

A Software Toolchain for Real-Time Testing of

Synchrophasor Algorithms in MATLAB

Lalit Kumar,

CEMSE, KAUST,

23955, Saudi Arabia,

lalitnbd@gmail.com

Shehab Ahmed,

CEMSE, KAUST,

23955, Saudi Arabia,

shehab.ahmed@kaust.edu.sa

Luigi Vanfretti,

ECSE, RPI,

12180, USA

luigi.vanfretti@gmail.com

Nand Kishor,
Østfold University College,

1757, Norway

nand.kishor@hiof.no

Abstract—This article develops and demonstrates the software

toolchain for real-time testing of synchrophasor based algorithms.

Real-time testing procedure being the need of smart grid, requires

to be hassle-free and easily accessible to the researchers. The

developed software toolchain combines both MATLAB and open-

source software. The toolchain requires recorded phasor

measurement unit (PMU) or phasor data concentrator (PDC)

signals, which are then played-back in real-time in the same

computer using local sockets. The data is replayed with a

transmission control protocol/internet protocol (TCP/IP) socket

and the IEEE C37.111-2013 data transfer standard. The data is

then retrieved and processed in real-time by any synchrophasor

based algorithm in MATLAB. The toolchain is demonstrated with

two examples, one that shows the main functionality by testing the

connection with a PMU/PDC and another testing of a wide-area

forced oscillation (FO) monitoring algorithm.

Index Terms—Wide-Area Monitoring System (WAMS),

Phasor Measurement Unit (PMU), real-time testing, North

American Synchrophasor Initiative (NASPI)

Abbreviations: PMU, phasor measurement unit; PDC, phasor

data concentrator; TCP/IP, transmission control

protocol/internet protocol; FO, forced oscillation; WAMS,

wide-area monitoring system; NASPI, north American

synchrophasor initiative; COMTRADE, common format for

transient data exchange; RIAPS, resilient information

architecture platform for smart systems; SADF, synchro-

measurement application development framework; PUPO, A

PMU-PDC-StreamSimulator; GUI, graphical user interface;

MSC, magnitude squared coherence.

I. INTRODUCTION

he advancement in the technology of phasor measurement
unit (PMU) in the last two decades, has enormously

facilitated new means for power system monitoring.
Synchrophasor/PMU technology aids in delivering fast
synchronous data streams from broad geographical spans, that
are used in software applications within “wide area monitoring
systems” (WAMS) [1]–[4]. The power industry has found that
this technology has an important role for power system
resilience [5], [6], and thus has become an important research
topic. However, attaining confidential PMU data from the power
companies is challenging and may limit the advance of research
endeavors. As an alternative, power system simulations can be
used, e.g. PMU-like signals [7], to develop new algorithms when
real-world data is not available, albeit such data is stored in data
files and not streamed. In addition, realizing the need of PMU
signal based tools, some companies and research institutes have
publicly released the PMU data and invited the researchers
around the globe to utilize it for the research [5], [8], [9].
Generally, the format of these few-minute data (.csv file) follows
the common format for transient data exchange (COMTRADE)

standard or the IEEE/IEC Std. C37.111-2013 protocol [10].
Using such these data sets, applications for power system
monitoring and stability-assessment [11], [12] have been
developed. However, addressing how such applications would
perform in a real-time environment is usually not addressed.

The increased complexity and vulnerability in the power
system, requires to utilize the monitoring-potential of PMUs in
real-time environments, so that stability issues can be detected
and counteracted as fast as possible. Hence, it is necessary to
develop and test new monitoring algorithms under real-time
conditions. This requires the real-time access to PMU or phasor
data concentrator (PDC) signals, which becomes nearly
impossible due to security protocols and confidentiality issues.
Another alternative is to create the real-time PMU signals
within a laboratory setting, [13], which is time consuming and
costly. Therefore, it is attractive to develop a simple and cost-
effective approach to develop real-time applications. Moreover,
because of the prevalence of specific signal analysis tools, e.g.
MATLAB, it is ideal to provide means to quickly prototype
applications exploiting the functionalities provided by such
tools. This can be attractive to support companies’ plan for large
scale deployment of low cost micro-PMU/open-PMU [14], [15]
and the ‘resilient information architecture platform for smart
systems’ (RIAPS) [16] to develop or upgrade their WAMS
system.

