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Abstract— Oscillation detectors use an RMS signal’s energy in 
pre-specified frequency bands to detect the presence of different 
kinds of oscillations. While originally intended for situational 
awareness applications, they can be used for labeling the periods 
were they appear in large historical data sets. Labeled data sets 
are a requirement in machine learning applications. One such ap-
plication is that of deriving associations between system operating 
conditions and the appearance of certain oscillations. However, 
there are two main challenges when realizing such application in 
practice. Firstly, a reliable detector requires properly set thresh-
olds for the energy values. Secondly, scaling the algorithm to label 
multi-year historical data archives containing hundreds of tera-
bytes of signals requires fast data access. The PingThings Predic-
tiveGrid time series data platform deployed at Dominion Energy 
stores statistical averages of synchrophasor data at increasingly 
coarse resolutions as well as the original measurements. This 
work explores the use of coarse  as opposed to full resolution PMU 
data for fast oscillation detection. Furthermore, K-means cluster-
ing is used to automatically determine energy thresholds based on 
the energy distribution of historical data in relevant frequency 
bands. Results using synchrophasor data from a STATCOM in 
the Dominion system expose a local mode. 

Index Terms—Machine learning, oscillation detection, syn-
chrophasors, spectral analysis 

 

I. INTRODUCTION 
The structure and dynamics of power grids all over the 

world are drastically changing due to the retirement of conven-
tional generators and the proliferation of renewable generation. 
This has resulted in unprecedented challenges [1], which often 
require the help of fast-acting, power electronics-based assets 
such as STATCOMs, HVDC, etc. System operators, utilities, 
and owners usually do not have access to transparent models 
of these devices from the vendor due to proprietary technol-
ogy. Therefore, measurement data in the form of synchro-
phasors plays a key role in helping uncover the dynamics of 
power electronic devices, as well as identifying dynamic per-
formance issues that cannot be simulated with the models 
available to utilities.  

Power system operations largely take place in ambient con-
ditions and their dynamic response is normally linear and char-
acterized by oscillations [2]. Therefore, in the frequency do-
main, the signal’s energy content is concentrated in largely 

separable frequency bands. Moreover, power system data is 
dense in local dynamics i.e. most spectral peaks can be traced 
back to a specific device or a group of neighboring devices us-
ing techniques such as those in [3].  

In day-to-day operations, the grid undergoes many changes,  
e.g. power system components such as generators and lines go-
ing in and out of service, internal switching in the components’ 
control modes, etc. Naturally, these result in changes to the dy-
namic behavior of the system and, consequently, in the spectral 
content of various measurements. The ability to identify spe-
cific operational changes that produce a given oscillation can 
greatly help with locating its origin. This is particularly helpful 
in regions with poor sensor coverage, where the mode shape 
estimated from the available signals alone cannot be computed 
with sufficient space resolution to locate the source. For exam-
ple, correlating an oscillation observed over a large area in the 
Dominion system to daylight hours [4] helped identify a solar 
PV farm as the source of a sustained oscillation as shown in 
Fig. 1. This can also often help explain the underlying phenom-
enon behind certain oscillations. Furthermore, this type of in-
formation can serve as a guide for making operating decisions 
that avoid undesirable dynamic responses or deterioriated per-
formance.  

 

 
Figure 1. 8 Hz Solar PV Oscillation. 

Deriving such associations is an extremely hard problem in 
practical systems due to the large number of variables at play, 
suggesting that machine learning (ML) approaches may be 



applicable. The idea of using ML to perform dynamic security 
assessments by mapping the operating conditions to stability 
dates back to the 1980’s [5]. However, the problem is more 
challenging when only measurement data is available. The first 
and foremost requirement is to label periods where specific os-
cillations occur and, more importantly, to label a sufficient 
number of cases to create a rich training dataset.  

In this regard, oscillation detectors have been developed 
over the past three decades. One of the earliest successful ap-
proaches in [6] monitors the envelope of the signal and com-
pares it against a threshold for a specified amount of time be-
fore triggering an alarm. The RMS energy detector [7], which 
is an extension of [6], is one of the most widely accepted ap-
proaches in the industry [8] and therefore is exploited in this 
work. It operates by comparing the signal’s RMS energy in a 
specific frequency band (containing the oscillation of interest) 
to a threshold.  [9] extends this approach to detect subsynchro-
nous oscillations. One drawback with existing approaches is 
that the threshold is set manually using baselining studies and 
experience. In this regard, [10] proposes a statistics-based 
threshold meant for online applications, where the thresholds 
are obtained using a short data window and succesivily up-
dated. In the present work, we explore the use of clustering for 
arriving at a threshold that can be used for large-scale historical 
data sets.  

