
ML-Based Edge Application for Detection of
Forced Oscillations in Power Grids

Sergio A. Dorado-Rojas, Shunyao Xu, Luigi Vanfretti
Electrical, Computer, and Systems Engineering

Rensselaer Polytechnic Institute
Troy, NY, USA

{dorads, xus, vanfrl}@rpi.edu

M. Ilies I. Ayachi, Shehab Ahmed
Electrical and Computer Engineering

King Abdullah University of Science and Technology
Thuwal, Saudi Arabia

{mohammed.ayachi, shehab.ahmed}@kaust.edu.sa

Abstract—This paper presents a Machine Learning (ML)
solution deployed in an Internet-of-Things (IoT) edge device
for detecting forced oscillations in power grids. We base
our proposal on a one-dimensional (1D) and two-dimensional
(2D) Convolutional Neural Network (CNN) architecture, trained
offline and deployed on an Nvidia Jetson TX2. Our work
also shows the advantages of optimizing the CNNs models,
after training, using TensorRT, a library for accelerating deep
learning inference in real-time. Both real-world and synthetic
measurement signals are employed to validate the applicability
of the proposed approach.

Index Terms—Convolutional neural networks, forced
oscillations, NVIDIA Jetson TX2, TensorRT, real-time detection

I. INTRODUCTION

Power system oscillations are generally classified as free and
forced. Free oscillations appear as the system’s response, for
instance, to accommodate a change of loads. Free oscillations
are structural to the system dynamics. In contrast, forced
oscillations occur when exogenous stimuli with a rich enough
spectral component (e.g., cycle-limited control actuation [1],
or periodic disturbances [2]) excite the system, thus producing
oscillating modes [3]. While different control systems such
as the Power System Stabilizer (PSS) aim at attenuating
the effects of free oscillations, forced oscillations could lead
to system-wide cascading outages if the excited modes are
unstable [4]. The only remedial action is to disconnect the
equipment that causes the oscillation or drastically reduce its
output power, as in the case of wind farms [5].

Several detection methods have been proposed given the
adverse potential of forced oscillations on the grid (e.g.,
[6]). In [7], a novel multi-delay self-coherence method using
data measured by Phasor Measurement Units (PMUs) is
designed not only to detect but also to locate the source
of a forced oscillation. The reader is referred to [8] for a
comprehensive review of such techniques. Meanwhile, [9]
provides a suppression control method that can automatically
induce a power injection into the power grid to compensate
for the impact of the forced oscillation.

This work was funded in part by the New York State Energy Research and
Development Authority (NYSERDA) under grant agreement numbers 137951
and 137940, and in part by the Center of Excellence for NEOM Research at
King Abdullah University of Science and Technology.

Most oscillation detection proposals consist of a chain of
signal processing stages such as noise removal and filtering
(e.g., [5]). While some of these techniques have proven
effective, their computational efficiency is constrained by the
complexity of intermediate calculations. Overcoming this time
requirement is crucial if such algorithms are deployed as real-
time detection pipelines. Even more importantly, if they are
to be deployed at the edge. Some recent contributions have
addressed the online performance of detection methods (e.g.,
[10], [11]). For instance, the detection algorithm in [12] takes
1.7 s to process and label a forced oscillation. In, [13], the
detection time is about 350 ms. From the commercial point
of view, [14] presents a set of detection methods including
patented solutions now implemented in commercial relays. In
summary, it is natural to question if most signal processing-
based solutions are also feasible for real-time deployment.

Machine Learning (ML) algorithms show promising
potential as data-driven methods for oscillation detection (see
[15], [16]) and efficient real-time deployment while harnessing
Graphical Processing Unit (GPU) power. Nowadays, ML
models can be easily optimized offline using existing data,
which is known as training. The trained model can be
deployed in Internet-of-Things (IoT) devices at the edge to
process measurements directly. IoT devices are equipped with
a Graphics Processor Unit (GPU). GPUs allow ML models
to be executed in real-time efficiently [17]. Like the NVIDIA
Jetson TX2, IoT devices have been proven effective for real-
time ML-based solutions. Successful case studies arise from
applications such as depth reconstruction from images [18],
and face recognition [19] among others. That being said, the
purpose of this work is to make the case that ML-based
models are feasible solutions for real-time pipelines for forced
oscillation detection at the edge, e.g., as part of a new type of
protective relay.

