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Abstract 

In the development of complex engineered systems, such as eVTOL, it is 
difficult to integrate human interaction in early design stages of the engineering 
design process, for both designer and end-user. This opens the research 
questions: (1) can the design improve if designers interact with the virtual 
prototype during early design phases? and (2) can the end-user interaction at 
early phases fulfil unperceived end-user needs and requirements? To address 
such questions, a “virtual reality” environment is needed allowing for 
designers/end-users to interact with the “virtual prototypes”. This paper 
discusses foundational work towards the vision of such environments. The 
paper aims to address how virtual reality (VR)-based technologies can enable 
interaction with eVTOL models early in the design process, providing more 
flexibility to study models with additional human feedback. The proposed 
methodology leverages open access and open source standards for modelling 
cyber-physical systems and for model portability. To illustrate the 
methodology, an eVTOL model is expanded to incorporate user-interaction 
functionalities and VR within a Modelica tool. Then, proof-of-concept on 
portability and interoperability is shown by exporting the drone model using 
the FMI standard into two different game development environments. The 
results aim to highlight the importance of the use of open access and open 
source modeling, simulation and model exchange standards, for model 
portability into new VR-ready interaction environments that weren’t initially 
conceived for simulation purposes. 

1. Notation and abbreviations 

eVTOL - electric Vertical Take-Off and Landing 
FMI - Functional mock-up interface 
FMU - Functional mock-up unit 
VR - Virtual reality 
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2. Introduction 

a. Motivation 

With the development of complex, multiple-domain systems such as eVTOL, 
physical prototypes can be costly and difficult to build. Simulation-based 
studies using well-understood physics-based models are extremely valuable to 
determine which designs best comply with specifications and requirements 
before building them. One aspect that is hard to integrate within the typical 
engineering design process, is the study of how humans will interact with the 
system, which can be either the designers themselves or the end-user. This is 
harder to quantify than when dealing with typical engineering requirements, 
which largely do not depend on human factors in early design phases. This 
opens the following research questions: (1) can the design improve if designers 
can interact with the virtual prototype during early design phases, and (2) can 
the end-user interaction at early phases fulfill unperceived end-user needs and 
requirements as compared to existing approaches. To address such questions, a 
“virtual reality'' environment is necessary, allowing for designers/end-users to 
interact with the “virtual prototypes”. This paper discusses preliminary work to 
address how virtual reality-based technologies can enable interaction with 
eVTOL models early in the design process, providing more flexibility to study 
and simulate models with additional human feedback and prior to building a 
physical prototype and testing the physical system. The proposed systems 
engineering method can also provide a basis for an eVTOL virtual reality-
based flight training simulator. 

The proposed method proposed herein consists of implementing a drone 
model, which has been created using the object-oriented modeling language, 
Modelica. The choice of this language is to leverage interoperability for model-
reusability in multiple modeling and simulation tools, as well as model export 
through the Functional Mock-up Interface (FMI). The multi-domain models 
were used to create each aspect of the drone, specifically focusing on the 
mechanical and electrical domains. This paper expands the work in (Podlaski et 
al., 2020) to show methods to simulate and interact with the drone in VR using 
various visualization tools and game development environments. Firstly, this 
has been achieved in this paper using the Modelica-based DLR Visualization 
library to demonstrate interaction and animation with Modelica specific tools 
that do not require model export. Secondly, to exploit VR-ready environments 
not originally conceived for engineering, the paper shows how the model can 
be exported into the Unity and Unreal game development environments using 
the FMI standard to demonstrate interaction with virtual reality environments 
through model export methods. By integrating models with a wide set of 
virtual reality environments and simulation tools, cases such as multiple drone 
model instances can be controlled concurrently, dealing with external factors, 
and providing collision detection and response.  
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b. Previous Works 

Previous research have provided the present work with a foundation for human 
and hardware-in-the-loop methodologies through software developments. This 
includes developing models to connect external devices to interact with the 
library (Thiele et al., 2017; Bellman, 2009). The Modelica External Device 
Drivers library allows for hardware such as keyboards and joysticks to provide 
interactive inputs to communicate with and control models written in the same 
modeling language the drone model was made. This provides a foundation for 
the drone model described in this paper to be controlled in real time 
simulations and interactive inputs. 

Early design interaction also relies heavily on visualization of these models and 
systems we wish to study, develop, and interact with. A library for 
visualization using Modelica has also been developed for uses such as this 
eVTOL application (Hellerer et al., 2014). This provides one method of 
visualization and simulation of models, where code or model export into 
another tool is not required. This allows us to explore one method of 
visualization and interaction with the model.  

