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Abstract—System identification techniques are incredibly valu-
able for power system applications. Recent techniques have
explored the optimal design for excitation signals in order to
maximize an objective function related to an identification pro-
cedure. In this context, this paper presents a framework for the
deployment of optimal experiment design in power systems using
real-time simulation-based experiments. As a first step towards
hardware-in-the-loop prototyping of probing experiments, power
system models designed with Modelica are exported via FMI
standard for deployment in real-time simulators. Results from the
real-time simulator show optimized probing signals and provides
insights on the chosen optimization weights. The portability of
the studied model allows the identification technique to be tested
in the real-time simulator environment for probing signal design
optimization before field experiments are conducted.

I. INTRODUCTION

Modern power systems need to comply with very unyield-
ing performance standards due to reliability concerns and,
therefore, careful analysis on these networks is carried out.
Traditionally, these analyses are conducted relying on mathe-
matical models of power networks from proprietary software
tools that, in the past, have been shown to capture the main
dynamics that should be observed in measurements made in
the field [1]. However, this task is becoming more arduous
as the power system scale and complexity increases, specially
when new power electronic devices are connected to the grid
as part of the on-going energy transition.

In order to assist engineers in this difficult task, advanced
mathematical techniques have been applied for system identi-
fication in power networks. This allows engineers to improve
their models while relying on field measurement data being
observed in the real power grid. In the past, simulation-
based studies to use those techniques were implemented by
simulating ambient noise [2] due to load changes, for example
[1]. The main reason behind that is because experiments to
inject test signals could need careful planning to avoid any
potential danger that would compromise the safe operation of
the network, consequently, their cost is non-negligible.

To date, many different experiments have been safely con-
ducted with the injection of probing signals for the purpose
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of identification. Results have shown that depending on the
design of the excitation signal, the quality of the estimation
will vary. Experiments have been conducted with standardized
excitation signals which are manually chosen to be applied
in real-world networks for damping estimation [3] or general
network characterization [4]. However, when applying an
excitation signal with frequency content close to a critical
mode frequency, the oscillations might become dangerously
large [5]. Hence, there is an obvious necessity to carefully
select the frequency content of the excitation signal in order
to guarantee a good estimation quality, while maintaining the
grid in a safe operating condition.

This motivates the study of optimized signals that are
designed to excite the system while minimizing the impact
on the power system. Previous research has addressed this by
pre-filtering excitation signals before injecting them, aiming to
minimally impact the network [6], [7]. Moreover, multi-sine
signals can be optimized to obtain excitation signals with small
amplitudes while having pre-determined power spectrum [8]
or to produce minimal network disturbance while ensuring an
appropriate damping estimate [9], [10].

The aforementioned previous studies have been carried
out using off-line simulators, where the probing signal and
actuator are also simulated. Naturally, this approach will not
be able to address issues related to real-world signal realization
in hardware and the actuator’s response in real-time as it is
applied in the field. To address such issues, the real-time (RT)
hardware-in-the-loop (HIL) approach can be exploited [11].
This paper takes a first step to address this gap, it presents an
optimal probing design using Modelica [12] and the Functional
Mock-Up Interface (FMI) standard [13] to create a RT simula-
tion prototype to test the probing design solution in hardware.
The real-time experiment allows many experiments to be
performed with a high fidelity for the assessed measurements
that are obtained from the RT simulation. We exploit the
portability of the Functional Mock-up Units (FMUs) to reduce
the need of model re-implementation between off-line and RT
design tasks, which allows to use different software platforms
with minimum effort. In this study, the RT experiment is
conducted using a dSPACE SCALEXIO LabBox.

This paper is organized as follows: Section II summarizes all
the fundamentals about system identification used in this work;
Section III describes the models in Modelica, their export



using FMI and how they are implemented in the RT simulation
experiment set-up; Section IV presents the results obtained in
the experiment while Section V draws the final remarks of this
work.

II. POWER SYSTEM IDENTIFICATION

A. Network Dynamics Description

The nonlinear dynamic process that defines a general elec-
trical power network can be written as{

ẋ(t) = f(x(t), u(t), w(t), t),

y(t) = g(x(t), u(t), v(t), t),
(1)

where f(·) and g(·) are unknown time-varying nonlinear
functions, t is time, x(t) ∈ Rnx is the state variable of the
network, u(t) ∈ Rnu are the control or excitation signal,
y(t) ∈ Rny is the measurement variable and w(t) ∈ Rnw

and v(t) ∈ Rnv are the non-measurable process and the
measurement noise, respectively. Notice that the latter comes
from the actual measurement devices and it only affects y(t),
while w(t) acts on the states and therefore, it changes the
dynamic behavior of the network.