This article develops a software-toolchain to test a WAMS
algorithm in real-time. It only requires open-source software and
MATLAB, and thus it makes the real-time testing of WAMS
algorithms simpler. The developed toolchain is demonstrated
with two examples.

The rest of the article is organized as follows; in Section II,
available open-source software for real-time synchrophasor
communication are discussed in brief. In Section III, two
specific open-source software, “synchro-measurement
application development framework (SADF)” and “PUPO: a
PMU-PDC stream simulator” are reviewed. Section IV
demonstrates the developed software-toolchain and lastly, the
conclusions are drawn in Section V.

II. OPEN SOURCE SOFTWARE FOR REAL-TIME

SYNCHROPHASOR COMMUNICATIONS

Developing the software-toolchains, requires communication
technologies between a client computer (e.g., where applications
run) and a server (e.g., PDC). In the recent past, different efforts
have developed and released open-source tools [13], [17]–[21]
for synchrophasor communication. These software can be
categorized into two types: (1) PMU/PDC simulator, and (2)
signal retriever (i.e. a parser that makes data available for use in
other software environments). The first allows to publish PMU
signals as similar as by commercial PMU/PDC (i.e., acting as a
server), and later is to retrieve the signals within a client

T

computer. Table I lists some open source software which are
freely available online.

TABLE I. OPEN SOURCE SOFTWARE FOR REAL-TIME COMMUNICATION

PMU/PDC simulator (Server)

Signal retriever (Client)

 • PMU-PDC Stream Simulator (C++) [21]

• pyPMU (Python) [17]

• iPDC (Linux) [19]

• openPDC (Java) [22]

• SADF (Matlab) [13]

• S3DK (Labview) [23]

• BabelFish (Labview) [20]

• PhasorToolBox (Python) [18]

A comparative study between these software tools is out of
scope of this article. However, the authors in [13] have briefly
reviewed some of them and pointed out their differences. Apart
from these, a small software called PMU connection tester [22]
is also available, which only allows to check/view the small
stream of the signal in real-time and create configuration files.
PMU connection tester and OpenPDC [22] are the widely used
open-source software by the researchers and industry in the
synchrophasor community. However, [13] argues for the need
of user-friendly and easily accessible setup/tool in MATLAB for
synchrophasor communication, leading to the development of
the Synchro-measurement Application Development
Framework (SADF). As indicated in the Table I, SADF is a
client tool, or signal retriever, which can perform real-time
computations while ingesting real-time data. To the knowledge
of the authors, SADF is the only open source tool available for
MATLAB for such purposes, and thus, it is used for the client-
side tool in this paper. In the category of “PMU/PDC simulator”,
the C++ based software, ‘PUPO: a PMU-PDC-Stream
SimulatOr’ [21] is used in this article, due to its user-friendly
graphical user interface (GUI).

III. REVIEW ON PUPO AND SADF

A. PUPO

Commercial PDCs exists both in dedicated hardware
(industrial computers) or software that can run in off-the-shelf
computers. A local PDC is usually a hardware PDC that is
installed at a substation for the collection of all PMUs
measurement within that substation. To aggregate data from
multiple substations, a centralized software PDC is installed in
the utility’s control center to collect measurements from all the
PMUs/PDCs of individual substations. The receiving data
packets from multiple dispersed PMUs may encounter
transmission delays with respect to each other, in reaching to the
centralized PDC [24]. The key objective of the commercial
software PDC is to resynchronize the data packets in real-time
with reference to a GPS clock [25].

Being a software PDC, the functionality of PUPO should not
be confused with the commercial hardware or software PDCs.
Like other PMU/PDC/simulators, PUPO is a software to publish
previously recorded synchrophasor streams or data files
representing a PMU signal. Unlike commercial software PDC,
it does not receive real-time streams from multiple PMUs.
Instead, PUPO emulates a part of a PDCs behavior, which
publishes the recorded signal according to IEEE C.37.118.2
standard. The software runs on MS Windows and is of light size
and easy to install.