The Modelica programming language has also been used for the development 
of models for virtual reality training simulators (Martin-Villalba et al., 2010). 
Models created using the Modelica programming language can be exported 
into other simulation tools using the functional mock-up interface (FMI) 
standard (Modelica Association, n.d.). The equations, parameters, and 
functions of the model are compiled into C code and header functions in a 
functional mock-up unit (FMU) structure to be imported into another tool; in 
this paper, FMUs are exported from the Modelica development environment 
and imported into a gaming engine that is compliant with the FMI standard. 
This allows for the model to be simulated and controlled from the new tool, so 
the features of the gaming engine can be utilized for simulation. This method 
expands the usability of the model, so one model can be used across multiple 
tools.   

c. Paper Contributions 

The proposed methods, models and simulation studies presented in this paper 
utilizes these previous efforts to develop human and hardware-in-the-loop 
studies for virtual reality-based interaction of a small eVTOL. This paper 
primarily focuses on how to expand existing models for visualization, 
animation and VR-based interaction with the virtual prototype of the quad-
copter. This visualization and VR-based interaction has been explored using 
VR-based game engines and a Modelica-specific animation tool.  
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Figure 1:  Drone model configured to simulate a 1 m/s 5 second ramp input in the Z 
direction. 

3. Multi-Domain Drone Model 

The library and models were implemented in the Dymola software and using 
the Modelica language (Modelica Association). The library, developed by the 
authors of this paper, is open source and can be found at: 
https://github.com/ALSETLab/Modelica-Drone-3D-FMI/. The drone models 
are multi-domain models, where each engineering domain is modeled and 
coupled together through physics-based interfaces. This includes the electrical, 
mechanical, aerodynamic and control domains (Podlaski et al., 2020). The top 
level representation of the drone model is shown in Figure 1, where the drone 
is receiving a command to ramp at a rate of 1  m/s in the Z-direction and 
remain in its current position in the X and Y-directions.  

Figure 2 shows the drone model in Figure 1 from a component level. The 
model is multi-domain, where the dark blue lines represent the control domain, 
the light blue lines represent the electrical domain, and the mechanical domain 
is denoted by the grey lines. The drone uses inputs xcoord, ycoord, and 
zcoord to command the drone to a specific XYZ coordinate location. The 
coordinate location of the drone is provided by outputs xgps, ygps, and 
zgps. The desired coordinates xcoord, ycoord, and zcoord feed into a 
controller, labeled MCU in Figure 2. The MCU then calculates the voltage and 
current applied to each of the propellers to move the drone to the desired 
location.  

Each propeller in the drone uses the battery voltage as a reference, then scales 
the voltage accordingly to deliver the power needed to move the drone to its 
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commanded position, as shown in Figure 3. This model utilizes both a control 
signal, which is the position input into the model, and the electrical domain 
to scale the voltage applied to the motor.  

The propeller models in Figure 4 consist of a speed controller, a DC motor, and 
the mechanical model of the blades. The model uses a control signal input 
(position) and an electrical input (p1) with a rotational mechanical output 
to connect the drone propeller dynamics to the airframe (Airframe). The 
grey lines represent the rotational mechanical signals, and the blue lines 
represent the electrical signals.  

 

Figure 2:  Complete drone model consisting of propellers,motor, controller, and 
chassis with battery power system.Inputs come from x, y, and z coordinate location. 
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Figure 3:  Speed controller using positional input from the MCU and the battery 
voltage to adjust the power delivered by the motor to follow a command. 

 

Figure 4:  Propeller model consisting of motor, rotor, and blade sub-models. The model 
uses a control signal input (position) and an electrical input (p1) with a 

rotational mechanical output to connect the drone propeller dynamics to the airframe 
(Airframe). 

4. Animation and Visualization in Dymola 

For visualization purposes, when the drone is simulated, the behavior can be 
observed as an animation if configured with the resources to do so. The drone 
has been configured to use 3D Object (.STL) files to represent the propellers 
and body of the drone in animation, which appears when the drone is 
simulated. To link the objects to the simulation model variables, the 3D Object 
files are defined in the chassis and blade models of the drone as fixedShape 
components from MultiBody library (Otter et al., 2003) from the Modelica 
Standard Library (MSL). 

The drone configuration for animation in Dymola (a Modelica-compliant tool 
from Dassault Systems) on the graphical model level is shown in Figure 1. The 
drone has three inputs: X, Y, and Z direction, which are labeled from top to 
bottom respectively. The drone model consists of multiple engineering 
domains, where each component considers behaviors and equations from the 
mechanical, electrical, and controls domains. 
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The initial position of the drone animation is shown in Figure 5, where it is 
positioned at (0,0,0). The propellers move over time, as shown in Figure 6. The 
propellers spinning are also shown in Figure 7, where the drone is steadily 
moving to a height of 5 m over a 5 second period.  

