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Abstract—This paper presents the authors’ experience in
using the Dynamical Mode Decomposition (DMD) for estimating
electromechanical oscillation modes from real synchrophasor
data from the Dominion Energy system. To gain insight into
the effectiveness of this approach, the results obtained from
DMD on ambient data are compared against frequency domain
approaches. Furthermore, the challenges in using this method
are highlighted. The comparison shows that DMD is suitable for
mode estimation from ambient data and should be further inves-
tigated for real world deployment within wide-area monitoring
systems.

I. INTRODUCTION

Synchrophasor measurement technology was proposed in
the early 1980s [1] and since then many different applications
for power system monitoring have been envisioned. During
the last decade, Phasor Measurement Units (PMUs) became a
broadly adopted technology in the United States thanks to the
“American Recovery and Reinvestment Act of 2009” which
sponsored a large number of PMU installations [2] that are
now producing a great amount of data with rich information
that can be used for different applications [3]. The increased
availability of real-time streamed measurement data support
on-going transformation of power systems into Cyber-Physical
Systems (CPS), where the observed measurements can be
properly analyzed, and automated control strategies can be
implemented [4].

Among the many applications that use PMU data and
that create the basis for a power system to be transformed
into a CPS, the study [5] and monitoring [6] of power
system oscillations are one of the most important. In addition,
electromechanical oscillations are now frequently analyzed
in power systems, with wide-area modes being of particular
interest [7]. Oscillations are characterized by their frequency
and damping, and can be constantly monitored in order to
find critical values [8], which might indicate the “stress” of
the system [9]. Now, since the system is mostly in ambient
conditions, [9], for online tracking of stability, mode estima-
tion techniques applicable to such data are more attractive. In
addition to the frequency and damping of oscillations, it is
also very important to estimate mode shapes [3], [10] since
these give insights into the observability of each mode which
is useful in control applications. That being said, there are a
myriad of techniques available for performing such analysis
[11].

Dynamic Mode Decomposition (DMD) [12], [13] is one
such approach that has recently gained traction for data
driven analysis of fluid dynamics, which are governed by
nonlinear PDEs. This technique is fairly efficient when dealing
with large number of measurements with a small number
of governing modes/dynamic patterns, and thus, offers an
attractive option for data driven stability analysis of large scale
power systems. This is a result of an inherent compression
step using singular value decomposition (SVD) that extracts
a lower dimensional subspace with significant energy. This
is performed in an integrated manner with identification of
temporal patterns/modes. Another attractive quality of this
technique is that it has been extended to the analysis of non-
linear systems using the Koopman framework [14]. The idea
behind this approach is to embed the original nonlinear system
into a much higher dimensional linear system using carefully
chosen observable functions. As a result, these approaches
have drawn attention from the power system community. For
instance, Koopman nonlinear modes were applied in [15] for
the identification of coherent oscillations in machines from
a power system and for data-driven power system stability
assessment, respectively. In addition, [16] proposes a DMD-
based algorithm for performing data-driven modal analysis of
coherent electromechanical oscillations in the power system.
While providing a great potential, there hasn’t been much
evidence on the effectiveness of DMD when used with real-
world ambient synchrophasor data, specifically in comparison
to the traditional frequency domain approaches. Furthermore,
there is a need to understand the implications of the amount of
compression chosen in DMD on the final estimated spectrum.
Hence, this paper addresses this research gap.

This paper is organized as follows: Section II summarizes
the DMD technique and how it can be used in modal analysis.
Section III presents the case study conducted using DMD and
other existing methods, while Section IV discusses obtained
results. Finally, Section V draws the final conclusions of this
paper.

II. DYNAMICAL MODE DECOMPOSITION

A. Modal Analysis

Under ambient conditions, a power system will undergo
small perturbations around its equilibrium x0 and input u0,
and can be represented by the following linear model [17]:



∆ẋ = A∆x + B∆u. (1)

where ∆x is the n × 1 state vector, ∆u is the r × 1 input
vector, A is the n× n state matrix and B is the n× r input
matrix. The superscript ˙ indicates the 1st-order derivative of
each state with respect to time t.

