
Dymola-Enabled Reinforcement Learning for
Real-time Generator Set-point Optimization

Aisling Pigott, Kyri Baker
Civil, Environmental, and Architectural Engineering

University of Colorado Boulder
Boulder, CO, USA

{aisling.pigott, kyri.baker}@colorado.edu

Sergio A. Dorado-Rojas, Luigi Vanfretti
Electrical, Computer, and Systems Engineering

Rensselaer Polytechnic Institute
Troy, NY, USA

{dorads, vanfrl}@rpi.edu

Abstract—This paper introduces a reinforcement learning
framework which determines real-time generator set-points in a
dynamically changing environment in order to optimize a chosen
objective. This is performed within the high-fidelity simulation
environment Dymola, which utilizes the Modelica programming
language to model complex systems. A case study is created using
the OpenIPSL IEEE 9-bus dynamic model, with the objective of
minimizing voltage deviations across the network. The reinforce-
ment learning agent shows improvement in minimizing voltage
deviations versus the default droop controlled governors without
any explicit knowledge of the topology of the system or relative
location of the controllers. The results indicate that reinforcement
learning may be a useful tool for applications in model-free,
real-time power systems dynamics and control. An open-source
Python package is provided for the proposed framework with
the present case-study as an example.

Index Terms—Modelica, voltage regulation, unsupervised
learning

I. INTRODUCTION

With growing uncertainty due to new electrical demands
and higher integration of intermittent and variable generation,
matching supply and demand in power systems has become
increasingly challenging. Computing generator set-points from
solving a traditional optimization problem generally requires
a known model of the power grid, and cannot be performed in
real-time due to computational challenges. Real-time generator
control, on the other hand, is typically performed via fast
but suboptimal governor control or by using automatic gen-
eration control (AGC) heuristics. However, real-time control
approaches such as reinforcement learning (RL) can help
generators pursue optimal set-points on a second or sub-second
level without explicitly solving an expensive optimization
problem. In this paper, we show how RL, in conjunction with
the dynamic modeling and simulation environment Dymola,
can optimize generator set-points in a dynamically changing
environment while pursuing an overarching objective.

Reinforcement learning is a model-free decision making
framework that is successful in coordinating complex control
tasks. One of the greatest advantages of RL is the ability to
improve control performance in tasks that are hard to model

This material is based upon work supported by the U.S. Department of
Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under
the Advanced Manufacturing Office, Award Number DE-EE0009139.

Fig. 1: RL Framework for Set-point Optimization

with conventional optimization approaches. As shown in Fig.
1, RL essentially seeks an optimal set of actions, or policy,
that maximizes the reward received by an agent interacting
with an environment. The states represent the feedback from
the environment to the agent. The policy corresponds to the
mapping from states to actions.

RL techniques have mostly been used in the power systems
domain for offline energy optimization and control [1], [2].
RL with applications to power system stability and automatic
generation control (AGC) have also shown great promise [3]–
[5]. However, most of these real-time control applications do
not consider high-fidelity power systems dynamics such as
those modeled in the OpenIPSL library within Dymola, and
often only consider stability, rather than pursuing optimality.
Practical RL techniques that use realistic models are necessary
to address both stability and efficiency. In this paper, we
consider the application of minimizing voltage deviations
across the network by adjusting generation set-points on a
second-level timescale in order to minimize a chosen objective.
A full nonlinear phasor-domain simulation model is used
as an environment to overcome the explicit formulation of
dynamical constraints in the short-term dispatch problem. By
including a dynamical simulation model, the response of the
grid is accounted by measuring the states in the RL setup.

Multiple modeling tools are available to expand system rep-
resentation beyond the steady-state. In this work, we leverage
the Modelica language, and the OpenIPSL library, suitable for
power system dynamic modeling [6]. Given its equation-based



Fig. 2: DymolaGym simulation cycle

nature, the use of Modelica language provides a precise model
of the dynamical phenomena, such as machine nonlinearities
and control discontinuities.