To use PUPO to publish phasor data, it needs to be provided
recorded data stored in a similar format to Comma Separated
Values (CSV), called “phcsv” (i.e. phasor CSV), which can be

opened by any text editor, such as Notepad/Notepad++. Fig. 1
shows the GUI of the PUPO. The phasor data needs to be
provided in rectangular format and organized in row arrays. The
method used to prepare input files, is described on the website
[21]. When preparing input files using typical editing tools, e.g.

Microsoft Excel, and convert it to CSV for PUPO (CSV), it is
necessary to recall issues with column limits, in editing tools. In
cases when of “oversized” PMU data files need to be created
(i.e. exceeding > Excel’s column limit of 16384 columns), or to
deal with MATLAB’s limitations to handle oversized data in
“double” format, the simplest way to create input files, is to paste
the column array in a text editor and then replace all ‘^p’ by nil
(blank). This step will delete all “Enter” in the file opened in the
text editor and the data will come in row format, which then can
be used in PUPO.

By default, the PUPO has one PMU station in which three
phasor signals can be imported. However, the users can
increase/decrease the number of stations by clicking on
‘folder’/‘cross’ icon as can be seen in Fig. 1. The recorded data
files are then published to the localhost using the port chosen,
i.e. 4712, in Fig. 1.

Fig. 1. GUI of PUPO

B. SADF

SADF [13] is a MATLAB-based framework that enables
receiving of TCP, UDP, or TCP/UDP synchro-measurement
data. SADF not only serve for the purpose of retrieving and
storing the signal, but it has a broad application through parallel
computation for WAMS applications, taking advantage of the
parallelization tools provided by MATLAB. To use the SADF
framework it only needs to be added to the MATLAB path. The
function “SADF_setting” allows to configure the PMU/PDC

connection settings such as TCP/IP, port, device ID and retrieval
time. The main function “SADF_run” allows to embed any

designed WAMS algorithm (function) as shown in Fig. 2.

Fig. 2. Adding a WAMS function in SADF

For the user, it is necessary to develop some basic
understanding of the default function, “demo_WAMS” to

implement a new WAMS algorithm having a compatibility with
SADF. The default function is given to plot the retrieved signal
in real time, with its specifications mentioned on the plot, which
is also being saved in MATLAB workspace. Even though the
developer has suggested to embed a new algorithm in the
“SADF_run” file, but, per the authors’ experience, the new

function will need to define a few variables globally, i.e. “demo”

and “CFG_2_3”. These variables are already declared by the

function “demo_WAMS” for plotting the signal of time-length

‘demo.window’ secs. It is observed that, for visualizing the

signal and monitoring results both, it is better to embed the
algorithm inside the “demo_WAMS” function instead of

“SADF_run”.

In this paper, the software-toolchain developed by utilizing
PUPO and SADF is referred as ‘PUPO-SADF software-
toolchain’, which is demonstrated next.

IV. DEVELOPMENT AND DEMONSTRATION OF ‘PUPO-

SADF SOFTWARE-TOOLCHAIN’

This section develops and demonstrates the ‘PUPO-SADF
software-toolchain’ as a simple framework for real-time
synchrophasor application development and testing. The
development is illustrated by the flow chart shown in Fig. 3,
comprising the PUPO and SADF parts. The working of both
have already been discussed briefly in Section III.A and III.B.
The toolchain is demonstrated using two examples: (1) testing
of software PMU/PDC simulator, and (2) real-time forced
oscillation (FO) monitoring.

The recorded PMU data from north American
synchrophasor initiative (NASPI) [5] is considered for the
examples, which was collected in 2014. The data file “NASPI-
2014-Workshop-Oscillation-Case2.csv” which belongs to
“Oscillation detection: test case 2”, consists of 30 signals which
are of 10-minute time-length sampled at 60 Hz. These 30 signals
include 5 voltage magnitude signals, 5 voltage angle signals, 10
current magnitude signals and 10 current phase signals. The
single line diagram for the interconnected NASPI’s subsystem
corresponding to this data, is given in Ref [26]. The recorded
voltage-phasor signal from bus-06 and bus-01 are selected to be
published using PUPO, which allows to emulate the
broadcasting of the original signals as if they were streaming in
2014 from the commercial PDC.