The main bottleneck when labeling years’ worth of histori-
cal synchrophasor data for the presence of oscillations is the 
speed and memory required to access the data. The consequent 
computations, e.g. spectrum calculation,  only comprise a 
small portion of the overall processing time. Therefore, de-
creasing the time resolution of the data being accessed can sub-
stantially accelerate the process. Note that this will impact the 
frequency range of the dynamics that can be detected; in other 
words, decreasing the time resolution means that such ap-
proach is only applicable to slower dynamics. The PingThings 
PredictiveGrid platform stores precomputed, multi-resolution 
statistical summaries of the original time series data. There-
fore, in this work, we investigate the spectral content of these 
summaries to justify using temporal aggregations instead of 
the original raw data for accelerated oscillation detection and 
labeling.    

This paper is organized as follows. Section II provides back-
ground on the data platform and spectral analysis techniques 
used. Section III gives a brief overview of the application of K-
means for oscillation detection on coarse data spectral results. 
The proposed approach is demonstrated on sychrophasor data 
from a STATCOM in the Dominion system and the result is 
shown in Section IV. Conclusions and  future works are dis-
cussed in Section V. 

II. TIME SERIES DATA PLATFORM AT DOMINION ENERGY  

A. PingThings and the PredictiveGrid 
Dominion Energy uses the PingThings PredictiveGrid time 

series data platform for time series data ingestion, storage, vis-
ualization, and analysis on its transmission system, including 

for synchrophasor and continuous point on wave data. The 
PingThings platform is a scalable distributed computing sys-
tem deployed in the cloud. It was architected to provide fast 
access not just to real time sensor data but also to all historical 
data up to at least 50 petabytes. Benchmarks indicate that the 
platform can read and write greater than ten million measure-
ments per second per node with linear performance scaling 
characteristics. The platform is currently handling over 100 
terabytes of data for Dominion from hundreds of PMUs with 
over one hundred thousand, 30 Hz data streams.   

The PingThings platform uses a unique, purpose built da-
tabase, the Berkley Tree Database (BTrDB) [11], to store time 
series measurements. The platform provides high-perfor-
mance, temporally hierarchical access to stored data by using 
a novel data structure that guarantees consistent versioning, 
fast change-set identification, and multi-resolution statistical 
summaries of the raw high-resolution measurements, as ex-
plained below.  

The data is stored in a time partitioned, tree data structure. 
The nodes at the bottom of the tree represent the original or 
raw measurements from a PMU or other sensor. Consequently, 
the depth of the tree is determined by the reporting rate 𝑓! of 
the sensor, with up to 1 GHz per stream supported. Each node 
in the tree above the bottom captures a statistical summary 
(mean, min, max, count, and variance) of the child nodes be-
low and an integer for data versioning. Nodes on the same level 
of the tree correspond to the same time resolution with the time 
spans represented increasing in size as we go higher in the tree. 
This multi-resolution storage can be exploited for efficient an-
alytics, as illustrated in this paper.  
B. Spectral Content of Different Tree Levels 

The statistical summaries provided by the platform at dif-
ferent nodes or tree levels will be used for oscillation detection. 
The key tool for detection is the computation of the power 
spectral density (PSD). Thus, we illustrate the implications of 
computing the PSD on statistical summaries at exponentially 
increasing window lengths 𝑁 of powers of 2, i.e. 𝑁 = 2"	∀𝑛 ≥
0. Let the data stored at 𝑛#$ level be denoted by the ordered set 
{𝑦"(0), 𝑦"(1)… },	where 𝑛 = 0 denotes the original full-reso-
lution data. Let the full resolution sampling rate be denoted by 
𝑓!. Consequently, the sampling rate for 𝑛#$ level is given by 
%!
&"

. In the 𝑍 domain, 
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Now, the data stored at (𝑛 + 1)#$ level is the data stored at 
𝑛#$ level undergoing a 2 sample moving average and 
downsampled by half. In the 𝑍 domain,  
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The frequency domain estimate can be obtained for (𝑛 + 1)#$ 
level by substituting 𝑧 = 𝑒(-.&"#$)/%!.  



The data stored at higher levels in the tree are coarse 
grained and larger time spans can be queried faster than the 
data at low levels. Moreover, the coarse grained data can still 
preserve the spectral peaks up to their corresponding Nyquist 
frequencies, which enables fast data query for specral analysis 
when the oscillation frequency of interests is slow enough for 
the specific coarseness of the data. As an example, a piece of 
voltage magnitude data representing a 20 minutes time span is 
selected of which the highest sampling rate is 60 Hz. The spec-
tral content of the data stored at different tree levels (or sam-
pling rate) is shown in Figure 2, which shows the spectral 
peaks are preserved up to their Nyquist frequencies. The re-
sulting computational efforts (measured in seconds) at differ-
ent sampling rate is visualized in Figure 3 which shows the 
time saving due to coarse grained data. Not only this has an 
impact on time, but also on resources. When using cloud based 
technologies, cost is based on resource consumption. A com-
putation that completes more quickly is less expensive. Hence, 
in the rest of the paper, we will use coarse grained data for a 
faster, more resource efficient analysis. 
 

