

Towards VR-Based Early Design Interaction for electric
Vertical Take-Off & Landing (eVTOL) Cyber-Physical
Models

Meaghan Podlaski, Luigi Vanfretti, Jacob Monteneiri, Abhijit Khare,

James Lewin, Eric Segall
Rensselaer Polytechnic Institute (USA)

Abstract

In the development of complex engineered systems, such as eVTOL, it is
difficult to integrate human interaction in early design stages of the engineering
design process, for both designer and end-user. This opens the research
questions: (1) can the design improve if designers interact with the virtual
prototype during early design phases? and (2) can the end-user interaction at
early phases fulfil unperceived end-user needs and requirements? To address
such questions, a “virtual reality” environment is needed allowing for
designers/end-users to interact with the “virtual prototypes”. This paper
discusses foundational work towards the vision of such environments. The
paper aims to address how virtual reality (VR)-based technologies can enable
interaction with eVTOL models early in the design process, providing more
flexibility to study models with additional human feedback. The proposed
methodology leverages open access and open source standards for modelling
cyber-physical systems and for model portability. To illustrate the
methodology, an eVTOL model is expanded to incorporate user-interaction
functionalities and VR within a Modelica tool. Then, proof-of-concept on
portability and interoperability is shown by exporting the drone model using
the FMI standard into two different game development environments. The
results aim to highlight the importance of the use of open access and open
source modeling, simulation and model exchange standards, for model
portability into new VR-ready interaction environments that weren’t initially
conceived for simulation purposes.

1. Notation and abbreviations

eVTOL - electric Vertical Take-Off and Landing
FMI - Functional mock-up interface
FMU - Functional mock-up unit
VR - Virtual reality

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 1 25th-29th October 2021

2. Introduction

a. Motivation

With the development of complex, multiple-domain systems such as eVTOL,
physical prototypes can be costly and difficult to build. Simulation-based
studies using well-understood physics-based models are extremely valuable to
determine which designs best comply with specifications and requirements
before building them. One aspect that is hard to integrate within the typical
engineering design process, is the study of how humans will interact with the
system, which can be either the designers themselves or the end-user. This is
harder to quantify than when dealing with typical engineering requirements,
which largely do not depend on human factors in early design phases. This
opens the following research questions: (1) can the design improve if designers
can interact with the virtual prototype during early design phases, and (2) can
the end-user interaction at early phases fulfill unperceived end-user needs and
requirements as compared to existing approaches. To address such questions, a
“virtual reality'' environment is necessary, allowing for designers/end-users to
interact with the “virtual prototypes”. This paper discusses preliminary work to
address how virtual reality-based technologies can enable interaction with
eVTOL models early in the design process, providing more flexibility to study
and simulate models with additional human feedback and prior to building a
physical prototype and testing the physical system. The proposed systems
engineering method can also provide a basis for an eVTOL virtual reality-
based flight training simulator.

The proposed method proposed herein consists of implementing a drone
model, which has been created using the object-oriented modeling language,
Modelica. The choice of this language is to leverage interoperability for model-
reusability in multiple modeling and simulation tools, as well as model export
through the Functional Mock-up Interface (FMI). The multi-domain models
were used to create each aspect of the drone, specifically focusing on the
mechanical and electrical domains. This paper expands the work in (Podlaski et
al., 2020) to show methods to simulate and interact with the drone in VR using
various visualization tools and game development environments. Firstly, this
has been achieved in this paper using the Modelica-based DLR Visualization
library to demonstrate interaction and animation with Modelica specific tools
that do not require model export. Secondly, to exploit VR-ready environments
not originally conceived for engineering, the paper shows how the model can
be exported into the Unity and Unreal game development environments using
the FMI standard to demonstrate interaction with virtual reality environments
through model export methods. By integrating models with a wide set of
virtual reality environments and simulation tools, cases such as multiple drone
model instances can be controlled concurrently, dealing with external factors,
and providing collision detection and response.

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 2 25th-29th October 2021

b. Previous Works

Previous research have provided the present work with a foundation for human
and hardware-in-the-loop methodologies through software developments. This
includes developing models to connect external devices to interact with the
library (Thiele et al., 2017; Bellman, 2009). The Modelica External Device
Drivers library allows for hardware such as keyboards and joysticks to provide
interactive inputs to communicate with and control models written in the same
modeling language the drone model was made. This provides a foundation for
the drone model described in this paper to be controlled in real time
simulations and interactive inputs.

Early design interaction also relies heavily on visualization of these models and
systems we wish to study, develop, and interact with. A library for
visualization using Modelica has also been developed for uses such as this
eVTOL application (Hellerer et al., 2014). This provides one method of
visualization and simulation of models, where code or model export into
another tool is not required. This allows us to explore one method of
visualization and interaction with the model.