A. Testing of PUPO

The testing of commercial PDC requires a rigorous approach
[13], [27], in which several compliance aspects have to be
considered. For example, one test requires to check whether the
processing time taken by the PDC, to resynchronize the
receiving data packets, is within the defined limit or not [13],
[24]. However, this is not necessary in the case of PUPO’s
testing, since the data which is to be consumed by PUPO is
already synchronized. The key aspect in the testing of PUPO is
to ensure that the performance of the real-time monitoring
algorithm should not be adversely affected.

The published signals are retrieved by SADF using host
(PDC) TCP/IP and port settings, defined in
“SADF_settings” file. The retrieved 10-minute voltage-

magnitude signals along with timestamps, are stored in the
MATLAB workspace in the variable, “DATA.Magnitude”

and “DATA.TimeStamp”. For infinite data such as field-

recorded real-time data, the length of the retrieved signals to be
stored in workspace can be managed in code depending upon the
individuals’ computer capacity. Here, the testing of PUPO
includes two important checks that ensures that the monitoring
algorithm will produce authentic real-time results.

1) Check for synchronized overlapping
The check for synchronized overlapping can be done by

plotting the retrieved and published signals in one figure to
check overlapping. PUPO broadcasts the imported signals
(.phcsv) of fixed sample-length, in a loop without

encountering any time-delay in jumping from end-sample to first
one. When, both the SADF and PUPO are run at the same time,
SADF takes few seconds, to connect to the PDC, and in those
few seconds, some data has already been published by PUPO.
Thus, it is very unlikely that the first sample of the retrieved
signal by SADF in the MATLAB workspace is exactly the same
as that of the published signal. Therefore, there is a need of
‘array-alignment’ (array-shift) in retrieved data so that it could
overlap the published data. Whatever ‘array-alignment rule’ is
followed for one array (signal) to have the overlapping, must
also be followed by rest of the arrays/signals. And, if the same
rule can overlap rest of the arrays with their corresponding
published signals, then ‘synchronized overlapping check’ can be
passed. It is to be noted that the significance of ‘array-alignment’
exists only in this check. Since the recorded NAPSI signals are
already synchronized in its data file (.csv) [5], now we need to
ensure that these signals if published by PUPO would also be
synchronized or not. Referring to Fig. 3, ‘array-alignment’ rule
would not be needed if both part of the toolchain, i.e. PUPO and
SADF, could start functioning at the same instant after pressing
their respective start/run buttons. Also, the ‘array-alignment’
rule changes every time the software-toolchain is run depending
upon the time-gap between PUPO’s start and SADF’s run.
Moreover, PUPO once started need not to stopped as it broadcast
the imported signals in a loop. However, SADF may require
frequent run/stop for code modifications.

Figure 4 shows the plot of both published and both retrieved
signals after ‘array-alignment’. Both the retrieved voltage
magnitude signals overlap synchronously with the respective
published signals by following one single ‘array-alignment rule’
and thus ‘synchronized overlapping check’ is passed for PUPO.

LPDC

Conversion of data to

 .phcsv format for

Notepad++

Importing the

 .phcsv file in LPDC

and data info entry SADF embedded with external WAMPAC algorithm

Stored PMU

data in .csv

format

InternetInternet

Real time monitoring

SADF

Fig. 3. Flow chart of the PUPO-SADF software-toolchain

Fig. 4. Streamed out and retrieved voltage signals

2) Check for sampling rate

In this check, it is to be verified that the PUPO has published
the recorded signals at the desired data rate or not. It is a very
important check, as the monitoring algorithm may require a
specific data rate of the signal to produce the results. For
example, the spectral tools generally requires a constant
sampling rate at which signal is sampled, e.g. for frequency
estimation of power oscillations [3]. Also, this sampling/data
rate should be constant throughout in the retrieved signal, to
intact the precision in monitoring results. This check can be
performed by plotting the retrieved variable,
“DATA.TimeStamp”. Fig. 5 shows the plot of retrieved time

stamps versus the sample number, which allows to illustrate a
typical data preparation issue.