Previous works regarding ML for oscillation detection
have focused on developing and deploying the algorithm
on a computer, either for offline or real-time detection.
Such “server-centered service” adds the requirement of a
communication network for ambient data collection. An
example of this is shown in [10] where an oscillation
detection method based on an improved XGboost algorithm
and random power system measurements is introduced. The

trained model is applied to online oscillation detection of a
power system, with the algorithm running on a computer. So,
if the algorithm were to be deployed for real-time detection,
data must be streamed through a communication network.
Likewise, in [11], an ML algorithm based on regularized
exponential forgetting is proposed. The solution is suitable
for non-stationary data analysis. The model is deployed on
a conventional computer, so measurements such as currents,
voltages, and angle differences must be transmitted through a
communication network to apply it to real-time ambient data.

Data transmission from client to server introduces
further delays into the overall detection process, and
consequently, practically reduces the computational efficiency
of any algorithm. Therefore, deploying ML-based oscillation
detection algorithms on edge devices becomes more relevant.
As an advantage, it bypasses the communication stages
directly and can work with measurement data on sites near
potential sources (e.g., wind farms [14]). To fill this gap,
this paper introduces a method and presents an ML-based
approach for oscillation detection at the edge deployed on an
NVIDIA Jetson TX2. The proposed method can detect forced
oscillations accurately using real-time measurements directly
while efficiently processing the data with the built-in GPU.
We must underline that the core of the contribution is proving
the potential of edge devices as means for real-time inference.

The paper is organized as follows: Section II describes the
procedure to train 1D- and 2D-Convolutional Neural Networks
(CNNs). In Section III, we present how the trained models are
downloaded to an NVIDIA Jetson TX2 for real-time execution
using TensorRT . The inference results on ambient data
from a wind farm streamed in real-time are discussed in
Section IV. Finally, Section V concludes the work.

II. CNN MODEL DESCRIPTION AND TRAINING

A. Foundations of CNNs

CNNs are models inspired by the human eye’s mechanism
to extract visual details. CNNs mimic the structure of receptive
fields by allocating specialized neurons to detect features in
specific parts of an image. So, a CNN swipes an image looking
for local similarities and then filters out the high-level or global
features [20]. Feature extraction allows CNNs to discriminate
raw data into several categories (i.e., similar images have
similar characteristics). Therefore, they exhibit outstanding
performance on image classification tasks.

We seek to assess the potential of CNNs for forced
oscillation detection in two flavors: one-dimensional (1D) and
two-dimensional (2D) CNNs. The former architecture uses the
measurement data as an input time series. At the same time,
the latter sees the ambient data as images.

Both CNN models are developed in Python using the
TensorFlow framework and the Keras API. As we will see
in Section III, TensorFlow offers a direct path to deploy
trained models in hardware using the Software Development
Kit (SDK) TensorRT .

B. Training and Validation Data Set Construction

To build training and testing data sets, we used
measurements from a wind farm in Oklahoma [5]. The
information comes from PMU recordings of voltage, current,
and frequency during various oscillation episodes, which
utility workers classified. In Fig. 1, an example event spanning
≊ 12.5 min = 750 s and features a forced oscillation is
shown. We divide the signal into 1 s windows, each window
containing exactly 31 samples (there is a one-sample overlap
between consecutive windows). By doing so, we generate
≊ 750 instances from each recording at a particular location,
where an instance corresponds to a 1 s window. Examples of
training instances can be seen in the 1 s frames in Fig. 1.

Fig. 1. Sample of training PMU data (dotted vertical lines indicate the event
inset and offset).

C. 1D-CNN Model

A 1D-CNN performs a temporal convolution on the input
data through several kernels. Besides the dimensionality of the
input, the principles behind the operation of a 1D-CNN are
the same as conventional 2D-CNNs. This model is included
since it is more intuitive to the power engineer because the
underlying data set is a one-dimensional time series. Table I
presents a summary of the CNN architecture. All kernels used
have a size of 3.