The Modelica programming language has also been used for the development
of models for virtual reality training simulators (Martin-Villalba et al., 2010).
Models created using the Modelica programming language can be exported
into other simulation tools using the functional mock-up interface (FMI)
standard (Modelica Association, n.d.). The equations, parameters, and
functions of the model are compiled into C code and header functions in a
functional mock-up unit (FMU) structure to be imported into another tool; in
this paper, FMUs are exported from the Modelica development environment
and imported into a gaming engine that is compliant with the FMI standard.
This allows for the model to be simulated and controlled from the new tool, so
the features of the gaming engine can be utilized for simulation. This method
expands the usability of the model, so one model can be used across multiple
tools.

c. Paper Contributions

The proposed methods, models and simulation studies presented in this paper
utilizes these previous efforts to develop human and hardware-in-the-loop
studies for virtual reality-based interaction of a small eVTOL. This paper
primarily focuses on how to expand existing models for visualization,
animation and VR-based interaction with the virtual prototype of the quad-
copter. This visualization and VR-based interaction has been explored using
VR-based game engines and a Modelica-specific animation tool.

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 3 25th-29th October 2021

Figure 1: Drone model configured to simulate a 1 m/s 5 second ramp input in the Z
direction.

3. Multi-Domain Drone Model

The library and models were implemented in the Dymola software and using
the Modelica language (Modelica Association). The library, developed by the
authors of this paper, is open source and can be found at:
https://github.com/ALSETLab/Modelica-Drone-3D-FMI/. The drone models
are multi-domain models, where each engineering domain is modeled and
coupled together through physics-based interfaces. This includes the electrical,
mechanical, aerodynamic and control domains (Podlaski et al., 2020). The top
level representation of the drone model is shown in Figure 1, where the drone
is receiving a command to ramp at a rate of 1 m/s in the Z-direction and
remain in its current position in the X and Y-directions.

Figure 2 shows the drone model in Figure 1 from a component level. The
model is multi-domain, where the dark blue lines represent the control domain,
the light blue lines represent the electrical domain, and the mechanical domain
is denoted by the grey lines. The drone uses inputs xcoord, ycoord, and
zcoord to command the drone to a specific XYZ coordinate location. The
coordinate location of the drone is provided by outputs xgps, ygps, and
zgps. The desired coordinates xcoord, ycoord, and zcoord feed into a
controller, labeled MCU in Figure 2. The MCU then calculates the voltage and
current applied to each of the propellers to move the drone to the desired
location.

Each propeller in the drone uses the battery voltage as a reference, then scales
the voltage accordingly to deliver the power needed to move the drone to its

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 4 25th-29th October 2021

commanded position, as shown in Figure 3. This model utilizes both a control
signal, which is the position input into the model, and the electrical domain
to scale the voltage applied to the motor.

The propeller models in Figure 4 consist of a speed controller, a DC motor, and
the mechanical model of the blades. The model uses a control signal input
(position) and an electrical input (p1) with a rotational mechanical output
to connect the drone propeller dynamics to the airframe (Airframe). The
grey lines represent the rotational mechanical signals, and the blue lines
represent the electrical signals.

Figure 2: Complete drone model consisting of propellers,motor, controller, and
chassis with battery power system.Inputs come from x, y, and z coordinate location.

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 5 25th-29th October 2021

Figure 3: Speed controller using positional input from the MCU and the battery
voltage to adjust the power delivered by the motor to follow a command.

Figure 4: Propeller model consisting of motor, rotor, and blade sub-models. The model
uses a control signal input (position) and an electrical input (p1) with a

rotational mechanical output to connect the drone propeller dynamics to the airframe
(Airframe).

4. Animation and Visualization in Dymola

For visualization purposes, when the drone is simulated, the behavior can be
observed as an animation if configured with the resources to do so. The drone
has been configured to use 3D Object (.STL) files to represent the propellers
and body of the drone in animation, which appears when the drone is
simulated. To link the objects to the simulation model variables, the 3D Object
files are defined in the chassis and blade models of the drone as fixedShape
components from MultiBody library (Otter et al., 2003) from the Modelica
Standard Library (MSL).

The drone configuration for animation in Dymola (a Modelica-compliant tool
from Dassault Systems) on the graphical model level is shown in Figure 1. The
drone has three inputs: X, Y, and Z direction, which are labeled from top to
bottom respectively. The drone model consists of multiple engineering
domains, where each component considers behaviors and equations from the
mechanical, electrical, and controls domains.

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 6 25th-29th October 2021

The initial position of the drone animation is shown in Figure 5, where it is
positioned at (0,0,0). The propellers move over time, as shown in Figure 6. The
propellers spinning are also shown in Figure 7, where the drone is steadily
moving to a height of 5 m over a 5 second period.

Figure 5: Drone animation in Dymola at t=0 seconds.

Figure 6: Drone animation in
Dymola at t=0 seconds

Figure 7: Drone animation with the path of
the propeller shown as a trace of the flight

path (flying up to 5m).