 

Figure 5:  Drone animation in Dymola at t=0 seconds. 

 

Figure 6:  Drone animation in 
Dymola at t=0 seconds 

 

 

Figure 7:  Drone animation with the path of 
the propeller shown as a trace of the flight 

path (flying up to 5m). 
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5. Virtual Reality Integration 

The model configuration in Figure 1 is modified where the x, y, and z 
directional inputs const and ramp1 are replaced with components to allow 
for interaction with game controllers via the Modelica Device Drivers library 
(Thiele et al., 2017). The Modelica Device Drivers library enables hardware-
in-the-loop (HIL) simulation of models by allowing for the interaction of 
generic game controllers (e.g. joystick) and keyboard input with models. 
Figures 8 and 9 show the model used to connect the joystick controllers and 
keyboard to the drone model for HIL simulation.  

 

Figure 8:  Joystick input converted to X, Y, and Z directional input to connect to the 
drone. 

The synchronizeRealtime component synchronizes the simulation time 
of the simulation process with the operating system’s real time clock. The 
Modelica Device Drivers library was implemented to provide multi-platform 
support through “soft” synchronization, which means that latency is restricted 
to a maximum value and that there are no guarantees on the deadlines. 
However, it can meet today's requirements for human-computer-interaction of 
computer games. The only important consideration for this application is that 
the command deadlines from the controller will be met to match the system 
clock if the simulation is expensive. For the drone example that is studied here, 
the synchronization capability provided by the library is more than sufficient. 
The joystickInput and keyboardInput components in Figures 8 and 
9 detect input from the external device and retrieve data to interact with the 
model according to a specified sampling time. 
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Figure 9:  Keyboard input converted to X, Y, and Z directional inputs to connect to the 
drone. 

The data retrieved by the joystickInput and keyboardInput 
components are then translated into X, Y, and Z directional control using a PI 
controller. Figure 10 shows the PI controller of the joystick input. The control 
system from the keyboard input is similar to the joystick, except the keyboard 
input explicitly defines the positive and negative direction as different key 
inputs. This requires an additional step of the control system to compute the 
direction signal of the drone after integration, as shown in Figure 11. 

 

Figure 10:  Control system for the joystick HIL input. 
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Figure 11:  Control system for keyboard HIL input. 

After coupling the controllers, the next step is to interface the VR hardware, 
define the VR scene, camera locations, etc. The full paper will discuss how this 
was achieved using the DLR Visualization Library (Hellerer et al., 2014) and 
the HTC Vive Headset, for which results are shown below. 

6. Simulation in VR environments 

The model structure of the drone allows it to be integrated into multiple 
gaming engines and virtual reality environments for early design interaction. In 
this paper, the drone model is used in three different animation tools and game 
development environments to show the flexibility of the modeling and 
integration into these VR tools when using open access standards, as discussed 
below.  

a. Functional Mock-Up Interface (FMI) Standard 

The FMI standard is crucial in providing a means to communicate the models 
between the modeling environment and virtual reality environments. It is an 
open source and open access standard where models are communicated 
between different software tools as a functional mock-up units (FMU) (FMI 
Standard, n.d.). The standard defines a container and an interface to exchange 
dynamic models through a combination of XML files, binaries, and C code. 
These models can be communicated via two methods: (1) model exchange (2) 
co-simulation. When models are exchanged between software through model 
exchange, the attributes of the dynamic model are sent to the new software tool 
via FMU, where the solver in the new tool is used to simulate the model. In co-
simulation, the FMU is sent to the new tool and the solver from the tool the 
FMU was generated in is used to simulate the model. When the drone models 
are imported into Unity and Unreal Engine with an FMU, the models are 
imported using co-simulation.   
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b. DLR Visualization Library 

Using the drone configuration outlined in (Podlaski et al., 2020) and the HIL 
components outlined in the previous sections, the model in Figure 12 is 
configured to simulate the model in a VR environment using the DLR 
Visualization Library (Hellerer et al., 2014). This example does not require to 
export the model as an FMU, everything is configured and executed within the 
Dymola tool. In this example, the drone is connected to a keyboard input. The 
world component applies gravity and a reference frame to all moving 
components in the environment. It is also attached to shape1, which defines 
the physical terrain (i.e. the scene) that the drone is interacting with.  

