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Abstract— Model-free derivatives are essential to several 

synchrophasor applications. The standard approach to estimate 

them is to combine a smoothing operation with an ideal derivative 

computation. However, because the derivative operation 

increases the signal’s content in higher spectral frequencies which 

can undo the effect of smoothing. Ambient data also brings 

unique challenges, as mere visual inspection of the estimate in the 

time domain does not provide insight into the quality of the final 

estimate. In this regard, the underlying signal’s frequency 

spectrum can provide valuable information for designing a good 

derivative estimate. This paper introduces a framework for 

designing a model-free derivative estimate in the frequency 

domain that accounts for the system’s underlying dynamics. The 

approach is demonstrated on two classic synchrophasor analytics 

problems on measurements from the Dominion Energy system.   

Index Terms— Robust Derivative, Inertial Response, 

Synchrophasors 

I. INTRODUCTION 

Reliably estimating derivatives from measurements is a  
common task in many measurement data-driven applications in 
power systems. Estimating frequency is fundamentally a 
problem of estimating the phase angle derivative, and in 
practice, it involves a smoothing operation to remove fast 
transients [1]. While Phasor Measurement Units (PMUs) 
provide a frequency estimate derived from the measured angle, 
these estimates can vary drastically between manufacturers, 
even in ideal testing conditions and can be affected by time 
errors [2]. To this end, alternative means to compute these 
estimates can be useful for PMU applications that require 
reliable n-th order derivatives. For instance, [3] proposes using 
the rate of change of frequency (ROCOF) to detect PMU time 
errors. In addition, data-driven dynamic stability assessment 
applications involve operating on signal values at successive 
time steps. With the increasing penetration of renewable 
generation, coupled with the retirement of conventional 
generation, there is a need to track inertia, which captures the 
relationship between power imbalance and ROCOF [4]. 
Detecting voltage collapse using Lyapunov exponents [5] 

reduces to finding average voltage magnitude derivative at any 
given time compared to its value in the past. For detecting 
generator angular instability, the single and double derivatives 
of slower electromechanical angular dynamics are often used 
[6]. Similar ideas apply to frequency stability [7].  

Steady-state applications also focus on incremental changes 
(i.e. derivatives) from an equilibrium. For example, voltage 
security analysis using Thévenin equivalent [8] involves 
estimating the derivative of steady-state (slow) voltage-to-
current injection changes and therefore involves smoothing/low 
pass filter to remove dynamics. Along the same lines, there 
have also been attempts to estimate such derivatives using a 
polynomial approximation [9] and even power flow Jacobian 
from ambient data [10], which is a partial derivative of real and 
reactive power angles and voltages. 

Given that the power system operates in ambient conditions 
[4], extending standard synchrophasor analytics to ambient data 
for continuous monitoring has sparked substantial interest. For 
example, there has been a surge in interest in online inertia 
monitoring [4], which, as previously noted, is fully reliant on a 
precise estimation of the double derivative of phase angle. 
Working with ambient data presents a significant challenge 
because the signal to noise ratio is low. This makes it difficult 
to visually fine-tune the derivative design, as is commonly done 
for large signal events.    

While multiple applications depend on a signal’s derivatives, 
surprisingly, the problem of computing derivatives hasn't been 
examined in depth in the power system literature. It has only 
been investigated on a case-by-case basis in each application 
scenario and therefore, there is a lack of a generic framework 
for derivative design that can be applied to any type of 
synchrophasor signal.  Often, not much thought is given to their 
actual effect on a signal’s content. At most, data is smoothed 
before/after an ideal type of numerical differentiation. 
Numerical differentiation, if not designed carefully, increases 
higher frequencies in the estimated derivative’s spectrum, 
thereby undoing the effect of smoothing if applied previously.  



The current work proposes a derivative design framework for 
PMU applications that allows the user to account for the 
application's validity in relation to the time scale of interest, in 
order to address the numerous challenges surrounding 
derivative estimation, as well as a lack of a practical generic 
framework. Furthermore, because the framework is wholly in 
the frequency domain, it may be used with spectrum analysis 
tools [11] to build derivatives for ambient data applications, 
which has gone entirely unaddressed in the current literature. 