The modes of oscillation are directly related to the eigen-
values of the state matrix. Stable oscillatory modes are given
by a complex eigenvalue pair λi = σi ± jωi, where σi is a
negative real number. The mode would have its frequency and
damping given by

f =
ω

2π
Hz, and ξ =

−σ√
σ2 + ω2

(2)

By determining the eigenvectors of the state matrix it
follows that

Aϕi = λiϕi, and ψiA = ψiλi, (3)

where ϕi and ψi are the right- and left-eigenvectors related to
the eigenvalue λi. From here, each diagonal state zi and its
derivatives are given by

zi = ψix, and żi = λizi + ψiBu. (4)

Finally, the state vector x can be composed as a sum of the
diagonal states zi, scaled by the right-eigenvectors ϕi, that is

x =

n∑
i=1

ziϕi. (5)

Note that (5) shows the participation of each mode in the
composition of each state of x. The right-eigenvector ϕi

shows how the dynamic behavior due to λi impacts each
state variable xi in state vector x. Because the elements of
ϕi are complex values, both their magnitude and phase reveal
the relation between the mode of oscillation and the state.
Consequently, ϕi is called the mode shape of mode λi [3].

B. Traditional DMD

The Dynamical Mode Decomposition (DMD) [12] is a pure
data-driven technique that aims at identifying the best linear
model that fits the measurement data [18]. When compared
to de facto techniques, i.e. Yule-Walker (YW), DMD-based
solutions, which are well suited for multi-channel approaches,
offer the advantage of allowing dynamical modes and mode-
shapes to be found by eigen-decomposition of the identified
model [18]. For simplicity, let us assume that xj ∈ Rn×1

denotes the state vector value at time (j − 1)∆t where ∆t is
the sampling time step. Sampled values in columns to build
data matrices

Xk =
[
x1 x2 . . . xN

]
, and

Xk+1 =
[
x2 x3 . . . xN+1

]
.

Now, a typical discrete time linear time invariant system can
be represented by,

Xk+1 = AXk. (6)

Where A is the state matrix to be estimated using the standard
DMD, which is briefly discussed here. For more details, please
refer to [12], [13], [18]. DMD starts by calculating the rank r
approximation of Xk using Singular Value Decomposition,

Xk = UΣV∗, (7)

where U is n×r, Σ is a diagonal r×r matrix and V is N×r
and ∗ stands for the conjugate transpose. This is substituted in
the previous equation. Pre-multiplying with U∗ results in the
following reduced order system,

X̃k+1 = U∗Xk+1 = U∗AUΣV∗ = ÃX̃k (8)

The reduced order state matrix Ã, which contains the domi-
nant eigen values of A, can easily be estimated as,

Ã = U∗Xk+1VΣ−1. (9)

The right eigenvalues and eigenvectors of Ã can be calculated
using

Ãw = λ̃w. (10)

Finally, the DMD mode shape corresponding to the eigenvalue
λ̃ can then be calculated as

ϕ̂ = Uw. (11)

Note that vector ϕ̂ is the projection of the actual mode-shape
ϕ onto the range of Xk [13]. Nevertheless, the vector ϕ̂ can be
used as the mode shape of the oscillatory DMD mode denoted
by λ̃. It is also important to note that λ̃i are eigenvalues of
the discrete time linear system [8].

C. High Order DMD

The practical implementation of DMD, however, may face
challenges under scarce number of available measurements
and lack of observability of measurements at specific locations.
To address these issues, an extension of the DMD method
called Higher Order DMD (HODMD) that is based on time-
lagged measurements is proposed in [19]. This method has
been shown to produce better results than Auto-Regressive-
Moving-Average-based (ARMA-based) methods when there
is no prior knowledge of the modes’ frequencies and damp-
ing rates [20]. Let us denote the measurement outputs by
y ∈ Rm×1. This method embeds the output space y into a
higher dimensional space using time delays. Therefore, if s
time-delays are considered, the state vector value at jth time
step denoted by xj can be written as

xj = [yj yj−1 . . .yj−s]
ᵀ
. (12)

The entire procedure from the previous section is repeated
and the eigenvalues and eigenvectors are obtained. The mode
shape in this case will be given by the first m values of ϕ̃.

Note that that two parameters need to be set in the HODMD
method: the number of time-delays being embedded in the
measurements and the reduced rank of the SVD. DMD-
based techniques achieves compression through SVD, which
characterizes dynamics based on their energy content, thereby



preferring the dominant ones. Moreover, owing to the fact that
HODMD uses time redundancy through time delays, it avoids
ill-conditioned data matrices formations that could result in
many spurious modes [20]. Due to these interesting features
the HODMD is an adequate technique that is applied for all
DMD-based output-only mode estimations performed in this
paper.

