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Abstract—With the ubiquitous deployment of phasor measure-
ment units, the ability to automatically parse large-scale historical
data sets to detect and label unwanted system dynamics is
becoming increasingly important as it can lead to better informed
decision making by power system operators. Most oscillation
detection algorithms rely on pre-defined energy thresholds for
discrete frequency bands to estimate the presence of oscillations,
however, such techniques may not perform satisfactorily in sys-
tems with intermittent, high energy forced inputs from industrial
equipment such as an electric arc furnace that increases the
system’s energy across the entire frequency spectrum. In this
paper, we propose a method for detecting oscillations based on
the flatness of the spectrum as opposed to the magnitude of
its energy. It is shown that the proposed method is effective
at detecting oscillations irrespective of a changing magnitude of
input broadband noise.

Index Terms—Oscillation detection, spectral analysis, syn-
chrophasor measurement, phasor measurement unit, clustering

I. INTRODUCTION

Oscillatory responses in power systems have always been
of concern as they can indicate system-wide or localized
problems such as equipment malfunction, system disturbances,
and poor operating conditions [1]. As unstable oscillations can
result in partial or total system collapse [2], the ability to
detect and address the appearance of such modes is critical
in ensuring the reliable operation of the bulk power system.

Traditionally, the detection of oscillations has required ex-
tensive baselining studies [3] to set appropriate energy thresh-
olds for discrete frequency bands, as analytical expressions are
not available [4]. In real-time applications, when the energy in
a certain frequency band exceeds the specified threshold, the
system operator is alerted to take appropriate action [1].

One such approach that is widely accepted by industry
uses the root mean square (RMS) value of a signal’s energy
to detect oscillations in multiple frequency bands selected
according to the range of certain dynamics of interest [1], [4]–
[6]. Several of these RMS methods attempt to circumvent the
time-consuming task of examining large-scale data sets for

every possible input signal to derive appropriate thresholds
for detecting oscillations. A simplified process for setting
thresholds is proposed in [4] where the statistical distribution
of a signal’s power spectral density (PSD) and its cumulative
distribution function are utilized to establish thresholds for the
frequency bins of an RMS-energy detector. A fast, automated
method for determining appropriate energy thresholds that
utilizes a k-means clustering algorithm is proposed in [7]. This
method clusters the measured RMS energy of a signal into a
user-defined number of clusters to capture large variations.
The centroids of each cluster can provide insight into the
frequencies that may be of interest in detecting oscillations.

Another prevalent detection method utilizes the coherence
spectrum of two measured signals to detect forced oscillations
in the presence of significant noise [8], [9]. This method
estimates the power spectral density and cross spectral density
of signals using time-series measurements and fast Fourier
transforms to estimate a coherence spectrum. If this coherence
spectrum exceeds a predetermined threshold value, an oscilla-
tion is likely at the frequency of the coherence spectrum where
there is a peak.

In some situations, however, these existing detection meth-
ods may be ineffective. For example, high energy density
devices, such as electric arc furnaces [10], inject intermittent
broadband noise into the system, as measured by phasor
measurement units (PMU). When in operation, this noise
drastically raises the level of energy across the spectrum. This
effect can be observed in the spectrogram shown in Fig. 1
created from PMU data near an arc furnace in Dominion
Energy’s service territory. The horizontal striations in Fig. 1
represent persistent oscillations while the vertical striations
represent the intermittent operation of the arc furnace. In these
cases, an energy threshold established for when the arc furnace
is in operation could be too high to detect oscillations when
the arc furnace is not in operation.

This paper presents an algorithm to detect the appearance
and estimate the frequency of power system oscillations from
historical PMU data streams in the presence of intermittent,
high-energy broadband noise.



Fig. 1. Spectrogram illustrating the effects of intermittent arc furnace
operation on the overall energy of the measured signal.

II. SPECTRAL FLATNESS

As existing oscillation detection methods are ineffective in
the presence of intermittent high-energy broadband noise, it
is necessary to determine when a measurement’s frequency
spectrum displays clearly defined dynamics and when it is flat
or noise-like. This can be characterized by the measurement’s
spectral flatness, a measure that quantifies the relative magni-
tude of any peaks present in the power spectrum of a signal,
as opposed to how similar to white noise it is. The spectral
flatness measurement (SFM) of a signal is defined as a ratio
of the geometric mean to the arithmetic mean of its power
spectrum,
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where x(n) is the magnitude of frequency bin n of the power
spectrum. The power spectrum for a pure white noise signal
is completely flat or constant. The geometric and arithmetic
means of such a spectrum are therefore equal, and as a ratio
of the two means, the SFM is equal to one. The geometric
mean of a power spectrum is always less than or equal to its
arithmetic mean, so the SFM will never exceed a value of
one. Conversely, the spectrum of a pure sinusoidal function
is expressed as two delta functions separated by zeros. From
the above expression, it can be observed that a spectrum with
samples of magnitude zero will have a geometric mean of zero
with a nonzero arithmetic mean. The SFM for a pure sinusoid
will therefore be equal to zero. It can therefore be inferred
that a SFM closer to one indicates a flat or white noise-like
spectrum while a SFM closer to zero indicates the presence
of oscillatory behavior.