The PUPO has published at the desired 60 Hz sampling/data
rate, which is apparent in Fig. 5, as 60 samples (x-axis) have
been retrieved in every one second (y-axis). But, the retrieved
time stamps sent by the PUPO follows a step pattern, which is
supposed to be linear. This indicates that the PUPO is indeed
broadcasting the 60 samples of the signals in one second, but is
streaming only one timestamp 60 times. This is because the time
stamp provided to PUPO was limited to second (HH:mm:ss) and
not up to milliseconds (HH:mm:ss.sss). This simple check
allows to verify that the time stamps provided have not been
corrupted (which in this example, they have been corrupted) and
allow also to illustrate how this can be resolved by SADF if
necessary, as described next.

Fig. 5. Plot of retrieved time array (DATA.TimeStamp)

Fig. 6. Retrieval of PMU stream and FO monitoring in real-time

As can be noticed in Fig. 5, the published sampling/data rate
is still 60 Hz and constant throughout. The incorrect timestamp
can be corrected in real-time retrieval using “linspace”

command in the embedding WAMS function, which will
convert the timestamp array from step to linear. In this way,
‘sampling rate’ check is failed for PUPO, but the data entry error
can be rectified, while retrieving by SADF.

B. Testing of wide-area FO monitoring algorithm

Two kinds of power oscillations are very severe in power
system i.e. natural (electromechanical) and FO. Both of them
have been defined, differentiated and vastly studied over the last
decade [3], [26]. It is desired to have real-time monitoring of
these oscillations in power systems. In this section the ‘PUPO-
SADF software-toolchain’ is demonstrated for the testing of an
FO monitoring algorithm.

The algorithm is implemented in the “demo_WAMS”

function which utilizes the “mscohere” function [28]. This

function calculates the magnitude-squared coherence (MSC)
estimate [28] between two signals. The value of MSC estimate
lies in between 0 to 1, which indicate how well the first signal
corresponds to the second signal at each frequency. However,
unlike in Ref. [28], the monitoring here, is in real-time, which
requires meticulous encoding for compatibility with ‘PUPO-
SADF software-toolchain’. To this end, the default function
“SADF_run” was edited so that the SADF could plot the

retrieved signals in real-time and also plot the real-time MSC
estimate and segmented-MSC estimate [3] between two signals,
as can be seen in Fig. 6. The display-window size
(‘demo.window’) is kept to 30 sec. It can be seen that the FO

at frequency 13.33 Hz is the major FO which is widely spread in
the NASPI test power system. The presence of this FO is also
confirmed in [29], [30]. Fig. 6 might seems as unorthodox means
of representation, but is inspired from the stacked screen-palette
view in the monitoring and control center. The recorded screen-
video for this real-time retrieval and monitoring can also be seen
in Ref. [31].

V. CONCLUSIONS

With the help of open-source software, a software-toolchain
was developed for real-time testing of synchrophasor based
algorithms in MATLAB. The proposed toolchain was
demonstrated using two examples, including a synchrophasor
application for oscillation monitoring. The developed ‘PUPO-
SADF software-toolchain’ is easy to build and use, and is
hardware-free and time saving solution for real-time
development and testing of WAMS algorithms for researchers
familiar with MATLAB. Real-time testing of a FO monitoring
algorithm was presented, and found a FO at frequency 13.33 Hz,
which has been reported by other authors in the literature,
indicating the successful testing of FO monitoring algorithm.

ACKNOWLEDGMENTS

This work is carried out under the project, ‘GridX: The
Autonomous Digital Grid’ funded by ‘King Abdullah University
of Science and Technology, Saudi Arabia’ under grant OSR-
2019-CoE-NEOM-4178.12 as a part of the Kingdom’s vision,
"New Future" and "New Enterprise Operating Model" (NEOM-
2030).

REFERENCES

[1] L. Vanfretti, S. Bengtsson, and J. O. Gjerde, “Preprocessing

synchronized phasor measurement data for spectral analysis of

electromechanical oscillations in the Nordic Grid,” Int. Trans. Electr.

Energy Syst., vol. 25, no. 2, pp. 348–558, 2015, doi: 10.1002/etep.

[2] L. Kumar and N. Kishor, “Determination of mode shapes in PMU signals
using two-stage mode decomposition and spectral analysis,” IET Gener.

Transm. Distrib., vol. 11, pp. 4422–4429, 2017, doi: 10.1049/iet-

gtd.2017.0316.
[3] L. Kumar and N. Kishor, “Wide area monitoring of sustained oscillations

using double-stage mode decomposition,” Int. Trans. Electr. Energy

Syst., vol. 28, no. 6, pp. 1–18, 2018, doi: 10.1002/etep.2553.