TABLE I
1D-CNN MODEL SUMMARY

nlayer Layer Type Output Shape nparameters

1 conv1d (None, 29, 64) 256
2 conv1d (None, 27, 64) 12352

3 max_pooling1D (None, 13, 64) 0

4 dropout (None, 13, 64) 0

5 flatten (None, 832) 0
6 dense (None, 100) 83300
7 dense (None, 2) 202

Trainable Parameters: 96110

The input is first processed by two convolutional layers
(layers 1 and 2), each carrying out a weighted convolution
operation with 64 filters. A ReLu function is employed as
activation in both layers. After the first two activations, a
maxpooling1D (layer 3) improves the robustness of the

network to noise by effectively decreasing the number of
features and selecting the most prominent ones. A dropout
layer (layer 4) is added right after the pooling layer to
prevent further overfitting (i.e., it restricts the network from
“memorizing” patterns seen in the training instances). The
flatten layer (layer 5) converts the multi-dimensional tensor
to a one-dimensional vector. This vector is passed to a fully
connected layer (dense , layer 6) with 100 neurons and a
ReLu activation. Finally, another fully connected layer (layer
7) with a softmax activation σ is used to give a probabilistic
interpretation to the network output y. Let z = [z1 z2]

T be
the input to the last layer, then

y = argmax
[
σ

([
z1
z2

])]
= argmax

 ez1

ez1 + ez2
ez2

ez1 + ez2

 (1)

The output encoding is as follows: 1 means an oscillation
detected from the input data. At the same time, 0 represents
that no oscillation is identified from the passed time window,
and thus the power system is safe. The loss function for
parameter optimization corresponds to a categorical cross-
entropy, as commonly done in classification problems. A
visual illustration of the 1D-CNN model is presented in Fig. 2.
Training and validation results are shown in Fig. 3.

Fig. 2. Illustration of the 1D-CNN model.

D. 2D-CNN Model

In contrast with the 1D-CNN model, the 2D-CNN model
takes images as inputs. The operation, however, is similar
to the one of the 1D-CNN network, and thus, a detailed
explanation is therefore omitted.

The plots (as RGB images) of the time series data are
used as training and validation inputs, such as the one-second
windows in Fig. 1. The architecture is illustrated in Fig. 4.

By inspection, it is straightforward to notice that the 2D-
CNN model is more complex than the 1D-CNN, having a
significantly larger number of parameters (cf., n2D-CNN

parameters =
2222690 and n1D-CNN

parameters = 96110) and more layers (cf.,

n2D-CNN
layers = 19 and n1D-CNN

layers = 7). For this reason, the number
of training instances has to be considerably larger to achieve
significant performance.

Fig. 3. Training and validation results for 1D-CNN.

Fig. 4. Architecture of 2D CNN Model.

Fortunately, the image-based approach of the 2D-CNN
allows performing data augmentation. In this case, random
transformations of the images (such as rotations and noising)
are carried out to expand the number of training and validation
instances, important for this problem due to the low number of
training instances and a large number of training parameters.
Augmentation is performed automatically by the TensorFlow
function ImageDataGenerator .

Training and validation results can be seen in Fig. 5. Notice
that, since the number of parameters is larger, the model needs
to be trained for more epochs. For either architecture, given
the low number of data instances for this problem, a large
number of epochs would be initially thought of as ideal to
maximize data utilization. The number of epochs is such that
the network finds a “sweet spot” where inference performance
is not constrained by overfitting. So, the number of epochs is
set to be a maximum of ≈ 300. The resulting model will
therefore be used for inference.

III. CNN MODELS OPTIMIZED BY TENSORRT

Once the CNN models have been trained offline (i.e., on
a computer or server), the next step is to prepare them for

deployment in a target for real-time inference. The library
TensorRT is used to convert the model from frameworks

such as TensorFlow/Keras and PyTorch to CUDA-compatible
code, to be deployed to the target device. The target for our
study is the NVIDIA Jetson TX2. For this work, the CNNs
were developed in TensorFlow, so the trained models can be
exported either as *.hdf5 files or *.h5 files. The former
format is preferred since fewer intermediate steps are required
to import the model within the TensorRT library.

Fig. 5. Training and validation results for 2D-CNN.

The conversion and code optimization process is outlined
in Fig. 6. As mentioned before, the first step is to save the
trained models in a suitable format such as .hdf5 (for the
model weights; so the model would have to be rebuilt and
saved) or .h5 (for the full model). The trained model is then
saved to the TensorRT -compatible format .pb . Once in
TensorRT , the model could be deployed directly to the

target, but an additional optimization process can be carried
out to improve real-time performance.

