS2A, or with coding, like
the ramp tracking filter. The graphic layer and the text
layer of a model are linked to each other without the need
to work on both separately like in the standard software
tools, which is illustrated next.

Figure 15. PSS2A output of the system in Figure 12.

Figure 16. Active Power of the generator at bus GEN1 of the
system in Figure 12.

3.2 IEEE 421.5 2005 DC4B Excitation System
model

3.2.1 Implementation

Another example of model implementation is the exciter
model DC4B. In Figure 18 the block diagram of the com-
ponent from a PSS®E manual is given.

The PID with non-windup limits included in the model
in Figure 18 is represented in Figure 19.

The challenge of the implementation of this component
was represented by the integrator block inside the PID
block. From (Murad and Federico Milano 2019) it is clear
that for the same component, like a PI, there can be dif-
ferent implementations. In our case, to find the right rep-
resentation of the dynamics of the PID block it has been
necessary to check the state of the integrator. The interpre-
tation has been facilitated by observing the output of the
PID block together with the state of the integrator of the
PID during a dynamic simulation in PSS®E of the SMIB
including the DC4B model. The considered scenario is a
3-phase fault applied at bus FAULT at t = 2s for 0.15s.
The corresponding SMIB in Modelica is given in Figure
20. The time trajectories of the PID output and its in-
tegrator state from PSS®E for the bus fault scenario are
illustrated in Figure 21.

From Figure 21 it is possible to see that when the out-
put of the PID reaches its limits the state of the integrator
freezes to avoid windup effects (the so called conditional
integrator). This observation led to the Modelica imple-

Figure 17. Speed Deviation of the generator at bus GEN1 of the
system in Figure 12.

Figure 18. Block diagram of DC4B from PSS®E manual
(Siemens Industry 2013).

mentation of the PID with non-windup limits as in Figure
22.

The Modelica text layer of the model in Figure 22 ex-
plains the behavior of the integrator of the PID (see Listing
2). To make the code more easily readable, in Listing 2 all
the annotations, the lines indicating the blocks and addi-
tional parameters for the initialization of the model have
been removed.

1 model PID_No_Windup
2 import Model ica . U n i t s . SI ;
3 p a r a m e t e r SI . P e r U n i t K_P " V o l t a g e r e g u l a t o r p r o p o r t i o n a l g a i n

(pu) " ;
4 p a r a m e t e r SI . TimeAging K_I " V o l t a g e r e g u l a t o r i n t e g r a l g a i n (

pu) " ;
5 p a r a m e t e r SI . P e r U n i t K_D " V o l t a g e r e g u l a t o r d e r i v a t i v e g a i n (

pu) " ;
6 p a r a m e t e r SI . Time T_D " V o l t a g e r e g u l a t o r d e r i v a t i v e c h a n n e l

t ime c o n s t a n t (s e c) " ;
7 p a r a m e t e r SI . P e r U n i t V_RMAX "Maximum r e g u l a t o r o u t p u t (pu) " ;
8 p a r a m e t e r SI . P e r U n i t V_RMIN "Minimum r e g u l a t o r o u t p u t (pu) " ;
9 equat ion

10 r e s e t _ s w i t c h . u2 =

Figure 19. Block diagram of PID with non-windup limits from
PSS®E manual (Siemens Industry 2013).

pwLine

pwLine3 pwLine4

INF

50 MW+j10 MVA

constantLoad

p
w

F
a
u
lt

GEN1 LOAD GEN2

FAULT

pwLine1 pwLine2

SHUNT

SPEED

ISORCE

ETERM

ANGLE

PMECH0

PELEC

EFD0

XADIFD0

PMECH

EFD

GENROU

VUELVOEL

ECOMP

VOTHSG

EFD0

EFD

XADIFD
VT

DC4B

const

k=0

Figure 20. SMIB with DC4B in Modelica.

Figure 21. Plot of the output of the PID and the state of its
integrator from a bus fault simulation in PSS®E.

integral

I

k=K_I

k=K_P

proportional

k=K_D/T_D

gain1

add3_1

+1

+1

+1

+

add

+
+1

-1

derivative

I

k=1k=1/T_D

gain2

limiter

uMax=V_RMAX

reset_switch
0.0

realExpression

u

y

Figure 22. PID with non-windup limits implemented in Model-
ica.