Previous works have used the Modelica language to model
environments for RL with great success. These works include
[7] and [8] for use with Functional Mockup Units (FMUs).
However, in this paper we introduce a method for use with
the Dymola software’s Python-based Advanced Programming
Interface (API) and power system Modelica models built using
the OpenIPSL Library. Unlike the FMUs used for modeling
environment behavior in [7] and [8], simulating models with a
compiler API ensures that the model is as accurate as possible
(acausal relationships are maintained) and speeds up perfor-
mance [9]. Additionally, Dymola has additionally been shown
to have improved performance compared to OpenModelica
when using the dassl solver [10] which is a significant
booster for training in any RL problem.

The rest of this paper is organized as follows: in Section
II we lay out the proposed framework for Dymola enabled
reinforcement learning; in Section III we introduce a sample
environment using the IEEE 9-bus network; in Section IV
we demonstrate the effectiveness of the RL agent in voltage
control and in Section V we conclude the paper.

II. REINFORCEMENT LEARNING WITH DYMOLA

DymolaGym extends the OpenAI gym environment and
adds the functionality of the Dymola API to ModelicaGym
environments [11]. The OpenAI gym ensures that RL agent
methods can be benchmarked in an environment for direct
comparison of the RL agents’ performance [12]. Analogous
to the OpenAI gym environment, DymolaGym requires users
to specify state values that accurately describe the environment
and action values that are used to influence the environment.
Any value declared as a parameter in Modelica (e.g. such

as the value of a controller’s set-point) may be used in
DymolaGym as a control action; any value that is assigned
to a variable in Modelica may be used in DymolaGym as
a “state” value (e.g. typical variables in power system models
such as algebraic ones (voltage magnitude) or dynamic states
(generator angles or internal control states)). Here we use the
measured voltage at all 9 buses, the load at all 3 load buses,
and the current output of all 3 generators as “state” values.

Reinforcement learning is a machine learning algorithm that
works to model agent-environment interactions and improve
the agent’s control actions. Most importantly, RL works even
when the equations (Eq. (1)) that govern the relationship
between state and action (xt, ut) and the next state (xt+1)
are unknown to the agent. In this case the Dymola model acts
as our transition function.

xt+1 = h(xt, ut) (1)

At each time-step, the RL agent collects information about
the current state and attempts to select an action that ex-
ploits information that the RL agent already knows about
the environment while collecting new information. The trade-
off between exploration and exploitation is a key element of
reinforcement learning. Too little exploration causes the RL
agent to get stuck in a local maxima; too much exploration
hampers performance. The selected action should maximize
not only the current observed reward, but the potential reward
over an infinite time horizon. Let this be known as the q-value:

q = r(xt) + γV (xt+1) (2)

V (xt) = Eu∗∼π
(
Q(xt, u∗)− log(π(u∗|xt))

)
(3)

where the value, V (xt+1), represents expected future rewards
according to the probability π of selecting an action and the
predicted q-value resulting from the action selected. Since the
q-value cannot be observed for every successive state, it must
be predicted based on previous observations and their state-
action pairs. The Q-function uses back-propagation of neural
networks to minimize the prediction error of q.

The q-value represents the critic portion of the actor-critic
network, and informs the RL agent of the current performance.
The actor portion of the RL agent consists of a neural network
for the mean and standard deviation of a Gaussian action
distribution. The actor’s purpose is to maximize the probability
of selecting an advantageous action from any state. (Actions
are classified as advantageous when the observed q-value
is greater than the expected value of the state.) The actor
does this by minimizing the Kullback-Leiber divergence of
probability of selecting an action and its anticipated advantage.

A. Deep Reinforcement Learning

Deep reinforcement learning (DRL) replaces the function
approximators of q, v, σ, and µ with deep neural networks. In
this paper each network uses the Multilayer Perceptron (MLP)
architecture and ReLU activation functions.



Fig. 3: Modified OpenIPSL IEEE 9-bus network

B. Soft Actor Critic

The variation of RL used in this paper, Soft Actor Critic, is
a variant of deep RL that additionally introduces the following
components to improve performance [13]:

1) Batch Optimization and Experience Replay: Batch opti-
mization selects random data points from a memory buffer and
updates the function approximations with an error gradient.
Experience replay describes repeated use of data points by
replacing them in the memory bank and increases sample
efficiency by reusing data points. Experience replay also
promotes stability in the RL agent’s behavior and convergence
of the function approximators by reevaluating old data.