TensorRT counts with a set of optimization routines
to improve inference performance (i.e., the time it takes to
complete inference provided inputs to the model). As part of
the actions, while optimizing the code, layers with unused
outputs are removed, operations with similar parameters are
combined, and subsequent layers are blended into one (for
instance, a convolution operation and an activation function
are merged into a single computational layer). Altogether, the
optimization routine yields a model with a less computational
burden on the target and faster real-time inference.

Table II shows a comparison of the inference time when the
model is deployed on an offline computer and the NVIDIA
Jetson device with and without the code optimization routines
of TensorRT . We observe that, without optimization, the
average inference time per sample is within the same order
of magnitude for both the Jetson TX2 edge device and the
offline computer. However, the edge device infers ≈ 10x faster
thanks to the optimized code. This result speaks highly of the
feasibility of the NVIDIA Jetson TX2 for edge deployment of
a real-time oscillation detection tool: the CNNs detect a forced
oscillation using 1 s. windows within 10 ms., approximately 3x
faster than the algorithm in [13]. Also, note that the inference

time for the 2D-CNN is faster than that of the 1D-CNN. This
is due to the most extensive use of optimized linear algebra
routines in image convolution operations.

Fig. 6. Outline of CNN model development for deployment on NVIDIA
Jetson TX2 to perform real-time inference.

TABLE II
AVERAGE INFERENCE TIME USING DIFFERENT HARDWARE DEVICES

Hardware/Model 1D-CNN 2D-CNN

Windows PC
Intel i7-7700HQ 2.80 GHz

NVIDIA GeForce GTX 1060
(TensorFlow/Keras Model)

96.931 ms 67.312 ms

NVIDIA Jetson TX2
Non-optimized by TensorRT 74.290 ms 38.379 ms

NVIDIA Jetson TX2
Optimized by TensorRT 9.787 ms 3.410 ms

IV. DETECTION OF FORCED OSCILLATIONS

The performance of the CNN-based forced oscillation
detection method on the NVIDIA Jetson TX2 is evaluated
with two different experiments. On the one hand, ambient
data never seen neither during training nor validation are used
as inputs. On the other hand, synthetic waveforms emulating
oscillations created by a signal generator are fed to the
NVIDIA Jetson’s I2C input ports through a bespoke analog
to digital conversion board. Note that the time series require
additional preprocessing (for instance, generating the plots
from the time series data for the 2D-CNN) in the Jetson’s CPU
before performing inference in the device’s GPU. From the
top two plots in Fig. 7, we observe that the CNNs succeed at
detecting the oscillation and keep providing correct predictions
while the event is active. However, accuracy is not 100%, as
expected. A simple running window algorithm can be used
to discard false positives by keeping track of the CNN recent
predictions (e.g., if most of the inferences in the last 2 s are
0 , then the CNN’s 1 output should be discarded). Both the

1D- and 2D-CNN detect the oscillations using measurements
at different grid locations where they could be deployed.

Fig. 7. Real-time inference results from ambient data (top two figures) and
synthetic signal generation (bottom plot).

The plot at the bottom of Fig. 7 illustrates how oscillations
are detected when an external signal is applied to the Jetson
TX2 board using a signal generator. The forced change results
from superimposing a sinusoid on a noisy signal. Accuracy
improves compared to the ambient data experiment since the
signal is not as “challenging” as those from the grid. The result
shows that CNNs can learn the patterns of an oscillation using
data from one system and then identify such events in another
(i.e., transfer learning [20]).

V. CONCLUSIONS

We introduced an ML-based approach for detecting forced
oscillations in power grids using an IoT edge device,
an NVIDIA Jetson TX2. Two NN models, 1D- and 2D-
CNNs, respectively, were trained using the TensorFlow/Keras

framework. Then, the trained model code was optimized
using the TensorRT library for real-time execution at the
edge. Optimized code has proven to be faster than offline
execution on the hardware. We evaluated the performance of
the proposed CNNs on two different experiments: using real-
world ambient data and feeding the NN input with oscillation
signals created from a signal generator. The pipeline has
proven to be a practical and feasible solution for oscillation
detection in IoT-based monitoring systems based on the
observed results.

REFERENCES

[1] P. B. Reddy and I. A. Hiskens, “Limit-induced stable limit cycles in
power systems,” in 2005 IEEE Russia Power Tech, Jun. 2005, pp. 1–5.