VoltageReference

k=V_REF

DiffV

+
+1

-1

Rotating Exciter

I_C V_E

Limited
TransducerDelay

K

1 + Ts

Vpss_Add

+
+1

+1

add3_1

+1

+1

-1

+

derivativeLag

DT1

k=K_F

product1

LV
GateHV

Gate

s
w

it
c
h
_
V

U
E

L

1 2

s
w

it
c
h
_
V

O
E

L

1 2

V
U

E
L
_
V

O
E

L
_
a
d
d

+
+

1

+
1

k
=

V
_
R

M
IN

g
a
in

k
=

V
_
R

M
A

X

g
a
in

1

pID_No_Windup

first_Order_Lag_Non_Windup

V
U

E
L

V
O

E
L

EFD

EFD0

VOTHSG

ECOMP

X
A

D
IF

D

V
T

Figure 23. IEEE 421.5 2005 DC4B Excitation System model in
Modelica.

Figure 24. Generator terminal voltage at bus GEN1.

11 i f (abs (V_RMAX − y) <= Model ica . C o n s t a n t s . eps and d e r (i n t e g r a l
. y) >0)

12 then t r u e
13 e l s e i f (abs (V_RMIN − y) <= Model ica . C o n s t a n t s . eps and d e r (

i n t e g r a l . y) <0)
14 then t r u e
15 e l s e f a l s e ;
16 end PID_No_Windup ;

Listing 2. Modelica code for PID with non-windup limits model

Then the implementation of the DC4B model in Mod-
elica has been completed as in Figure 23.

3.2.2 Validation

The software-to-software validation of the DC4B model
against PSS®E has been performed to check the validity
of the adopted modeling approach. For the verification the
SMIB in Figure 20 has been considered with a bus fault
applied at bus FAULT at t = 2s for 0.15s. Some results of
the validation are given in Figures 24, 25 and 26.

An alternative approach for the validation of the DC4B
excitation system, that Modelica flexibility allows for,
consists of simulating only the block representing the
DC4B component driven by external input signals col-
lected from the reference SMIB network in PSS®E. This
means that the Modelica model of DC4B can also be run

Figure 25. Time trajectory of the state of the integrator of the
PID with non-windup limits included in the DC4B model.

Figure 26. Time trajectory of the state of the derivative part of
the PID with non-windup limits included in the DC4B model.

using different input signals coming, for example, from
real measurements.
To prove this new approach the PID model in Figure 22
has been modified replacing the integrator blocks with an
input so to use the integrator state trajectory as input to the
model (see Figure 27).

Then a new test system in Modelica has been created
as in Figure 28. Instead of assembling an SMIB to test
the new implemented model it is possible to build a test
system with only the target model with all the inputs de-
pending on the available signals and a table collecting the
external signals driving the model. To clarify the link be-
tween the external signals and the model to test, the text
layer of the Modelica model in Figure 28 is given in List-
ing 3 keeping only the equation section.

VUELVOEL

ECOMP

VOTHSG

EFD0

EFD

XADIFD

VT

DC4Binputs

Figure 28. New Modelica test system for DC4B.

1 model D C 4 B _ s t a t e _ i n p u t _ t e s t
2 equat ion
3 d C 4 B _ s t a t e _ i n p u t .VOTHSG = i n p u t s . y [1] ;
4 d C 4 B _ s t a t e _ i n p u t .ECOMP = i n p u t s . y [2] ;
5 d C 4 B _ s t a t e _ i n p u t . EFD0 = i n p u t s . y [3] ;

k=K_P

proportional

k=K_D/T_D

gain1

add3_1

+1

+1

+1

+

add

+
+1

-1

derivative

I

k=1k=1/T_D

gain2

limiter

uMax=V_RMAX

u

y

in
t_
s
ta
te

Figure 27. Modified PID with non-windup limits model.