[4] S. Li, L. Zhang, J. N. Paquin, J. Belanger, and L. Vanfretti, “Hardware-

in-the-loop use cases for synchrophasor applications,” in 2019
International Conference on Smart Grid Synchronized Measurements

and Analytics, SGSMA 2019, 2019, doi:

10.1109/SGSMA.2019.8784526.

[5] “NASPI Oscillation Detection and Voltage Stability Tools Technical

Workshop - Houston, TX | North American SynchroPhasor Initiative.”
[Online]. Available: https://www.naspi.org/node/440. [Accessed: 01-

Mar-2020].

[6] “Wide Area Monitoring Protection and Control | Statnett.” [Online].

Available: https://www.statnett.no/en/about-statnett/research-and-

development/our-prioritised-projects/wide-area-monitoring-protection-
and-control/. [Accessed: 01-Mar-2020].

[7] N. Zhou, “A cross-coherence method for detecting oscillations,” IEEE

Trans. Power Syst., vol. 31, no. 1, pp. 623–631, Jan. 2016, doi:

10.1109/TPWRS.2015.2404804.

[8] “ISO-NE Test Cases | Kaggle.” [Online]. Available:
https://www.kaggle.com/jacklewis0221/isone-test-cases/data.

[Accessed: 01-Mar-2020].

[9] “Power-grid frequency database.” [Online]. Available: https://power-

grid-frequency.org/. [Accessed: 15-Mar-2022].

[10] Power System Relay Committee of the IEEE, IEEE Standard Common
Format for Transient Data Exchange (COMTRADE) for Power Systems,

vol. 1999, no. November. 1999.

[11] A. Singh et al., “Report on Low Frequency Oscillation in Indian Power

System,” Task Force Report, Power System Operation Corporation

Limited, New Delhi, 2016.
[12] “Report on frequency quality for the year 2018 has been published -

Fingrid.” [Online]. Available:

https://www.fingrid.fi/en/pages/news/news/2019/report-on-frequency-

quality-for-the-year-2018-has-been-published/. [Accessed: 02-Mar-
2020].

[13] M. Naglic, M. Popov, M. A. M. M. Van Der Meijden, and V. Terzija,

“Synchro-Measurement Application Development Framework: An

IEEE Standard C37.118.2-2011 Supported MATLAB Library,” IEEE

Trans. Instrum. Meas., vol. 67, no. 8, pp. 1804–1814, Aug. 2018, doi:
10.1109/TIM.2018.2807000.

[14] D. M. Laverty, R. J. Best, P. Brogan, I. Al Khatib, L. Vanfretti, and D. J.

Morrow, “The OpenPMU platform for open-source phasor

measurements,” IEEE Trans. Instrum. Meas., vol. 62, no. 4, pp. 701–709,

2013, doi: 10.1109/TIM.2013.2240920.
[15] E. Dusabimana and S.-G. Yoon, “A Survey on the Micro-Phasor

Measurement Unit in Distribution Networks,” Electronics, vol. 9, no. 2,

p. 305, Feb. 2020, doi: 10.3390/electronics9020305.

[16] S. Eisele, I. Mardari, A. Dubey, and G. Karsai, “RIAPS: Resilient

information architecture platform for decentralized smart systems,” in
Proceedings - 2017 IEEE 20th International Symposium on Real-Time

Distributed Computing, ISORC 2017, 2017, pp. 125–132, doi:

10.1109/ISORC.2017.22.

[17] S. Sandi, B. Krstajic, and T. Popovic, “PyPMU - Open source python

package for synchrophasor data transfer,” in 24th Telecommunications
Forum, TELFOR 2016, IEEE, 2017, pp. 1–3, doi:

10.1109/TELFOR.2016.7818916.

[18] X. Zhong, P. Arunagirinathan, I. Jayawardene, G. K. Venayagamoorthy,

and R. Brooks, “PhasorToolBox-A Python Package for Synchrophasor

Application Prototyping,” in Clemson University Power Systems
Conference, PSC 2018, 2019, doi: 10.1109/PSC.2018.8664020.