To illustrate the function of SFM in labeling oscillations, a
synthetic data set was generated with its corresponding spec-
trogram shown in Fig. 2. This signal was designed to evaluate
the behavior of SFM under three distinct conditions,
a) A pure oscillation with no broadband noise,
b) An oscillation in the presence of broadband noise, and

c) Broadband noise without an oscillatory component.

Fig. 2. Spectrogram for the simulated data set. The content of the simulated
data includes a pure oscillation with no broadband noise from 0 to 5 seconds,
an oscillation in the presence of broadband noise from 5 to 7.5 seconds, and
broadband noise without an oscillatory component from 7.5 to 10 seconds.

The PSDs of the signal calculated over the time periods
corresponding with each of the three conditions are shown in
Fig.3.

Fig. 3. PSDs for the simulated data set from (a) 0 to 5 seconds (pure
oscillation with no broadband noise), (b) 5 to 7.5 seconds (oscillation in the
presence of broadband noise), and (c) 7.5 to 10 seconds (broadband noise
with no oscillatory component).

For the spectrogram in Fig. 2, the corresponding SFM values
for each time window are shown in Fig. 4. The three clusters
represent periods where an oscillation is clearly present (SFM
≈ 0), likely present (SFM is relatively low), and not present
(SFM is relatively high). In comparing the two figures, it can
be observed that SFM can be used to correctly label time
periods containing oscillatory activity.

III. OSCILLATION DETECTION ALGORITHM

The proposed oscillation detection algorithm is illustratedas
a flowchart in Fig. 5 and elaborated upon in the following.

(a) Connect to a database to access historical time-stream data.
For synchrophasor data injection, storage, visualization,
and analysis, Dominion Energy, uses a cloud-based plat-
form, PredictiveGrid. The platform currently holds over
100 TB of data from hundreds of PMUs and over one
hundred thousand 30 Hz data streams [7].



Fig. 4. Clustered spectral flatness plot for the simulated data set.

(b) Declare all variables necessary to access the desired data
streams1, sample the data streams for the desired duration,
pre-process the data for the frequency range of interest,
and establish the appropriate parameters for clustering.

(c) Iteratively estimate oscillation frequencies by determining
the frequency bins where the magnitude of the PSD
calculated in 10-minute windows is sufficiently large.

(d) Establish the frequency bands of interest. The data set
of PSD magnitude peaks collected in the previous step
is grouped in a user-defined number of clusters using a
k-means clustering algorithm to determine the frequency
centers of interest. From these center frequencies, fre-
quency bands are established with a user-defined tolerance.

(e) Calculate the spectral flatness of the spectrogram within
each frequency band established in the previous step.

(f) Estimate the duration of any oscillations detected within
each frequency band by finding the duration of clusters
corresponding to low spectral flatness calculated in the
previous step.

(g) Print the estimated duration of any oscillations detected
and plot spectrograms of their approximate frequency
bands to confirm their presence.

IV. CASE STUDIES

PMU data from multiple substations impacted by an electric
arc furnace in Dominion Energy’s system are used to illustrate
the effectiveness of the proposed algorithm.

1) High Energy Oscillations: In this scenario, the data
being analyzed is the current magnitude from the low voltage
side of a 115/34.5 kV distribution transformer. The ambient
oscillation to be detected, which can be observed around 1.3
Hz as a brightly colored horizontal line in the spectrogram
shown in Fig. 6.

First, the PSD of the current magnitude is evaluated in 10-
minute windows over a 24-hour period. The PSD for one of
these windows with a peak indicating an oscillation around
1.3 Hz is shown in Fig. 7. As the transformer acts as a
filter, the effect of arc furnace on the distribution side can

1For further information on accessing the Berkeley Tree Database in
Python, please reference the btrdb-python documentation [12].

Fig. 5. Flowchart representing the proposed algorithm for oscillation detection
in the presence of intermittent broadband noise.

Fig. 6. Spectrogram of a 34.5 kV current magnitude data stream with an
oscillation clearly visible against intermittent noise from the arc furnace.

be considered negligible, therefore a significant portion of the
signal power comes from the oscillation of interest, allowing
for easier detection.