6 d C 4 B _ s t a t e _ i n p u t .VUEL = i n p u t s . y [4] ;
7 d C 4 B _ s t a t e _ i n p u t .VOEL = i n p u t s . y [5] ;
8 d C 4 B _ s t a t e _ i n p u t . XADIFD = i n p u t s . y [6] ;
9 d C 4 B _ s t a t e _ i n p u t . VT = i n p u t s . y [7] ;

10 d C 4 B _ s t a t e _ i n p u t . i n t _ s t a t e = i n p u t s . y [8] ;
11 end D C 4 B _ s t a t e _ i n p u t _ t e s t ;

Listing 3. Modelica code for the DC4B test system in Figure 28

Then the validation of the model has been performed
comparing the DC4B exciter output (EFD) in a scenario
of SMIB system, as in Figure 20, with a bus fault applied
at bus FAULT at t = 2s and duration t = 0.15s. The results
are given in Figure 29.

0 2 4 6 8 10
	�������

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

�
��
��
���
��

�����������������
SMIB PSS/E
SMIB Modelica
DC4B with inputs (Modelica)

Figure 29. DC4B exciter output (EFD).

In Figure 29 the output of DC4B for the SMIB in Figure
20, the corresponding SMIB in PSS®E and the new test
system in Figure 28 has been plotted. The system in Fig-
ure 28 takes the required input signals exported from the
SMIB in PSS®E simulated with a bus fault as described
before.

3.3 Examples of interoperability: portable
system modeling with unambiguous and
homogeneous results

Finally, to demonstrate an additional value of implement-
ing and validating models with the Modelica language, we
highlight the portability of system models using validated
components. This can be shown by running the simula-
tion of an example of the OpenIPSL library in different

software environments. The example of a SMIB with the
exciter EXST1 has been chosen (see Figure 30).

pwLine

pwLine3 pwLine4

INF

50 MW+j10 MVA

constantLoad

p
w

F
a
u
lt

GEN1 LOAD GEN2

FAULT

pwLine1 pwLine2

SHUNT

SPEED

ISORCE

ETERM

ANGLE

PMECH0

PELEC

EFD0

XADIFD0

PMECH

EFD

GENROE

zero

k=0

VUELVOEL

ECOMP

VOTHSG

EFD0

EFD

XADIFD

EXST1

Figure 30. SMIB example for EXST1 from the OpenIPSL li-
brary.

Some results of the simulation of the network in Figure
30 are reported in Figures 31 and 32. The plots show that
the model gives the same results regarless of the tool being
used, which means that tool-specific re-implementation
can be avoided.

Another example is illustrated with the network model
IEEE14 in Figure 33.

Figure 33. Modelica model of the power systems network
IEEE14.

A simulation of the network has been run in the
reference tool PSS®E and three different platforms
that are Modelica based. They are Dymola, Modelon
Impact and SystemModeler. The same scenario has
been considered in all three software and it consists of
applying a three-phase fault to ground at Bus 4 at time
t = 3s for 0.01s. The fault to ground has an impedance
Z = R + jX = (0.01 + j0.02)pu. The same simulation
settings about the output interval length (0.01s) and
the tolerance (1e-06) have been used. Results of the

0 2 4 6 8 10
Time [s]

0.5

0.6

0.7

0.8

0.9

1.0

Vo
lta

ge
 [p

u]

���
�����
���	��

SystemModeler
Dymola
Impact
OpenModelica

Figure 31. Voltage at bus GEN1 of the system in Figure 30.

0 2 4 6 8 10
Time [s]

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Vo
lta

ge
 [p

u]

�
�������	��	�
SystemModeler
Dymola
Impact
OpenModelica

Figure 32. EXST1 output of the system in Figure 30.

simulation are given in Figure 34, where it is possible
to see that once the models are validated they can give
the same results as the reference tool with the same
simulation settings even for larger networks.

4 Conclusions and Future Work
This paper formalizes and illustrates a procedure to imple-
ment power system models in Modelica with a software-
to-software validation methodology that is an important
step for developing and maintaining a Modelica library
using the concepts of regression testing and continuous
integration. The guidelines illustrated in this paper are in-
dispensable for the initial debugging of new models ad-
dressing all possible challenges of the time consuming re-
implementation process in a systematic way. The guide-
lines were illustrated through key use cases that proved to
be challenging to implement, this gives an idea of the diffi-
culties faced when developing power system models from
a reference software tool. Once the results of an initial
validation are satisfactory then the software-to-software

0 2 4 6 8 10
Time [s]

0.6

0.7

0.8

0.9

1.0

Vo
lta

ge
 [p

u]

���	�����	��
���

PSS@E
Dymola
Impact
SystemModeler
OpenModelica

Figure 34. Voltage at bus 1 of the IEEE14 model with a fault to
ground at bus 4.

validation process can be automated using scripts to test
different scenarios in the different simulation platforms.
This work will be presented in a future publication.