 

Figure 12:  Drone model configured HIL simulation using the DLR Visualization Library 

The camera and camera1 components are connected to the chassis of the 
drone so that the user can follow the drone during the simulation. These allow 
for the user to follow the drone in the simulation, both on the computer screen 
or on the HTC Vive headset, which can be controlled through the parameter 
options. The library also supports the Oculus Rift VR headset, making the 
library helpful since it is compatible with widely available VR headsets 
(Hellerer et al., 2014).  
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Figure 13:  Drone in simulated terrain environmltent using the DLR Visualization 
Library 

When the model is simulated, the drone appears in the Visualization Library’s 
SimVis tool that interfaces with Dymola, shown in Figure 13. The drone can 
then be controlled by either the keyboard input or the joystick. Currently, the 
drone is not configured to have the propellers independently spinning from the 
body of the drone as it is one 3D component. The drone also does not have 
collision detection, so it can fly through the ground of the simulation terrain. 
Finally, to demonstrate the end-to-end user interaction, Figure 14 shows a 
picture of the user interacting with the model through the joystick. 

 

Figure 14:  Drone model in simulated terrain environment using the DLR Visualization 
Library controlled by joystick input 
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c. Unreal Engine 

The drone can also be imported into gaming engines for simulation and 
interaction in addition to using Modelica-specific libraries. The drone is 
imported into the Unreal Engine, which is a platform for 3D game 
development (Epic Games, 2021). Just as it has been adopted in the film and 
television industry, the Unreal Engine can be used for 3D simulation and real-
time interaction using C++ to develop environments and simulate models, 
however, that entails substantial efforts, which cannot be justified for initial 
design phases. As an alternative, in order to facilitate early design interaction, 
the model that was developed using Modelica can be imported into Unreal 
Engine using an open-source plug-in for FMUs (Greenwood, 2020). This 
provides a method such that the models developed and simulated using 
Modelica can be re-used in other tools, substantially reducing effort thanks to 
the underlying FMI standard. 

As proof of concept, the drone FMU in the Unreal Engine is shown in Figure 
15, where the drone is represented as a spherical object. Since the FMU 
transfers all the mathematical modeling attributes of the drone into the Unreal 
Engine, the visualization of the drone as a sphere does not impact the 
simulation. In Unreal Engine, the drone would be visualized using 3D CAD 
files, which will be completed and added in future work. Figure 16 shows the 
drone FMU’s coordinates changing over time as the user commands XYZ 
coordinate changes using the keyboard. 

 

Figure 15:  Drone model in simulated terrain environment using the Unreal Engine 
controlled by keyboard input 
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Figure 16:  Changes in drone model XYZ coordinates in the Unreal Engine controlled by 
keyboard input 

d. Unity  

The Unity game engine provides another option for VR simulation and 
interaction with the drone models by exploiting the FMI standard. Similar to 
the Unreal Engine, the drone can be imported into Unity using an FMU using 
an open-source FMI plug-in (CATIA Systems, 2018).  

The drone is simulated and controlled in the Unity environment in Figures 17 
and 18, providing another method to use the same model for virtual reality 
interaction and simulation with one model. The drone can be controlled using 
either keyboard commands in a XYZ plane orientation or a joystick gaming 
controller. The ‘W’ and ‘A’ keys control the X direction, the ‘S’ and ‘D’ keys 
control the Y direction, and the ‘O’ and ‘P’ keys control the drone in the Z 
direction. The joystick gaming controller has two joystick inputs on it, where 
one joystick controls the X and Y movement of the drone and the other 
controls the Z directional movements.  

The biggest obstacle with this method of simulation was to attain consistent 
time synchronization between the game engine and the FMU. Since the FMU 
requires real-time simulation to properly control the drone due to the HIL 
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inputs, the solver time in the FMU needs to be synchronized to prevent the 
model from reaching an unstable state. In the future, the visualization will be 
developed in more detail to include a richer model of the drone, e.g. separately 
controlling the propellers from the body.  

 

Figure 17:  Drone model in simulated terrain environment using Unity with model 
imported using FMU 

 

Figure 18:  Drone model in simulated terrain environment using Unity with controls 
shown 

7. Conclusions and Future Work 

This work provides examples for different methods of simulation and 
visualization of a quadcopter in three different virtual reality environments. 
The same model is used for virtual reality interaction for all three methods 

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 15 25th-29th October 2021



because of the flexibility provided by the open access Modelica and FMI 
standards. In addition, this work lays down the proof-of-concept of how 
models can be integrated into VR environments at early design phases without 
substantial investments. This can be leveraged in the future to facilitate design 
methodologies where the designer and end-user gather feedback on 
requirements and specifications related to human interaction that are difficult to 
capture with today’s  

In the future, the visualization will be improved for all three methods. The 
drone model itself will be enhanced with more dynamism, i.e. the rotors should 
move separately from the body, so it is necessary to determine how to assign 
outputs from the FMU to control the 3D objects on the drone. It is also 
necessary to improve the drone visuals for the Unreal Engine example to 
represent the drone as it would look in real life. Other goals for improvement 
include collision detection and the corresponding physics for when the drone 
runs into an obstacle. The drone will also be simulated and interacted with 
multiple drones in one environment in future developments.   
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