[2] W. Xuanyin, L. Xiaoxiao, and L. Fushang, “Analysis on oscillation in
electro-hydraulic regulating system of steam turbine and fault diagnosis
based on PSOBP,” Expert Syst. Appl., vol. 37, no. 5, pp. 3887–3892.

[3] R. Xie and D. Trudnowski, “Distinguishing features of natural and forced
oscillations,” in 2015 IEEE Power Energy Society General Meeting.

[4] V. Jain, S. T. Nagarajan, and R. Garg, “Study of forced oscillations in
two area power system,” in 2018 2nd IEEE International Conference on
Power Electronics, Intelligent Control and Energy Systems (ICPEICES).

[5] L. Vanfretti, M. Baudette, J. L. Domı́nguez-Garcı́az, A. White, M. S.
Almas, and J. O. Gjerdeóy, “A PMU-based fast real-time sub-
synchronous oscillation detection application,” in 2015 IEEE 15th
International Conference on Environment and Electrical Engineering
(EEEIC), pp. 1892–1897.

[6] J. Follum and J. W. Pierre, “Detection of periodic forced oscillations in
power systems,” IEEE Trans. Power Syst., vol. 31, no. 3, pp. 2423–2433.

[7] F. Ghorbaniparvar and H. Sangrody, “PMU application for locating the
source of forced oscillations in smart grids,” in 2018 IEEE Power and
Energy Conference at Illinois (PECI).

[8] M. Ghorbaniparvar, “Survey on forced oscillations in power system,”
Journal of Modern Power Systems and Clean Energy, vol. 5, no. 5.

[9] D. J. Trudnowski and R. Guttromson, “A strategy for forced oscillation
suppression,” IEEE Trans. Power Syst., vol. 35, no. 6, pp. 4699–4708.

[10] W. Hu, J. Liang, Y. Jin, F. Wu, X. Wang, and E. Chen, “Online evaluation
method for low frequency oscillation stability in a power system based
on improved XGboost,” Energies, vol. 11, no. 11, p. 3238, Nov. 2018.

[11] D. N. Sidorov, Y. A. Grishin, and V. Šmidl, “On-line detection of
inter-area oscillations using forgetting approach for power systems
monitoring,” in 2010 The 2nd International Conference on Computer
and Automation Engineering (ICCAE), vol. 3, Feb. 2010, pp. 292–295.

[12] H. Cho, S. Oh, S. Nam, and B. Lee, “Non-linear dynamics based sub-
synchronous resonance index by using power system measurement data,”
IET Gener. Transm. Distrib., vol. 12, no. 17, pp. 4026–4033, 2018.

[13] H. Khalilinia and V. Venkatasubramanian, “Subsynchronous resonance
monitoring using ambient high speed sensor data,” IEEE Trans. Power
Syst., vol. 31, no. 2, pp. 1073–1083, Mar. 2016.

[14] Wind SSO Task Force, “Wind energy systems Sub-Synchronous
oscillations: Events and modeling,” IEEE Power & Energy Society, Tech.
Rep. PES-TR80, Jul. 2020.

[15] J. Liu, W. Yao, J. Wen, H. He, and X. Zheng, “Active power oscillation
property classification of electric power systems based on SVM,” J.
Appl. Math., vol. 2014, May 2014.

[16] M.-I. Ayachi, L. Vanfretti, and S. Ahmed, “A PMU-Based machine
learning application for fast detection of forced oscillations from wind
farms,” Dec. 2020.

[17] “Speed up TensorFlow inference on GPUs with TensorRT,”
https://blog.tensorflow.org/2018/04/speed-up-tensorflow-inference-
on-gpus-tensorRT.html, accessed: 2021-10-26.

[18] A. Bokovoy, K. Muravyev, and K. Yakovlev, “Real-time vision-based
depth reconstruction with NVidia jetson,” in 2019 European Conference
on Mobile Robots (ECMR), Sep. 2019, pp. 1–6.

[19] M. Goyal, N. D. Reeves, S. Rajbhandari, and M. H. Yap, “Robust
methods for Real-Time diabetic foot ulcer detection and localization
on mobile devices,” IEEE J Biomed Health Inform.

[20] A. Géron, Hands-on Machine Learning with Scikit Learn and Tensorflow
Concepts, 2nd ed. O’Reilly, 2019.