2) Entropy Maximization: promotes exploration by artifi-
cially increasing the reward when the Gaussian distribution for
action selection has a high variance. The augmented reward
function is given as the sum of the observed environment
reward and the entropy of the action under the current policy:

r′(xt, ut) = r(xt, ut) +H(π(ut|xt)) (4)

3) Dual Q-Networks: promote stability by creating two Q-
networks. The networks are updated alternately, but they are
evaluated simultaneously at each step. Since the Q-function
approximation has been shown to be an overestimate of q
[14], at each time step the minimum predicted value is used.

4) Actor-Critic Networks: Separate actor and critic net-
works promote stability by tracking action advantages and
state expected values separately.

III. CASE STUDY

Our case study is the IEEE 9-bus, an interconnected trans-
mission network consisting of three generators and 3 loads.

A. Power Flow Environment

The OpenIPSL library is an open source Modelica library
for power systems components and includes a sample appli-
cation of the IEEE 9-bus system [6]. For this paper we use
a modified version of the OpenIPSL implementation of the
IEEE 9-bus network shown in Figure 3. As our implementation
uses unconstrained reinforcement learning to perform voltage
regulation, we introduce a slack bus at Bus 1 in the network to
ensure that the system is balanced with a feasible power flow

solution at all times and to establish the reference frequency
of the grid. Additionally, time-varying loads are introduced at
each of the 3 load buses and faults are removed.

The loads for this network are assumed to be uncontrollable.
While the demand is inelastic, since the loads are modeled as
ZIP loads, the real power served may vary slightly depending
on the voltage of the bus.

B. Action Space

The RL agent is trained to perform two actions correspond-
ing to the two conventional generators in network (located at
Bus 2 and 3 respectively). These actions influence the droop
controlled governor by manipulating the set-point difference
at each simulation interval. Effectively, positive actions by
the RL agent correspond to reducing the generation set-point,
and negative actions correspond to increasing the set-point.
When the RL agent ramps down the sum of generation by
the controllable generators, the slack bus is ramped up to
compensate. In order to reduce reliance on the slack bus an
inertia constant (H = 1 s) is introduced. When the slack bus
has no inertia a trivial solution to balancing the network is to
rely as much as possible on the infinitely responsive bus.

To be conservative with the RL controller, the RL agent is
limited to manipulating the set-point difference to a percentage
of the maximum power output. (Two cases are presented in
the results with ±10 MW and ±50 MW control, respectively.)

C. Observation and Reward

At each time-step the RL agent collects data about the
environment that correlates the RL agent actions with the
achieved reward. For this case study, the RL agent receives
the per unit voltage at each bus, the real power output of each
generator, and the real power consumption at each load bus.

Let vti be the measured per unit voltage of the i-th bus at
time t. The reward is then given as the deviation from 1 pu
across all buses:

r(xt) =

9∑
i=1

(vti − 1)2. (5)

Note that the present framework is generalizable, and more
or less information could be given to the RL agent depending
on the setting, or an alternative reward function could be
considered. In order to take advantage of the default train-
ing parameters in the Stable Baselines package, the action,
state values, and rewards are normalized to [−1, 1] in the
environment. In this study we clip the voltage at each bus to
[0.9, 1.1], corresponding to the normalization range of [−1, 1].
Although the voltage could reach outside of those bounds,
anything outside of those bounds would be non-operational
and should be penalized to the fullest extent of the reward
function. By clipping the observed voltages we also increase
the granularity of observed values around the area of interest
at 1 pu. The reward is normalized to the mean, max, and min
observed values during a short trial period.



TABLE I: Hardware and software characteristics

RAM 64 GB
Processor Intel(R) Xeon(R) W-2235 CPU @ 3.80GHz

GPU AMD Radeon Pro W5500 (8GB)
Dymola Distribution Dymola 2021x

Dymola Compiler MinGW CC
Python Version 3.9.2
OpenAI Gym 0.18.0

Stable-Baselines3 1.0

D. Timescale

The RL agent implements a new action once per 60 sec-
ond interval. While Modelica simulations operate at a much
higher fidelity than 60 seconds (typically on the millisecond
scale), the RL agent only interacts with the environment
at the minute-scale. Updating the RL agent (through back-
propagation of several deep neural networks) is a computa-
tionally expensive process and we found experimentally that
60 second intervals improved performance without causing the
RL agent to progress slower than real-time.