B. System Identification

System identification aims at finding a continuous- or
discrete-time reduced order model that describes the dominant
characteristics from Eq. (1). This identified model can be
described by{

˙̂x(t) = f̂(x̂(t), u(t), ŵ(t), θ̂N (t)),

ŷ(t) = ĝ(x̂(t), u(t), v̂(t), θ̂N (t)),
(2)

where y(t) and, potentially, u(t) come from Eq. (1), the
reduced state vector is x̂(t) ∈ Rnx̂ (nx̂ << nx), the identified
parameter vector is θ̂N ∈ Rnθ , the estimations of process is
ŵ(t) and measurement noise is v̂(t), and N is the amount
of data points are used in the identification procedure. Noise
terms are also used to model uncertainty, discretization errors
and non-modeled dynamics.

Generally, linear system identification techniques are attrac-
tive due to their simplicity and, in this work, a black-box-based
system identification technique called Predictive Error Method
(PEM) is employed [14], [15]. It estimates Eq.(2) as

ŷ(k) = Ĝ(z, θ̂N )u(k) + Ĥ(z, θ̂N )e(k)︸ ︷︷ ︸
v̄(k)

, (3)

with z ∈ C, Ĝ(z, θ̂N ), Ĥ(z, θ̂N ) discrete-time transfer func-
tions and k the discrete time. Note that in (3), the process
and measurement noise are modeled together in v̄(k) with un-
known e(k) zero-mean white noise. In addition, with PEM the
number of poles and zeros in (3) are pre-defined by the analyst.
The variance of the frequency response of Ĝ(z, θ̂N ) [16] can
be approximated by

variance
(
Ĝ(ω, θ̂N )

)
≈ nx̂

Φv(ω)

NΦu(ω)
, (4)

with nx̂ the user-defined model order of G(z, θ̂N ), frequency
ω and Φv(ω),Φu(ω) the power spectrum of the noise v̄(k)

and excitation signal u(k), respectively. Note from in (4) that
increasing N or the power level of the excitation signal will
lead to a decreasing variance.

The identification procedure employed in this work uses an
objective function in order to measure how well the model
fits the experimental data. The identification criterion used is
shown in Eq.(5).

V (ŷ(k), y(k), u(k), θ) =
1

N

N∑
k=1

ε2(k, θ). (5)

The parameters of Ĝ(ω, θ̂N ) are estimated by solving

θ̂N = arg min
θ

V
(
ŷ(k), y(k), u(k), θ

)
, (6)

where the residual ε(k, θ) is defined as

ε(k, θ) = H(z, θ̂N )−1
(
y(k)−G(z, θ̂N )u(k)

)
. (7)

C. Optimal Experiment Design

The goal in this paper is to accurately estimate a
measurement-based reduced order model of the power system
capable of representing its electro-mechanical dynamics by
applying a probing signal to an available input u(t), similar
to [8], with the additional requirements of limiting the variance
of θ̂N while minimizing the power of u(t) and y(t).

To achieve this goal, the model structure adopted to study
the power network is presented in [10] and it assumes that
a mode can be represented by the sample period h and by
the pair (ζi, ωn,i), where the former is the damping and the
latter is corresponding frequency of mode i ∈ [1, ni], with ni

being the number of modes.The optimized signal u(t) should
ensure an upper bound on the variance of θ̂N , i.e. (ζ̂i, ω̂n,i),
while minimizing the power in the excitation signal u(t) and
measurement y(t) [10]. The optimized u(t) is, assuming an
ARMAX model structure, found by solving

min
A2

r(r=1,...,M)

c1·power in u(t)︷ ︸︸ ︷
c1
2

M∑
r=1

A2
r +

c2·power in y(t)︷ ︸︸ ︷
c2
2

M∑
r=1

A2
r

∣∣Ĝ(ωr, θ̂N )
∣∣2,

subject to : variance(ζi) < ηi, for i = 1, . . . , ni,

A2
r ≥ 0, for r = 1, . . . ,M,

(8)

with user-defined frequency grid ωr for r = 1, . . . ,M and
ηi is the analyst-defined upper-bound to this damping value
ζi. Weights c1 and c2 allow the analyst to target either the
minimization of the power in u(t) or y(t). The multi-sine
optimized excitation signal u(t) is, then, defined as

u(t) =

M∑
r=1

Ar cos(ωrt+ φr), (9)

where φr is the phase of the sinusoidal component defined by
the analyst. Its power spectrum is defined as

Φu(ω) =
π

2

M∑
r=1

A2
r [δ(ω − ωr) + δ(ω + ωr)] , (10)



with δ(·) the Dirac function. Note that while frequency ωr and
phase φr are analyst-defined, the amplitude Ar is found via
the optimization of Eq. (8) for all frequency points in the grid
ωr. Moreover, observe that by using the multi-sine signal in
Eq. (9) it is relatively simple to reduce the identified model’s
variance for a determined frequency of interest. It is also easy
to reduce the power of u(t) at high frequencies, which allows
to minimize potential interference with other dynamics whose
frequency are outside the target range for identification.