This paper is organized as follows. Section II of this paper 
presents the n-th derivative estimation problem, along with a 
methodology for designing its computation in the frequency 
domain. The results are obtained for multiple practical use cases 
on synthetic as well as real PMU data from Dominion System 
in Section III, while Section IV outlines future work. 

II. DERIVATIVE ESTIMATE  

A. Derivative Estimation Problem in Frequency Domain 

The existing practices in power systems often involve using 
ideal derivatives with or without a smoothing operation 
(typically, a moving average). The major challenge of reliably 
computing these derivatives can be understood by analyzing 
their effect in the frequency domain. An ideal, 𝑛𝑡ℎ  order 
derivative operation on a signal 𝑦(𝑡) results in, 

ℱ (𝑦(𝑛)(𝑡)) = (𝑗𝜔)𝑛 × 𝑌(𝜔) (1) 

where ℱ(∗) denotes the Fourier Transform of any signal. 

Observe that the gain of an 𝑛𝑡ℎ  order derivative is proportional 
to 𝜔𝑛. The higher the order of the derivative estimated, the 
more distorted the signal’s content will be at higher frequencies, 
resulting in higher frequency noise. Thus, applying numerical 
differentiation when computing derivatives can often undo the 
effect of smoothing the signal, as seen in Figure 1.  

 

Figure 1. Effect of applying an ideal derivative with moving average 

B. Ambient System Characteristics and Derivative 

Requirements 

A derivate estimate procedure should ensure that there is no 
loss of relevant information as observed in the signal while at 
the same time suppressing high frequency noise. Now, for 
ambient conditions, we will show how the information content 
of the signal can be understood to guide the derivative design. 
Power system in ambient conditions can be approximately 
modeled as a linear system driven by random perturbations. The 
frequency spectrum [11] of any general scalar output 
measurement 𝑦 in such systems can be written as, 

𝑆𝑦𝑦(𝜔) = ∑ [
𝐴𝑖

𝑗𝜔 − 𝜆𝑖
−

𝐴𝑖
∗

𝑗𝜔 + 𝜆𝑖
∗]

𝑖

 
(2) 

where 𝜆𝑖
′𝑠 are the system eigen values and 𝐴𝑖′𝑠 are complex 

constants. Note that the above can be faithfully estimated from 
the measurement data and does not require a system model. 
Now, the eigenvalues 𝜆𝑖

′𝑠 characterize the oscillatory behavior 
(modes) of the system and therefore, the output signal spectrum 
can yield insights into the time scales of the underlying 
system’s dynamics as observed in the signal. Thus, it can be 
used to understand what range of frequencies do not contain any 
information and therefore can be suppressed in the derivative 
estimate to reduce the estimate’s overall variance. This 
approach will be later on demonstrated on the real-world 
measurement data in the results.  

Here it is important to mention that while the discussion is 
focused on linear systems and small signal response of 
nonlinear systems, the same design approach can be applied for 
large signal response in nonlinear systems as well. However, in 
that case, the frequency range to retain depends on the 
underlying time scales of the system’s dynamics that are not 
straightforward to obtain as in the case of linear systems.  

C. Methodology for Designing a Robust Derivative  

Once the spectrum is estimated for the measurement signal, 
the next step is to design how the derivative of the signal is to 
be estimated. The following two design criteria are desirable:  

1. Present a similar behavior to an ideal derive (as shown 
in (1)) in frequency range where the relevant system 
dynamics are present. For e.g. < 1 Hz for 
electromechanical oscillations. 

2. Suppressing unwanted high frequency noise/ fast 
dynamics irrelevant to the application. For e.g. suppress 
frequencies above 5 Hz in the case of electromechanical 
oscillations. 