The RL agents presented in Section IV were trained on
10,000 time steps (10,000 minutes, approximately 7 days) in
one epoch, each. The environment is automatically reset when
the Dymola simulation fails, although this did not occur when
a slack bus is used in the system. The training for the agent
with the hardware and software described in Table I completed
within 2.3 hours, less than 1% of the simulated time.

IV. RESULTS

As power flow formulations are not inherently convex, there
are many solutions to improve voltage regulation. Further-
more, as the control domain increases the maximum possible
performance improvement also increases. In this section we
present two scenarios for voltage control with (1) ±10 MW
control and (2) ±50 MW control over the generators real
power set-point. The results show that the RL agent with
the larger control domain performs better by the RL reward
metric of voltage regulation. However, the RL agent with the
smaller control domain maintains higher voltages specifically
at the load buses and operates the generators at a higher
power output which could be desirable. As a result the holistic
performance of an RL controller should be taken into account
when analyzing the performance of such controllers.

A. Voltage

In both scenarios the overall voltage deviations from 1
pu are reduced. In the first case (Fig. 4) the voltage is
reduced at each bus with the voltage at the load buses being
the lowest (under 1 pu). In the case 1 (“RL-10”) with less
control over the generator set-point the voltage is increased
locally at Generator 2, but the voltage deviation is reduced
overall. In other words, the RL controller ignores the baseline
controller goal of local voltage regulation in favor of overall
voltage regulation. In case 2 (“RL-50”) the voltage is reduced
throughout the network, including at the load buses that are
already under 1 pu voltage (Buses 5 and 6).

Fig. 4: Voltage deviation from 1 pu

Fig. 5 summarizes the performance of the RL agent with
voltage deviation measured by the L2-Norm (a value of 0
would indicate that all buses achieved perfect regulation at
1 pu, while a larger value would indicate that one or more
buses are over/under 1 pu). Additionally, Fig. 5 includes the
total voltage spread in the system where the voltage spread is
actually increased for the “RL-50” case. In the “RL-50” case
voltage is centered around 1 pu giving it a lower deviation at
every bus but a larger spread between buses; in the “RL-10”
case the voltages are clustered slightly above 1 pu giving it a
higher deviation at every bus but lower spread.

Fig. 5: Summary of network performance

B. Generator Response

The RL generated actions ramp Generator 3 to the extremes
of the control domain, while load following with Generator 2
(Fig. 6). The result is that the “RL-50” case operates Generator
3 at a very low fraction of its total capacity, while the “RL-10”
case (due to the inherent limitations of the control domain)
operates with both generators splitting the load relatively
evenly. Note that in response to the low loading of Generator
3 in the “RL-50” case the slack bus must become significantly
more responsive than the “RL-10” or baseline case.



Fig. 6: Actions and output of generators

One possible reason for such a drastic difference in control
strategies is that the RL agent with less control (“RL-10”) is
incapable of reducing the voltages all the way to 1.0 pu and
instead selectively reduces the voltage at the highest voltage
buses (Bus 1 and 9). Additionally, the reason that the second
RL case drastically reduces generation from the controllable
generators might be that the slack bus is tuned to be too
responsive (H = 1 second, compared to H = 3.33 and 2.35 s
for the controllable generators respectively. We might further
reduce reliance on the slack bus by increasing the machine’s
H or increasing the impedance of the lines connected to it.

C. Impact on Loads

The performance of the RL agent control is assessed in Fig.
7 which shows that the load roughly matches demand for both
the RL and baseline droop controlled scenarios (note that the
per unit power is plotted with a base unit of 100 MW). A slight
difference in load for the baseline and RL controlled versions
can be accounted for by the fact that the ZIP loads modeled
in OpenIPSL have a constant current component that lowers
power consumption of the load under decreased voltages. Fig.
7 compares the transmission losses of the RL agent and the
baseline controller.

Fig. 7: Load and generation of systems

Although the system losses are higher for the “RL-50”
controlled case, the overall generation is reduced by 0.6%
throughout the simulation period. Both of these things can
be attributed to the overall lower voltage in the network

as resistive losses are higher for low voltage networks and
constant current loads draw less power at lower voltages.
Conversely, the “RL-10” case reduces the transmission losses,
but negligibly reduces the total generation.