D. Model Validation

After the optimal experiment is conducted, it is necessary
to validate the identified model by investigating its statistical
properties. As shown in Eq. (4), PEM provides mathematical
expressions for an estimation of the model’s variance. This
property can be used to assess if the identified model satisfies
the specified criteria. Moreover, time-domain data is compared
in order to produce a fit value between collected validation
data yval(t) and the identified model’s output ŷ(t), as

fit =
[
1− (yval(t)− ŷ(t))2

(yval(t)− µyval)
2

]
· 100%, (11)

where µy the mean of the validation data yval(t). To avoid over-
fitting, validation and identification data should be distinct.

III. REAL-TIME EXPERIMENT SETUP

In this study, two experiments are conducted. Each exper-
iment has different weights c1 and c2 and two batches of
data, because Eq. (8) requires an identified ARMAX model
for optimization. The first batch applies an excitation signal
u(t) selected by the analyst and that has not been optimized.
The amplitudes Ar during this first batch are manually chosen
such that a validated initial model is obtained, which can be
used in (8). Note that the values of Ar cannot be smaller
than a threshold, otherwise the resulting model would not be
a validated one and, therefore, cannot be used in (8). The
resulting identified model is then used to find the optimized
excitation signal, which is then injected in the network when
the second batch is being acquired, and is used in the identi-
fication procedure. In this context, the RT simulator is useful
for creating a first ARMAX model without actually injecting
signal into a real network.

Although real power networks are typically very large,
this experiment considers a much simpler example system in
order to demonstrate the RT experiment set-up. The Single
Machine Infinite Bus (SMIB) test network consists of very
few elements: three buses, two lines, one transformer and one
machine. Its diagram is shown in Fig. 1a, while its Modelica
implementation using the OpenIPSL [17] is shown in Fig. 1b.

To inject signals during the RT simulation, using the model
in Fig. 1b and the target in Fig. 2, there are four external
inputs that are made for process noise w(t) injection. The
input in Bus 1 is used to emulate ambient operating conditions,
by statistically varying the apparent power using a Gaussian
noise with mean µ = 0 and standard deviation σ = 0.01. This
noise source is intended to mimic the random load changes
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(a) Single-line diagram for the SMIB system.

(b) Modelica implementation of the SMIB system exported as an FMU.

Fig. 1. Single Machine Infinite Bus (SMIB) system and its implementation
in Modelica for FMI standard export.

that occur in a power system, acting as a constant low-level
excitation to the electromechanical dynamics. It is chosen in
this paper to be a white Gaussian in accordance to [3].

Meanwhile, for the probing signal, the pairs of inputs
are connected to multi-sine injection blocks, which are then
coupled to the buses. In Bus 2, the multi-sine signal is injected
as reactive power and acts as the exciting signal u(t), while the
block connected to Bus 1 has a gain of zero, which means that
it is inactive in these experiments. As mentioned before, in the
first batch (first 60 seconds), the multi-sine signal is manually
selected. The last 60 seconds (second batch) corresponds to the
optimized input signal. Signal u(t) aims to provide a model of
what could be realized in the field by modulating the output
of a Static Compensator (STATCOM). The output vector y(t)
is the angle difference between two nodes of the network (1
and 2). Measurement noise would be naturally added from the
device measuring the Real-Time simulator outputs.

Fig. 2. Set-up for real-time simulation of Modelica models exported via the
FMI standard.

The Modelica implementation is exported as a Co-
Simulation (CS) FMU, which contains the source code for
the model and a C-language variable-order ODE (CVODE)
numerical solver, with tolerance 10−4. The FMU is loaded
into dSPACE’s ConfigurationDesk (dCD) installed in the host
computer where the model is configured. The noise w(t) is



Fig. 3. Above: manually chosen excitation signal (first batch of 60 seconds) and optimized excitation signal (second batch from 60 seconds to 120 second).
Below: measurements (blue) and output of the identified model (red) for Case One. Note that the depicted signals are relative to a nominal value.

Fig. 4. Above: manually chosen excitation signal (first batch of 60 seconds) and optimized excitation signal (second batch from 60 seconds to 120 second).
Below: measurements (blue) and output of the identified model (red) for Case Two. Note that the depicted signals are relative to a nominal value.

created in MATLAB. Both the FMU and the MATLAB model
are within the dCD (i.e. in software), a time-step of 1 ms
is selected and the model is built and loaded into a dSpace
SCALEXIO LabBox. The physical set-up is depicted in Fig. 2,
where the host desktop computer is highlighted in orange
while SCALEXIO LabBox is highlighted in green.

The data obtained from the RT simulator is re-sampled
and its trends and mean are removed before it is used for
system identification. Moreover, the selected model structure
for identification has 3 poles and 3 zeros.