[19] K. V Khandeparkar, N. Pandit, A. M. Kulkarni, V. Z. Attar, and S. U.

Ghumbre, “Design of a Phasor Data Concentrator for Wide Area

Measurement System,” 2012. [Online]. Available:

http://www.iitk.ac.in/npsc/Papers/NPSC2012/papers/12223.pdf.
[Accessed: 02-Apr-2020].

[20] M. S. Almas, L. Vanfretti, and M. Baudette, “BabelFish—Tools for

IEEE C37.118.2-compliant real-time synchrophasor data mediation,”

SoftwareX, vol. 6, pp. 209–216, Jan. 2017, doi:

10.1016/j.softx.2017.08.002.
[21] “GitHub - ALSETLab/PMU-PDC-StreamSimulator: A C++ PMU

and/or PDC Stream Simulator for IEEE C37.118.2.” [Online]. Available:

https://github.com/ALSETLab/PMU-PDC-StreamSimulator.

[Accessed: 02-Mar-2020].

[22] “Grid Protection Alliance - Home.” [Online]. Available:
https://www.gridprotectionalliance.org/. [Accessed: 02-Apr-2020].

[23] M. Baudette, S. R. Firouzi, and L. Vanfretti, “The STRONgrid library:

A modular and extensible software library for IEEE C37.118.2

https://cemse.kaust.edu.sa/cnr/gridx-autonomous-digital-grid-0
https://cemse.kaust.edu.sa/cnr/gridx-autonomous-digital-grid-0

compliant synchrophasor data mediation,” SoftwareX, vol. 7, pp. 281–

286, Jan. 2018, doi: 10.1016/j.softx.2018.08.001.
[24] H. Retty, J. Delport, and V. Centeno, “Development of tests and

procedures for evaluating phasor data concentrators,” in 2013 IEEE

Grenoble Conference PowerTech, POWERTECH 2013, 2013, doi:

10.1109/PTC.2013.6652210.

[25] E. Farantatos, “Let’s Talk About Synchrophasors, PMUs &
Applications.” [Online]. Available: https://www.naspi.org/node/809.

[Accessed: 02-Apr-2020].

[26] S. Maslennikov et al., “A test cases library for methods locating the

sources of sustained oscillations,” in IEEE Power and Energy Society

General Meeting, 2016, vol. 2016-Novem, doi:
10.1109/PESGM.2016.7741772.

[27] M. Kezunovic et al., “NASPI Task Force: Report on PMU testing and

certification, North American Synchrophasor Initiative Report of Task

Force on Testing and Certification,” 2013. [Online]. Available:

https://www.naspi.org/sites/default/files/reference_documents/43.pdf?fi
leID=1149. [Accessed: 02-Apr-2020].

[28] N. Zhou and J. Dagle, “Initial results in using a self-coherence method

for detecting sustained oscillations,” IEEE Trans. Power Syst., vol. 30,

no. 1, pp. 522–530, 2015, doi: 10.1109/TPWRS.2014.2321225.

[29] Space-Time Insight, “NASPI Oscillation Detection and Voltage Stability
Workshop, Houston, TX, October 22, 2014 - YouTube.” [Online].

Available:

https://www.youtube.com/watch?v=2WYEj4Qz0Hc&feature=youtu.be.

[Accessed: 02-Apr-2020].

[30] A. Silverstein, “NASPI Technical Report: Diagnosing Equipment Health
and Mis-operations with PMU Data,” 2015. [Online]. Available:

https://www.naspi.org/sites/default/files/reference_documents/14.pdf.

[Accessed: 02-Apr-2020].

[31] “Video: Real-time FO monitoring.” [Online]. Available:

https://drive.google.com/file/d/1On1Gd5DV2SO9lkMokjiAezgf8V6Rt
Eaa/view?usp=sharing. [Accessed: 02-Mar-2020].

	I. Introduction
	II. Open Source Software for Real-Time Synchrophasor CommunicationS
	III. Review on PUPO and SADF
	A. PUPO
	B. SADF

	IV. Development and Demonstration of ‘PUPO-SADF Software-toolchain’
	A. Testing of PUPO
	1) Check for synchronized overlapping
	2) Check for sampling rate

	B. Testing of wide-area FO monitoring algorithm

	V. Conclusions
	Acknowledgments
	References