 

Figure 2. Spectral content at different sampling rates. In this exam-
ple, the highest sampling rate is 60 Hz. 

 
Figure 3. Computational effort at different sampling rates.  

    Note that these moving averages cannot be used for analyz-
ing phase angle measurements, which requires full resolution 
data. Since the power system is never precisely at 60 Hz, the 
absolute phase angles change continuously and, therefore, of-
ten surpass the ±𝜋 radians limit. This condition is accompa-
nied by a wrapping operation, introducing a ±2𝜋 [12] offset in 
the data that significantly distorts the spectral content. One 
method to overcome this issue would be to store relative phase 
angles instead of the absolute angles. This could heavily re-
duce the likelihood of phase angle wrapping since, in a stable 
system, phase angle differences should not go beyond ±𝜋. 

Currently, the PingThings platform natively stores the absolute 
angles so we chose to focus our investigation on phasor mag-
nitude data. 

III. OSCILLATION DETECTION USING K-MEANS 
CLUSTERING 

A. Power Spectral Density 
Power Spectral Density (PSD) describes how the signal’s 

power is distributed over frequency. Let 𝑦(𝑛) denote a station-
ary process with autocorrelation function, 

 

𝑟(𝑘) = 𝐸"(𝑦∗(𝑛)𝑦(𝑛 + 𝑘)) (3) 
 

where, 𝐸"( ) is the expectation operator over 𝑛. PSD value at 
frequency 𝑓, denoted by 𝑆(𝑓) can be defined as, 
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In practice, given a sampled data window of finite length 
𝑁, to obtain a robust (low variance) spectrum estimate, 
Welch’s method [13] is popularly used. It divides the data win-
dow into smaller blocks, estimates the spectrum for each using 
a windowing function, and finally averages across all the 
blocks. In the present work, to process 20 minute windows, 
each block is of 2 minutes duration, processed using a Hanning 
window function with a 50% overlap between successive 
blocks.  
B. Methodology 

Practically, the RMS energy at a specific frequency fs can 
be obtained by considering the maximum PSD within a narrow 
band around that frequency [ fs – ε, fs + ε ], where ε is a small 
value like 0.02 Hz. Then, the detection of the presence of an 
oscillation mode is performed by observing the RMS energy, 
i.e. the mode is excited if the RMS energy increases and meets 
a certain criterion such as an explicitly defined threshold. The 
threshold can be determined by assuming the spectral density 
follows certain distributions. Alternatively, the approach pro-
posed herein for oscillation detection is to use clustering algo-
rithms to collect the computed RMS energy in different groups. 
The rationale behind this idea is that it is common for the RMS 
energy to have a steep change when the oscillation mode is pre-
sent. Thus, clustering algorithms can be used to capture those 
steep changes and the identified clusters can be used to de-
tect/predict the presence of the oscillation mode. In addition, 
when the oscillation appears it may reach different energy lev-
els, the clustering algorithms can easily capture them by identi-
fying more clusters, hence providing important insights into the 
oscillation mode of interests.  

The clustering algorithm used in this paper is the K-means 
clustering algorithm. The procedure of this algorithm is intro-
duced in the next subsection, together with other details to reli-
ably identify the clusters. 



C. K-means Clustering 
K-means clustering, one of the most popular algorithms, 

aims to partition a set of observations into k clusters, where each 
observation belongs to the cluster with the nearest cluster cen-
troid. When the number of clusters k is determined, the algo-
rithm minimizes within-cluster variances by iterating: i) assign-
ing observations (i.e. the RMS energy) to clusters based on the 
current centroids, and ii) choosing centroids based on the cur-
rent assignment of data points to clusters. In his work, an RMS 
computation is considered to belong to a particular cluster if it 
is closer to that cluster's centroid than any other centroids.  

The details are given as follows. Assume there are a set of 
observations x(1), ... , x(m), where each observation x(i) Î Ân is a 
vector of n features. After partitioning them into k cohesive 
clusters, each observation is assigned with a label c(i) indicating 
the associated cluster. The steps of the algorithm are as follows: 

Step 1: Choose the number of clusters k. Initialize cluster cen-
troids µ1, µ2, …, µk Î Ân randomly.  

Step 2: For each observation, set the label as: 

𝑐(() = 𝑎𝑟𝑔𝑚𝑖𝑛-N𝑥(() − 𝜇-N
&
 (5) 

where 𝑥(() is the i-th RMS energy value computed at the desired 
coarsness.  