To meet these criteria, we expand the derivative design 
approach in [12], keeping in mind that it will be applied to PMU 
data. Since the derivative operator is linear in nature, it is 
realized using a linear, causal FIR filter. The output when a 
filter with window length 𝑁 and coefficients 𝑏0, 𝑏1, … . 𝑏𝑁−1 
acts on a signal 𝑦(𝑡) is given by,  

𝑦𝑓𝑖𝑙𝑡(𝑡) = ∑ 𝑏𝑘𝑦(𝑡 − 𝑘∆𝑡)

𝑘=0:𝑁−1

 

ℱ (𝑦𝑓𝑖𝑙𝑡(𝑡)) |𝜔 = 𝑌𝑓𝑖𝑙𝑡(𝜔) = (∑ 𝑏𝑘𝑒−𝑗𝑘𝜔∆𝑡

𝑘

) × 𝑌(𝜔) 

(3) 

here, sampling frequency is 𝑓𝑠 =
1

∆𝑡
𝐻𝑧. Next, assume we want 

to realize an 𝑛𝑡ℎ order derivative by appropriately choosing 
𝑏𝑘

′ 𝑠. We start by obtaining a Taylor series expansion of the 
exponential terms on the RHS at an arbitrary angular frequency 
𝜔 = 𝜔∗ to get a polynomial representation, 

∑ 𝑏𝑘𝑒−𝑗𝜔𝑘∆𝑡

𝑘

= ∑ (∑
𝑏𝑘(−𝑘∆𝑡)𝑖𝑒−𝑗𝑘𝜔∗∆𝑡

𝑖!
𝑘

) (𝑗𝜔 − 𝑗𝜔∗)𝑖  

𝑖

 

 

(4) 

Now, the first design criterion is met by matching the above 
polynomial to an ideal derivative operation, as given in (1), in 



the vicinity of 𝜔∗ = 0. For this, the first 𝑛 Taylor coefficients 
at 𝜔∗ = 0 need to be zeroed out and in addition, the coefficient 
for 𝑖 = 𝑛 term need to be equal to 1. This yields 𝑛 + 1 linear 
equations in filter coefficients 𝑏𝑘 ′𝑠. For a window length of 𝑁, 
the remaining degree of freedom for realizing the second 
criterion is 𝑚 = 𝑁 − (𝑛 + 1). The second design criterion is 
met by zeroing out the first 𝑚 Taylor coefficients evaluated at 
the Nyquist angular frequency 𝜔∗ = 𝜋𝑓𝑠. The classical two-
point derivative approach corresponds to 𝑚 = 0, i.e. a 
minimum window length 𝑁 and thus, no regards for the second 
design criterion. Figure 2 shows the transfer function 
magnitudes for those filters when compared to ideal derivative, 
which clearly demonstrates the improvement in high frequency 
suppression properties with increasing window length 𝑁. Note 
that the 𝑥 axis on the plot is normalized frequency i.e. for higher 
sampling rates, a longer 𝑁 will be needed to achieve the same 
level of suppression in absolute frequency values. For reader’s 
reference, Table I shows the derivative filter coefficients to be 
used in (3) for first and second order derivatives for 𝑓𝑠 = 1 𝐻𝑧. 

 

 

Figure 2. Robust derivatives of 1st and 2nd order 

for different window sizes 

TABLE I DERIVATIVE FILTER COEFFICIENTS 𝑏𝑘 

N First Order Second Order 

2 [1, −1] - 

3 [0.5,0, −0.5] [1, −2, 1] 
5 [

0.125,0.25,0,
−0.25, −0.125

] [
0.25,0, −0.5,

0,0.25
] 

10 
[
0.0039,   0.0273,0.0781,0.1094,

0.0547, −0.0547, −0.1094,
−0.0781, −0.0273, −0.0039

] 

 

[
0.0078,0.0391,0.0625,
0, −0.1094, −0.1094,0
, 0.0625,0.0391,0.0078

]  

 

III. RESULTS 

To demonstrate the virtues of the proposed framework, 
studies are conducted on two popular synchrophasor analytics 
problems –Thevenin equivalent for steady state voltage security 
analysis and frequency estimation from phase angle data. 
However, before showing practical application examples, 
results are also presented for a synthetic signal to analyze the 
performance of the methodology under ideal conditions. This is 

carried out because when using real-world measurements, the 
ground truth is not known beforehand. When choosing the 
appropriate window length for ambient data, the frequency 
spectrum is estimated using Welch’s periodogram [11] with 
Hanning Window and an FFT window length of 2 mins. 