Acknowledgements
This material is based upon work supported in whole
or in part by Dominion Energy, New York State Energy
Research and Development Authority (NYSERDA) and
the New York Power Authority (NYPA) under agreement
numbers 137940, 37951, and by the U.S. Department of
Energy’s Office of Energy Efficiency and Renewable En-
ergy (EERE) under the Advanced Manufacturing Office,
Award Number DE-EE0009139. The views expressed
herein do not necessarily represent the views of the U.S.
Department of Energy or the United States Government.

References
Baudette, Maxime et al. (2018). “OpenIPSL: Open-instance

power system library—update 1.5 to “iTesla power systems
library (iPSL): A modelica library for phasor time-domain
simulations””. In: SoftwareX 7, pp. 34–36.

Berube, GR, LM Hajagos, and Roger Beaulieu (1999). “Practi-
cal utility experience with application of power system stabi-
lizers”. In: 1999 IEEE Power Engineering Society Summer
Meeting. Conference Proceedings (Cat. No. 99CH36364).
Vol. 1. IEEE, pp. 104–109.

Bérubé, GR and LM Hajagos (2007). “Accelerating-power
based power system stabilizers”. In: Year not known, p. 10.

Chaudhary, Rekha and Arun Kumar Singh (2014). “Transient
stability improvement of power system using non-linear con-
trollers”. In: Energy and Power Engineering 2014.

Cui, Hantao, Fangxing Li, and Kevin Tomsovic (2020). “Hy-
brid symbolic-numeric framework for power system model-
ing and analysis”. In: IEEE Transactions on Power Systems
36.2, pp. 1373–1384.

Dorado-Rojas, Sergio A. et al. (2021-09). “Power Flow Record
Structures to Initialize OpenIPSL Phasor Time-Domain Sim-
ulations with Python”. In: Proceedings of the 14th In-
ternational Modelica Conference. Ed. by Martin Sjölund

et al. Linköping Electronic Conference Proceedings 181.
Linköping, Sweden: Modelica Association and Linköping
University Electronic Press, pp. 147–154. ISBN: 978-91-
7929-027-6. DOI: 10.3384/ecp21181147.

Elmqvist, Hilding, Toivo Henningsson, and Martin Otter (2016).
“Systems Modeling and Programming in a Unified Environ-
ment Based on Julia”. In: Leveraging Applications of Formal
Methods, Verification and Validation: Discussion, Dissemi-
nation, Applications. Ed. by Tiziana Margaria and Bernhard
Steffen. Cham: Springer International Publishing, pp. 198–
217. ISBN: 978-3-319-47169-3.

Fachini, Fernando et al. (2021). “Modeling and Validation of
Renewable Energy Sources in the OpenIPSL Modelica Li-
brary”. In: IECON 2021 – 47th Annual Conference of the
IEEE Industrial Electronics Society, pp. 1–6. DOI: 10.1109/
IECON48115.2021.9589148.

Gómez, Francisco J. et al. (2020). “Software requirements for
interoperable and standard-based power system modeling
tools”. In: Simulation Modelling Practice and Theory 103,
p. 102095. ISSN: 1569-190X. DOI: https://doi.org/10.1016/j.
simpat.2020.102095.

Henriquez-Auba, Rodrigo et al. (2021). “Transient Simulations
With a Large Penetration of Converter-Interfaced Genera-
tion: Scientific Computing Challenges And Opportunities”.
In: IEEE Electrification Magazine 9.2, pp. 72–82. DOI: 10.
1109/MELE.2021.3070939.

Hongesombut, K. et al. (2005). “Object-oriented modeling for
advanced power system simulations”. In: 2005 IEEE Russia
Power Tech, pp. 1–6. DOI: 10.1109/PTC.2005.4524823.