Next, a possible oscillatory frequency is identified at ap-
proximately 1.295 Hz by clustering the peak PSD values
calculated over a 24-hour period and determining the fre-
quency of the centroid of the cluster. Using a user defined
tolerance of ±0.1 Hz, a frequency band of [1.195 Hz, 1.395
Hz] is established to compute the SFM for. The SFM of this
frequency band calculated in 10-minute windows over a 24-



Fig. 7. PSD of the current magnitude within [0.5 Hz, 3.5 Hz] for a single
10-minute window.

Fig. 8. SFM of a data stream within [1.195 Hz, 1.395 Hz] clustered to indicate
the duration of groups of low spectral flatness.

hour period is plotted in Fig. 8.
Comparing the SFM plot in Fig. 8 with the spectrogram

for that day as shown in Fig. 9, it can be observed that the
algorithm correctly predicts the presence of oscillations from
0:00:00 to 5:45:46 UTC and 13:47:14 to 18:40:29 UTC.

2) Lower Energy Oscillations: In this scenario, current
magnitude data is collected from a 230 kV STATCOM that is
actively responding to an electric arc furnace in order to reg-
ulate the voltage at its terminals. Naturally, the observability
of the local controller dynamics is heavily impacted, making
it a challenging detection problem compared to the previous
case.

The impact of arc furnace is clearly visible in the cor-
responding spectrogram shown in Fig. 10. As before, the
intermittent broadband noise injected by the arc furnace can
be observed as the vertical striations in the spectrogram.

In the spectrogram in Fig. 10, the modes to be detected can
be seen at approximately 1 Hz and 2 Hz respectively, likely
as a harmonic pair. First, the PSD of the current magnitude is
calculated in 10-minute windows over a 24-hour period. Fig.
11 shows the PSD for a ten-minute window during which the
arc furnace was not operating, where the peaks of interest can
be observed around 1.2 Hz and 2.1 Hz. Meanwhile, Fig. 12
shows the PSD for a window during which the arc furnace
was in operation. In comparing the plots, it can be inferred
that the observability of the oscillations of interest is masked

Fig. 9. Spectrogram of a data stream within [1.195 Hz, 1.395 Hz] to confirm
the presence of oscillations at the frequencies and times indicated by the
algorithm.

Fig. 10. Spectrogram of a current magnitude data stream where the oscillation
has lower observability against intermittent noise from the arc furnace.

in Fig. 12 due to the arc furnace’s distortion of the spectrum.
Next, the centroids of the clusters of PSD peaks collected

over a 24-hour period are determined as shown in Fig. 13.
From these clusters, oscillations are estimated to be present
around 0.8 Hz, 1 Hz, and 2 Hz.

While oscillations centered around these frequencies can
be observed persistently for the 24-hour period analyzed, the
clustered spectral flatness plots falsely indicate that the modes
are not present between 0.943 Hz and 1.143 Hz from 12:45:47
UTC to 18:27:09 UTC and 20:42:02 UTC to 23:44:14 UTC
(Fig. 14) and between 1.919 Hz and 2.119 Hz from 17:45:06
UTC to 21:53:52 UTC. These time periods correspond with
high arc furnace activity similar to the conditions under which
the PSD shown in Fig.12 was plotted. In comparing the PSD
plots shown in Fig. 11 and Fig. 12 with the SFM plot shown
in Fig. 14, however, it can be observed that while arc furnace
activity induced an approximately +4 dB change in PSD at
frequencies without oscillatory behavior across the spectrum,
the equivalent variance in SFM was only around 0.02. This
could indicate that SFM varies less than PSD in the presence
of intermittent broadband noise, making it a more attractive
metric for oscillation detection under such conditions.



Fig. 11. PSD of the current magnitude within [0.75 Hz, 2.5 Hz] for a single
10-minute window where the arc furnace is not operating.

Fig. 12. PSD of the current magnitude within [0.75 Hz, 2.5 Hz] for a single
10-minute window where the arc furnace is operating.

V. CONCLUSIONS AND FUTURE WORK

The spectral flatness of historical PMU data and k-means
clustering methods can be exploited to detect and label oscil-
lations irrespective of the presence of intermittent, high energy
broadband noise. As shown in this work, this can be a useful
complement to coherence spectrum-based detection algorithms
when analyzing data from PMUs located near high energy
density devices such as electric arc furnaces. As oscillations
become damped and decrease in energy, however, the method
can be less reliable, which is only of concern when attempting
to automate the analysis of large-scale historical data archives.
Future work includes the further automation of this algorithm
to improve its detection capabilities and reduce the amount of
user input required in selecting data streams and frequencies of
interest. Additionally, a generic framework can be established
to apply the detection algorithm to any form of database and
analysis platform.
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