V. CONCLUSION

In this paper, we have introduced a reinforcement learning
toolkit for Dymola-enabled environments. As a case study,
we have provided two trained RL agents that successfully
control generator set-points in real time to reduce the voltage
deviations throughout the network to various degrees. The
results indicate that a learning-based, model-free approach
can prove useful for real-time control in dynamical environ-
ments. Future work will consider different grid objectives
such as frequency regulation or control of inverter-interfaced
generation. In addition, more advanced localized controllers
will be compared against the RL agent’s performance, versus
just comparing against the standard droop controllers. Lastly,
we plan to extend the presented toolkit and framework to
OpenModelica version, an open-source alternative to Dymola.

REFERENCES

[1] Z. Zhang, D. Zhang, and R. C. Qiu, “Deep reinforcement learning for
power system applications: An overview,” CSEE Journal of Power and
Energy Systems, vol. 6, no. 1, pp. 213–225, 2020.

[2] A. Pigott, K. Baker, and C. Mosiman, “Deep Q-learning for aggregator
price design,” IEEE Power and Energy Society General Meeting, 2021.

[3] D. Ernst, M. Glavic, and L. Wehenkel, “Power systems stability con-
trol: reinforcement learning framework,” IEEE Transactions on Power
Systems, vol. 19, no. 1, pp. 427–435, 2004.

[4] Q. Huang, R. Huang, W. Hao, J. Tan, R. Fan, and Z. Huang, “Adaptive
power system emergency control using deep reinforcement learning,”
IEEE Transactions on Smart Grid, vol. 11, 3 2020.

[5] X. S. Zhang, Q. Li, T. Yu, and B. Yang, “Consensus transfer Q-
learning for decentralized generation command dispatch based on virtual
generation tribe,” IEEE Transactions on Smart Grid, vol. 9, no. 3,
pp. 2152–2165, 2018.

[6] M. Baudette, M. Castro, T. Rabuzin, J. Lavenius, T. Bogodorova, and
L. Vanfretti, “OpenIPSL: Open-Instance Power System Library - Update
1.5 to iTesla Power Systems Library (iPSL): A Modelica library for
phasor time-domain simulations,” SoftwareX, vol. 7, pp. 34–36, Jan.
2018.

[7] O. Lukianykhin and T. Bogodorova, “ModelicaGym: Applying Rein-
forcement Learning to Modelica Models,” in Proceedings of the 9th
International Workshop on Equation-based Object-oriented Modeling
Languages and Tools, EOOLT ’19, (New York, NY, USA), pp. 27–36,
Association for Computing Machinery, Nov. 2019.

[8] S. Heid, D. Weber, H. Bode, E. Hüllermeier, and O. Wallscheid, “OMG:
A Scalable and Flexible Simulation and Testing Environment Toolbox
for Intelligent Microgrid Control,” Journal of Open Source Software,
vol. 5, p. 2435, Oct. 2020.

[9] W. Chen, M. Huhn, and P. Fritzson, “A Generic FMU Interface for
Modelica,” in 4th International Workshop on Equation-Based Object-
Oriented Modeling Languages and Tools, EOOLT 2011, pp. 19–24,
2011.

[10] S. A. Dorado-Rojas, M. Navarro Catalán, M. de Castro Fernandes, and
L. Vanfretti, “Performance Benchmark of Modelica Time-domain Power
System Automated Simulations using Python,” in Proceedings of the
American Modelica Conference 2020.

[11] A. Pigott, “Modelicagym: Dymolagym.” https://github.com/apigott/
modelicagym, 2021.

[12] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAI Gym,” June 2016.

[13] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” 2018. [Online] Available: https://arxiv.org/abs/1801.01290.

[14] Q. Lan, Y. Pan, A. Fyshe, and M. White, “Maxmin q-learning: Control-
ling the estimation bias of q-learning,” 2021.

https://github.com/apigott/modelicagym
https://github.com/apigott/modelicagym

	Introduction
	Reinforcement Learning with Dymola
	Deep Reinforcement Learning
	Soft Actor Critic
	Batch Optimization and Experience Replay
	Entropy Maximization
	Dual Q-Networks
	Actor-Critic Networks


	Case Study
	Power Flow Environment
	Action Space
	Observation and Reward
	Timescale

	Results
	Voltage
	Generator Response
	Impact on Loads

	Conclusion
	References