Jayapal, R and JK Mendiratta (2010). “H∞ Controller Design for
a SMIB-Based PSS Model 1.1.” In: Journal of Theoretical &
Applied Information Technology 11.

Kumar, Ajit (2018). “Damping enhancement for smib power
system equipped with partial feedback linearization avr”.
In: 2018 20th National Power Systems Conference (NPSC).
IEEE, pp. 1–6.

Masoom, Alireza et al. (2021). “MSEMT: An Advanced Mod-
elica Library for Power System Electromagnetic Transient
Studies”. In: IEEE Transactions on Power Delivery.

Milano, F. (2005). “An open source power system analysis
toolbox”. In: IEEE Transactions on Power Systems 20.3,
pp. 1199–1206. DOI: 10.1109/TPWRS.2005.851911.

Murad, Mohammed Ahsan Adib and Federico Milano (2019).
“Modeling and simulation of PI-controllers limiters for the
dynamic analysis of VSC-based devices”. In: IEEE Transac-
tions on Power Systems 34.5, pp. 3921–3930.

Rabuzin, Tin, Maxime Baudette, and Luigi Vanfretti (2017).
“Implementation of a continuous integration workflow for
a power system Modelica library”. In: 2017 IEEE Power
Energy Society General Meeting, pp. 1–5. DOI: 10 . 1109 /
PESGM.2017.8274618.

Siemens Industry, Inc. (2013-03). MODEL LIBRARY. English.
Siemens Power Technologies International. 748 pp.

Thurner, Leon et al. (2018). “pandapower—an open-source
python tool for convenient modeling, analysis, and optimiza-
tion of electric power systems”. In: IEEE Transactions on
Power Systems 33.6, pp. 6510–6521.

Tiller, Michael (2001). Introduction to physical modeling with
Modelica. Springer Science & Business Media.

Vanfretti, Luigi et al. (2013). “Unambiguous power system dy-
namic modeling and simulation using Modelica tools”. In:
2013 IEEE Power & Energy Society General Meeting. IEEE,
pp. 1–5.

Wang, Xiaodong et al. (2015). “Nonlinear dynamic analysis
of a single-machine infinite-bus power system”. In: Applied
Mathematical Modelling 39.10-11, pp. 2951–2961.

Winkler, Dietmar (2017). “Electrical Power System Modelling
in Modelica - Comparing Open-source Library Options”. In:
Proceedings of the 58th Conference on Simulation and Mod-
elling (SIMS 58), pp. 263–270.

Zhang, Mengjia et al. (2015). “Modelica implementation and
software-to-software validation of power system component
models commonly used by nordic TSOs for dynamic simu-
lations”. In: Proceedings of the 56th Conference on Simula-
tion and Modelling (SIMS 56), October, 7-9, 2015, Linköping
University, Sweden. Linköping University Electronic Press,
pp. 105–112.

Zimmerman, Ray Daniel, Carlos Edmundo Murillo-Sánchez,
and Robert John Thomas (2010). “MATPOWER: Steady-
state operations, planning, and analysis tools for power sys-
tems research and education”. In: IEEE Transactions on
power systems 26.1, pp. 12–19.

https://doi.org/10.3384/ecp21181147
https://doi.org/10.1109/IECON48115.2021.9589148
https://doi.org/10.1109/IECON48115.2021.9589148
https://doi.org/https://doi.org/10.1016/j.simpat.2020.102095
https://doi.org/https://doi.org/10.1016/j.simpat.2020.102095
https://doi.org/10.1109/MELE.2021.3070939
https://doi.org/10.1109/MELE.2021.3070939
https://doi.org/10.1109/PTC.2005.4524823
https://doi.org/10.1109/TPWRS.2005.851911
https://doi.org/10.1109/PESGM.2017.8274618
https://doi.org/10.1109/PESGM.2017.8274618

	Introduction
	Motivations
	Previous Works
	Contributions

	Guidelines
	Template Models for Modeling and Validation
	Model Implementation Guide
	Model Validation Guide

	Use Cases
	Power System Stabilizer PSS2A model
	Implementation
	Validation

	IEEE 421.5 2005 DC4B Excitation System model
	Implementation
	Validation

	Examples of interoperability: portable system modeling with unambiguous and homogeneous results

	Conclusions and Future Work