A. Synthetic Ringdown Signal 

For the first test, we create a synthetic ringdown signal with 
5 Hz and 2 Hz modes with a high variance additive Gaussian 
Noise 𝜖(𝑡)~𝑁(0,1), sampled at 𝑓𝑠 = 60 𝐻𝑧  

𝑦(𝑡) = 𝑒−0.5𝑡 sin(2𝜋5𝑡) + 𝑒−0.2𝑡 cos(2𝜋2𝑡) + 𝜖(𝑡) . (5) 

This test demonstrates that while the derivative design is 
focused on suppressing higher frequencies, it provides the 
additional benefit of suppressing measurement noise due to the 
low pass filter type effect.  

 

 
Figure 3. Ringdown Signal Derivative Estimates 

The first and second order derivative estimates using the 
proposed approach for an arbitrary window size are compared 
against the classical, two-point derivative approach in Figure 3. 
Also, compared to the quality of the first order derivative 
estimate, the second order estimates are extremely poor for the 
2-point approach. This can be explained using (1), which shows 
that higher-order derivatives are more prone to enhancing high 
frequency noise. 

B. Thevenin Equivalent 

This application aims at the online monitoring of steady state 
voltage stability/security by estimating Thevenin equivalent 
from synchrophasor measurements. For the stability analysis of 
a monitored load bus, the idea behind this approach is to 
represent the remaining power grid using a constant voltage 
source 𝑉𝑡ℎ behind a series impedance 𝑍𝑡ℎ satisfying, 

𝑉𝑙𝑜𝑎𝑑(𝑡) = 𝑉𝑡ℎ − 𝐼𝑙𝑜𝑎𝑑(𝑡)𝑍𝑡ℎ   (6) 



   Under normal operation conditions, if no major changes 
occur in the power grid, (𝑉𝑡ℎ , 𝑍𝑡ℎ) do not change rapidly and 
therefore can be treated as a constant in a time window lasting 
several minutes. 𝑍𝑡ℎ  can be estimated independent of 𝑉𝑡ℎ as [8],  

𝑑
𝑑𝑡 (𝑉𝑙𝑜𝑎𝑑(𝑡))

−
𝑑
𝑑𝑡

(𝐼𝑙𝑜𝑎𝑑(𝑡))
= 𝑍𝑡ℎ  

(7) 

That being said, (𝑉𝑡ℎ , 𝑍𝑡ℎ) are supposed to represent the 
response of the grid to slow (quasi-steady state) changes only. 
However, the power system does not have a flat frequency 
response. This implies that the estimate for 𝑍𝑡ℎ obtained using 
the above equation is very sensitive to the dynamic nature of 
the load current 𝐼𝑙𝑜𝑎𝑑(𝑡), which poses an issue. 

Now, to mimic realistic operating conditions, we create a 
synthetic data set with the load current 𝐼𝑙𝑜𝑎𝑑(𝑡) gradually 
ramping up along with a small, additive, poorly damped 
oscillation at 0.8 Hz. The response of the power grid to such a 
signal is given by a frequency-dependent impedance 𝑍𝑡ℎ with a 
value of 0.2 pu below 0.1 Hz (slow dynamics) and 0.5 p.u. 
above it with a smooth transition. 𝑉𝑡ℎ is set to a constant 1 p.u. 
Gaussian measurement noise ~𝑁(0,10−4) is added. The results 
when using a standard two-point derivative (𝑁 = 2) are 
compared against robust derivative with 𝑁 = 12  Firstly, the 
spectrum for the estimated current derivatives is plotted below. 

 
Figure 4. I and d/dt(I) Spectrum 

It can be seen from the current magnitude spectrum that the 
effect of slow ramping is restricted to < 0.2 Hz while the 
oscillation is around 0.8 Hz. This is typical of practical systems 
where the underlying dynamics are usually separable in the 
frequency domain. Also, observe that the derivative estimates 
are the same up to 0.3 Hz beyond, which the longer window 
derivative suppresses the faster dynamics.  

 
Figure 5 Thevenin Impedance Estimates 

Next, we plot the Thevenin Equivalent estimate obtained 
from (7) using the estimated derivatives. As expected, the two-
point derivative gives a wrong estimate for 𝑍𝑡ℎ due to it also 

capturing the interaction of 0.8 Hz components of 𝑉 and 𝐼, 
while increasing the window size yields a better estimate by 
filtering out that portion. 