III. CASE STUDY

In this study, synchronized measurement data is collected
from nine PMU locations installed in different substations
located throughout Dominion Energy’s transmission system.
Substations are made anonymous, as they are referred to as
substations A, B, ..., I. The ambient data displayed in the
figures of this paper comes from local frequency measure-
ments collected at 8PM of July 23rd of 2019, lasting for 30
minutes. In order to introduce robustness to this study, a Monte
Carlo approach is adopted and frequency measurements from
100 random days are also collected in order to produce the
comparison between single-channel YW and Multi-Channel
HODMD in the next section. The data set was collected with a
sampling frequency of 30 Hz, and it was pre-processed through
filtering to remove frequencies lower than 0.1 Hz and higher
than 0.5 Hz. After that, the data was re-sampled at a rate of
1 Hz [21]. A sample of the pre-processed data collected from
substations A, B and C is displayed in Figure 1.

Fig. 1. Four-minute sample of pre-processed frequency signal.

Welch’s method is applied to the pre-processed data in order
to obtain an estimate of the Power Spectrum Density (PSD)
[9], [22]. The estimate was obtained by calculating FFTs using
the number of points equivalent to two minutes of data and
using 50 percent overlap between data windows. The PSD
estimate for all measurements is shown in Figure 2. Three
dominant modes are shown to be present in all data streams
and, thus, they are highlighted. The first mode is highlighted
in green and it is about 0.13 Hz, the second one is in blue and
its apex occurs at about 0.19 Hz, the third one is in red and has
its peak at about 0.34 Hz. Note that some data streams might
have other peaks appearing throughout the spectrum, just like
substation E’s data appear to peak at around 0.42 Hz. However,
these modes are not considered to be of interest because the

goal of this study is to study wide-area modes, which should
be observed in every single data stream analyzed.

Fig. 2. Welch power spectrum density estimate for frequency data from all
substations.

The modes reported here are similar to the ones observed
in [5] with the exception of the first mode, which has not been
reported in earlier literature. The main reason behind that is
that the observability of that mode is high for this particular
data set, while it might be lower in the signals studied in
[5]. In addition, it is also possible that the filtering options
adopted in [5] are more aggressive than the ones adopted in
the current paper. In this study, the authors have selected only
measurement sets that present an adequate observability level
of the modes of interest.

IV. MODE AND MODE-SHAPE ESTIMATION

A. Single Channel HODMD

Using the data from Substation A, it is possible to obtain
an estimate of the PSD [9], [22] using the Welch approach.
The periodogram was built using data points corresponding
to ten minutes of data and 50 percent window overlap. The
PSD estimate was then used to refine the YW model order
[9]. Differing from YW technique, the HODMD has two
parameters to be set. The first parameter is the number of time-
delays that are going to be embedded in the measurements.
The second parameter is the rank of the SVD matrices. These
two parameters are expected to change the number of modes
and their characteristics which are identified by the technique.
In order to illustrate this effect, three small tests are conducted.
In each test, different parameter configuration are used for the
HODMD and the results are compared with Welch estimate
and the 8th order YW model.

In the first test, different time delays are embedded in the
data coming from Substation A. Values of 6, 8 and 10 time
delays are used and the SVD has always full rank. It means
that SVD will have rank n for n time delays. The comparison
between the estimates is shown in Figure 3. Note that the
HODMD model with 8 time delays has many similarities with
the 8th order YW model.



Fig. 3. Comparison between Welch power spectrum density estimate, YW
model and HODMD with different number of time delays and SVD with full
rank.

In the second experiment, different time delays are embed-
ded in the data coming from Substation A but the rank of the
SVD is forced to be 6 in all of them. Values of 10, 14 and
18 time delays are used. The results, which are depicted in
Figure 4, show that the HODMD models with highest number
of time delays find three modes. However, it is clear that a
higher number of delays results in a sharpest peak, which
might hinder damping estimates. This effect can be explained
by the fact that an increase in the embedded time delays would
result in the convergence of the estimated modes to a uniform
distribution on the unit circle [23], meaning that estimation
converges to pure oscillations and explaining the sharper peaks
seen in Fig. 4.

Fig. 4. Comparison between Welch power spectrum density estimate, YW
model and HODMD with different number of time delays and SVD with rank
6.