Step3: For each cluster, set the centroid as: 

𝜇- =
∑ R𝑐(() = 𝑗T𝑥(()8
(4*

∑ {𝑐(() = 𝑗}8
(4*

 (6) 

Step 4: Repeat Step 2 and 3 until convergence. 

As K-means clustering does not guarantee to achieve an 
global optimal solution, the algorithm needs to be excecuted 
multiple times with randomly selected initial centroids. The 
best result minimizes the within-cluster-sum of squared errors 
(WSS): 

𝑊𝑆𝑆 =5 N𝑥(() − 𝜇9(&)N
&8

(4*
 (7) 

Another factor for obtaining the best clustering is to deter-
mine the optimal value of k in order to avoid either under or 
over estimating the number of clusters. The so-called elbow 
method provides a systematic way to achieve this outcome. 
This method starts by calculating the WSS for different values 
of k, and then, choosing the k where WSS does not substan-
tially decrease. Plotting the variation of WSS versus k makes 
the elbow obvious via visual inspection, as shown in Fig. 8. 

Up to this point, K-means clustering can be readily used to 
capture different energy levels, recall that each observation in-
cludes the RMS energy at the frequency of interest. Hence, 
when a new observation is obtained, it can be assigned to the 
cluster whose centroid is closest. However, it is possible that 
the new observation corresponds to a new energy level that has 
not been observed and is far away from any of the centroids. 
In that case, the analyst needs to mark the observation as un-
determined and re-run the clustering algorithm with the new 
observation to find out if a new potential cluster has emerged. 

IV. CASE STUDIES 
The oscillation observed in the current magnitude measure-

ment around a STATCOM device deployed on the Dominion 
Energy’s grid is investigated by applying spectral estimation 
on the statistical summaries of synchrophasor data from 
BTrDB, and then, applying the K-means clustering algorithm 
to identify the RMS energy levels and clusters. All  synchro-
phasor data is stored in the PingThings platform, which also 
handles all computational processes. The original sampling 
rate of the data is at 30 Hz. As indicated by the spectrogram in 
Figure 4 for an entire day, the oscillation of interest is ~1 Hz 
and the value of the PSD for this mode is related to the reactive 
power output of the STATCOM as shown in Figure 5. Note 
that as the reactive power output increases, so does the value 
of the PSD at ~1 Hz. 

 
Figure 4. Spectrogram for one day of a single PMU data stream. 

 

Figure 5. Reactive power output of the STATCOM 

When investigating the RMS energy level of the 1 Hz mode, 
the reporting rate 𝑓! of the data is decreased to 3.75 Hz. Ob-
serve that this is sufficient to capure the ~1 Hz mode in the 
frequency domain according to Shannon’s sampling theorem.  

Nex, we identify different oscillation levels for the ~1 Hz 
mode using thirty days of historical data. The PSD are calcu-
lated for every 10 minutes of data generating 4320 PSD esti-
mates in total. A narrow band [0.98 Hz, 1.02 Hz] is selected 
for detecting the RMS energy. The variation of both the RMS 
energy and the reactive power output of the STATCOM are 
shown in Figure 6, which shows the high correlation between 
them.  

The distribution of the samples of RMS energy is shown in 
the histogram of Figure 7, which also shows two potential clus-
ters, i.e. k = 2. These were confirmed by applying the Elbow 
method, whose results are shown in Figure 8 where the “el-
bow” is at two. Setting k = 2 in the K-means algorithm, the 



identified clusters obtained are shown in Figure 7 marked in 
different colors (orange and blue), and the centroid of each 
cluster is indicated by the red bar.  

 

 
Figure 6. Variation of RMS energy of 1 Hz mode (in red curve) and 
the reactive power output of the STATCOM (in blue dashed curve).  

 
Figure 7. Distribution of the RMS energy and the identified cen-
troids. The plot is transposed to show the PSD on the y-axis. 

 
Figure 8. Elbow curve.  

The result shows that when the reactive power output of the 
STATCOM changes to a non-zero value, the 1 Hz mode will 
appear and the RMS energy will be likely to stay around -48 
db regardless the specific value of the reactive power. Hence, 
in this case it is reasonable to set a fixed threshold, say -44 db, 
to detect the appearance of the 1 Hz mode.     

V. CONCLUSIONS AND FUTURE WORKS 
This paper showed how fast data analytics applied to Pre-

dictiveGrid’s summary statistics can allows to label data for 
the machine learning applications. A new method for labeling 
the presence of oscillation modes detected using RMS energy 
was developed using the K-means clustering. The proposed 
method was successfully applied to the measurement data from 
a STATCOM in Dominion Energy’s grid. Future work in-
cludes the application of machine learning techniques 

leveraging the results presented in this paper and by taking ad-
vantage of the features of the PredictiveGrid platform.  
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