IV. CASE STUDY RESULTS

A. Case One

With c2 = 0, the optimization in Eq. (8) only minimizes
the power in u(t), while ensuring the upper bound ηi on the
variance of the damping’s estimation. The amplitudes of the
multi-sine are depicted in Fig. 5 for the first (blue) and second
batch (red). Clearly, the second batch contains less power
content in u(t), which is due to the optimization of Eq. (8).
In fact, the power content of the excitation signal during the
second batch is approximately 80% lower than during the first
batch, where the excitation signal is manually chosen. The
upper bound on the variance is selected in such way that the
variances of the first and second batch are equivalent and set
to an acceptable level.

The time domain results of the excitation signal u(t) and
measurement y(t) are depicted in Fig. 3. The ordinate axis
in y(t) represents the percentage of deviation from nominal
operation, which means that the experiment deviates less than

Fig. 5. Blue dots: manually chosen amplitudes of the multi-sine during the
first batch. Red dots: optimized amplitudes of the multi-sine during the second
batch for Case One.

2% from normal operating condition. The upper plot in Fig. 3
represents the manually chosen excitation signal from 0 to
60 s and the optimized input from 60 to 120 s. In the lower
plot, the identified model’s output, ŷ(t), is presented in dashed
red, while the measurements taken from the RT simulator are
presented in blue. The fit calculated with11 is 96.5% in this
case, while the cross validation between first and second batch
has a fit of 89.6%. More importantly, the lowest damping
value is estimated at 0.082 at frequency 1 Hz, while the true
damping value is 0.079 at frequency 1.1 Hz, showing that
the model is valid. In fact, note in Fig. 5 that the optimized
u(t) signal has most of its power content around 1 Hz, since
exciting the network at that frequency yields more information.
Furthermore, it is observed that the power content in y(t)
increases with approximately 20% during the second batch
relative to the first batch. This is in fact undesired and can be



improved by introducing the weight c2.

B. Case Two

Next, the second weight is selected to be c2 = 103 and
hence the power in both u(t) and y(t) is minimized, while
the upper bound ηi on the variance of the damping estimation
is ensured. The manually chosen amplitudes, in blue, and the
optimized ones, in red, are shown in Fig. 6. Once again, the
second batch contains less power in u(t) compared to the
power in the first batch, which is due to the optimization of
the excitation signal.

Fig. 6. Blue dots: manually chosen amplitudes of the multi-sine during the
first batch. Red dots: optimized amplitudes of the multi-sine during the second
batch for Case Two.

The time-domain results for this experiment are shown in
Fig. 4. The ordinate axis represents a percentage of deviation
form nominal operation, the upper plot represents u(t), while
the lower plot shows the real measurement value y(t), in blue,
and the identified output ŷ(t), in dashed red. The identified
output has a fit of 96.2%, while the cross validation between
batches gives 90.7%. The damping value is estimated at 0.08 at
frequency 1 Hz, while the true value is 0.079 at frequency 1.1
Hz. Here, the power content from the optimized u(t) (second
batch) is 40% lower than the manually chosen excitation
signal (first batch), while the power content in the measured
signal increases by ≈ 12% compared to the first batch. Even
though this is an increase, this is still a reduction of 40%
compared to the first case (where c2 = 0). In both cases,
an equal upper bound on the variance of the damping is
ensured, so no relaxation on the estimation’s precision has to
be introduced in order to change the power content in u(t) or
y(t). Consequently, the power in the excitation signal in Case
Two is increased during the second batch compared to Case
One. This implies that, in order to obtain a certain accuracy for
the damping estimation, it is possible to reduce the power in
the measurement (deviation from nominal operation) by tuning
the ratio c1/c2. Although it is then possible that the power
content in the excitation signal increases. This implies that,
via the optimization defined in Eq. (8), a clear trade-off can be
made in the power content of the measurement and excitation
signal, while ensuring accurate damping estimations.

V. CONCLUSIONS
This paper presents a framework for designing real-time

hardware-in-the-loop experiments using Modelica and the FMI
standard. Such a framework allows for relatively easy testing

of system identification techniques before real field testing
is performed. The Modelica model of the network is built
using the OpenIPSL and the exported FMU is loaded into
SCALEXIO LabBox for RT simulation. The system identifica-
tion technique with optimized input signals was implemented
and performed successfully. The first conducted experiment
showed that it is possible to optimize u(t) in terms of
minimizing the power of the probing signal, just by adjusting
the weight c1. The second case had a power increase in u(t)
compared to the first. However, the power in y(t) is reduced
substantially, thereby minimizing the impact on the power
network. This is thanks to the introduction of the weight c2.
The experiment demonstrates that the weights c1 and c2 allow
the user to choose for more/less power in u(t) or y(t), while
ensuring precise damping estimations.
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