Finally, in the last experiment, 10 time delays are embedded
in the data coming from Substation A but the rank of the SVD
is set to be 6, 8 and 10. The comparison between the models is
displayed in Figure 5. Note that the rank of the SVD directly
affects the number of peaks presented in the model, just like
the order of YW models.
B. Multi-Channel HODMD

The HODMD is studied in the last section using a single
measurement data. However, the technique is better suited for
multi-channel approaches. Indeed, the HODMD technique is
used in this section to estimate the frequency and damping
coming from the modes that might be present in all of the
measurements. The HODMD model was set to have 7 time

Fig. 5. Comparison between Welch power spectrum density estimate, YW
model and HODMD with 10 time delays and different SVD ranks.

delays and the SVD matrices are reduced to have their rank
equal to 22. The PSD estimate coming from that configuration
is compared with the Welch PSD estimates from the measure-
ments in Figure 6.

Fig. 6. Comparison between Welch power spectrum density estimates and
the HODMD.

In order to create a robust estimate of the the mode’s
frequency and damping, the HODMD and YW techniques are
applied in 100 different measurement sets, randomly collected
throughout the years of 2019, 2020 and 2021. The damping
and frequency bias and standard deviation estimates from both
approaches are shown in Table I. Note that the modes have
quite similar frequency and their damping estimates also agree,
but also recall that YW is used in a single stream from the
set, while HODMD is applied in all measurements from each
stream set. It is interesting to note that, although the HODMD
produces frequency estimates with higher variance, they are
being estimated from multiple signals at once.

TABLE I
FREQUENCY AND DAMPING ESTIMATES VIA MONTE-CARLO APPROACH.

Single-Channel Multi-Channel
YW HODMD

Freq. (mHz) Damp. (%) Freq. (mHz) Damp. (%)

124.0± 1.8 7.9292± 1.0642 127.6± 2.0 9.0499± 1.0303
213.4± 3.5 11.019± 1.154 205.3± 10.5 10.291± 1.301
324.6± 5.8 9.1884± 1.3187 306.7± 17.3 9.6422± 1.5544



C. Mode Shape Estimation

Now, in order to estimate the mode-shape from each one
of the modes, the method presented in [3] is applied. In it,
the Cross-Spectral Density (CSD) calculation is crucial for
the estimate of the angles between each vector. On the other
hand, in DMD-based approaches, the mode shape is directly
estimated from the eigenvector. In addition, for estimating
the mode shape angles correctly, the method in [3] requires,
as an input, the frequency of the mode. Therefore, in order
to produce a better comparison between the mode shape
estimates, the frequency used to calculate the mode shape
via the method present in [3] was the one estimated by the
HODMD procedure.

The mode shape estimates for each method is presented
in Figures 7, 8, 9 for frequency bias of 0.1276, 0.2053 and
0.3067 Hz, respectively. Note that all Figures depict a similar
behavior, showing that all generators studied are coherent with
respect to both modes. In addition, note that as the estimated
mode’s frequency grows, the mode-shape diverges. This is due
to the fact that the higher frequency modes have an increased
damping rate and more variability, resulting in the increasing
disparities between estimated mode shapes that is observed
when comparing both methods in Figures 8 and 9, for example.

(a) CSD-based (b) DMD-based

Fig. 7. Mode shape estimate for bias of f = 0.1276 Hz.

(a) CSD-based (b) DMD-based

Fig. 8. Mode shape estimate for bias of f = 0.2053 Hz.
V. CONCLUSIONS AND FUTURE WORK

This paper presented a brief description of DMD-based
approaches for power systems applications and used the tech-
niques to study low-frequency electromechanical oscillations.

(a) CSD-based (b) DMD-based

Fig. 9. Mode shape estimate for bias of f = 0.3067 Hz.

Comparisons made with different parameter settings on an
HODMD model show that altering the number of time delays
might change the identified modes’ characteristics. Moreover,
the SVD rank might be tuned to find a particular number of
modes, similarly to the YW model order. Results obtained with
HODMD technique are compared with the YW approach and
they show that both methods result on similar estimations of
mode frequency and damping.

However, the DMD-based technique also allows for mode-
shapes to be estimated without applying an additional pro-
cedure, which can be seen as an advantage over de facto
techniques. Indeed, this paper presented the mode shape
estimation using DMD and drew a comparison with the mode
shape estimated by a CSD-based method. The results obtained
from the mode shape estimation are, also, very promising,
since mode shape estimates present similar behavior in both
estimates. On top of that, it is necessary to highlight that the
HODMD-based method is quite simple and computationally
inexpensive.

The DMD-based technique presented in this paper shows
good potential and, therefore, more experiments and research
should be done. For instance, the authors also aim to study
cases where data sets have missing measurements and how
to derive data-driven models from measurement sets. Hence,
this current study should be seen as a starting point on using
DMD-based techniques for studying oscillations in the power
system.
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