C. Frequency Estimation from Phase Angle Data 

By definition, frequency represents the first-order derivative 
of phase angle. While the IEEE C37.118 standard on 
Synchrophasor Measurements in Power Systems [13] 
standardizes the phase angle calculation, it does not prescribe 
how to estimate frequencies. Most PMU algorithms approach 
frequency estimation by averaging the derivative calculation 
over a multi-cycle window of data, to remove the effect of 
measurement noise and transients [1], yielding a response 
similar to Figure 1. However, there are substantial differences 
in how each manufacturer implements it resulting in different 
results even under ideal conditions [2], which become 
particularly prominent when studying small-signal response in 
ambient data. Furthermore, frequency estimates can be plagued 
with significant quantization errors, which makes them even 
less trustworthy. Therefore, in a practical system with multiple 
devices from different manufacturers, it is preferable to not 
directly use frequency estimates from the various PMUs, which 
makes a posteriori frequency estimation from phase angle an 
important problem. 

 
Figure 6. Phase Angle Spectrum 

For the present study, a parcel of 20 min phase angle 
measurements was taken from two synchrophasor device 
manufacturers at different substations (A and B, respectively). 
Figure 6 shows the absolute phase angle spectra in the 0-5 Hz 
range. The initial part, <1 Hz, has a curved spectral baseline due 
to the absolute phase angle drifting from the 60 Hz power 
system frequency. There are also sharp peaks at 1, 2 and 4 Hz. 
Based on a prior analysis[14], these are not physical modes but 
the effect of periodic phase angle corrections made internally 
by the PMUs to account for clock drift. Note that only 
frequencies below 5 Hz are of interest. 

Substation A’s spectrum shows spectral peaks around 0.5 
Hz, 1.5 Hz, and 2.5 Hz. These are a result of mechanical rotor 
oscillations from a combined cycle power generation plant. 
Below, we compare the frequency estimate encoded inside the 
device (in blue, DFR) and reported as synchrophasor data with 
different robust derivative options differing in window lengths. 

The estimated gain of the device’s internal frequency 
calculation stays close to an ideal derivative up to 0.4 Hz, 
increases from 0.4-0.6 Hz, and beyond that, rolls off. The gain 
continues to bounce beyond 1 Hz, loosely similar to that of a 
moving average with an ideal derivative (see Figure 1). It 
neither annihilates the unwanted frequencies nor resembles a 



derivative in the retained frequency range. A good derivative 
estimate will closely match an ideal derivative-like operation 
for the frequency ranges with dynamics of interest, while at the 
same time annihilating everything at higher frequencies. From 
the plot in Figure 7, to account for electromechanical 
oscillations up to 2.5 Hz, 𝑁 = 4 can be a good choice for the 
robust derivative with better characteristics than the frequency 
computed from the actual PMU device. 

 

Figure 7 Frequency Estimates Substation A 

 
Figure 8 Frequency Estimates Sub B 

At Substation B, the device’s internal frequency estimate is 
loosely similar to an ideal derivative up to 0.2 Hz, beyond 
which it increases until 4 Hz and then rolls off gradually. 
However, the quality of the derivative is poor. This can be seen 
in Figure 9 by comparing the estimates in the time domain 
where even a simple two-point derivative (orange) is less noisy 
than the device’s own estimate. 

 
Figure 9 Time derivatives with N=2 & 18 compared to DFR 

Finally, based on the phase angle spectrum, since there isn’t 
much information beyond 1 Hz at this location, a more 
aggressive approach can be taken, using a longer derivative 
window of 𝑁 ≥ 18 for which case, the gain roll-off starts close 
to 1 Hz, as shown in Figure 8. However, this results in a larger 
phase shift due to the causal nature of the filter, which is an 
acceptable tradeoff. That being said it is important to highlight 
that the requirement for a causal derivative filter is only relevant 
for online applications. On the other hand, for applications 
allowing for time delays such as offline analysis or most PMU 
control center applications, which operate using rolling 

windows of data, a noncausal derivative can be designed with 
an additional constraint that minimizes the phase lag. 

IV. DISCUSSION AND FUTURE WORK 

In this work, a framework for designing derivatives in the 
frequency domain is presented. This framework enables 
designing derivatives guided by the time scale of dynamics of 
interest in the underlying system while suppressing high-
frequency noise. Future work will explore the use of this 
approach for state estimation for new monitoring applications. 
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