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 7 25th-29th October 2021

5. Virtual Reality Integration

The model configuration in Figure 1 is modified where the x, y, and z
directional inputs const and ramp1 are replaced with components to allow
for interaction with game controllers via the Modelica Device Drivers library
(Thiele et al., 2017). The Modelica Device Drivers library enables hardware-
in-the-loop (HIL) simulation of models by allowing for the interaction of
generic game controllers (e.g. joystick) and keyboard input with models.
Figures 8 and 9 show the model used to connect the joystick controllers and
keyboard to the drone model for HIL simulation.

Figure 8: Joystick input converted to X, Y, and Z directional input to connect to the
drone.

The synchronizeRealtime component synchronizes the simulation time
of the simulation process with the operating system’s real time clock. The
Modelica Device Drivers library was implemented to provide multi-platform
support through “soft” synchronization, which means that latency is restricted
to a maximum value and that there are no guarantees on the deadlines.
However, it can meet today's requirements for human-computer-interaction of
computer games. The only important consideration for this application is that
the command deadlines from the controller will be met to match the system
clock if the simulation is expensive. For the drone example that is studied here,
the synchronization capability provided by the library is more than sufficient.
The joystickInput and keyboardInput components in Figures 8 and
9 detect input from the external device and retrieve data to interact with the
model according to a specified sampling time.

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 8 25th-29th October 2021

Figure 9: Keyboard input converted to X, Y, and Z directional inputs to connect to the
drone.

The data retrieved by the joystickInput and keyboardInput
components are then translated into X, Y, and Z directional control using a PI
controller. Figure 10 shows the PI controller of the joystick input. The control
system from the keyboard input is similar to the joystick, except the keyboard
input explicitly defines the positive and negative direction as different key
inputs. This requires an additional step of the control system to compute the
direction signal of the drone after integration, as shown in Figure 11.

Figure 10: Control system for the joystick HIL input.

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 9 25th-29th October 2021

Figure 11: Control system for keyboard HIL input.

After coupling the controllers, the next step is to interface the VR hardware,
define the VR scene, camera locations, etc. The full paper will discuss how this
was achieved using the DLR Visualization Library (Hellerer et al., 2014) and
the HTC Vive Headset, for which results are shown below.

6. Simulation in VR environments

The model structure of the drone allows it to be integrated into multiple
gaming engines and virtual reality environments for early design interaction. In
this paper, the drone model is used in three different animation tools and game
development environments to show the flexibility of the modeling and
integration into these VR tools when using open access standards, as discussed
below.

a. Functional Mock-Up Interface (FMI) Standard

The FMI standard is crucial in providing a means to communicate the models
between the modeling environment and virtual reality environments. It is an
open source and open access standard where models are communicated
between different software tools as a functional mock-up units (FMU) (FMI
Standard, n.d.). The standard defines a container and an interface to exchange
dynamic models through a combination of XML files, binaries, and C code.
These models can be communicated via two methods: (1) model exchange (2)
co-simulation. When models are exchanged between software through model
exchange, the attributes of the dynamic model are sent to the new software tool
via FMU, where the solver in the new tool is used to simulate the model. In co-
simulation, the FMU is sent to the new tool and the solver from the tool the
FMU was generated in is used to simulate the model. When the drone models
are imported into Unity and Unreal Engine with an FMU, the models are
imported using co-simulation.

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 10 25th-29th October 2021

b. DLR Visualization Library

Using the drone configuration outlined in (Podlaski et al., 2020) and the HIL
components outlined in the previous sections, the model in Figure 12 is
configured to simulate the model in a VR environment using the DLR
Visualization Library (Hellerer et al., 2014). This example does not require to
export the model as an FMU, everything is configured and executed within the
Dymola tool. In this example, the drone is connected to a keyboard input. The
world component applies gravity and a reference frame to all moving
components in the environment. It is also attached to shape1, which defines
the physical terrain (i.e. the scene) that the drone is interacting with.

Figure 12: Drone model configured HIL simulation using the DLR Visualization Library

The camera and camera1 components are connected to the chassis of the
drone so that the user can follow the drone during the simulation. These allow
for the user to follow the drone in the simulation, both on the computer screen
or on the HTC Vive headset, which can be controlled through the parameter
options. The library also supports the Oculus Rift VR headset, making the
library helpful since it is compatible with widely available VR headsets
(Hellerer et al., 2014).

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 11 25th-29th October 2021

Figure 13: Drone in simulated terrain environmltent using the DLR Visualization
Library

When the model is simulated, the drone appears in the Visualization Library’s
SimVis tool that interfaces with Dymola, shown in Figure 13. The drone can
then be controlled by either the keyboard input or the joystick. Currently, the
drone is not configured to have the propellers independently spinning from the
body of the drone as it is one 3D component. The drone also does not have
collision detection, so it can fly through the ground of the simulation terrain.
Finally, to demonstrate the end-to-end user interaction, Figure 14 shows a
picture of the user interacting with the model through the joystick.

Figure 14: Drone model in simulated terrain environment using the DLR Visualization
Library controlled by joystick input

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 12 25th-29th October 2021

c. Unreal Engine

The drone can also be imported into gaming engines for simulation and
interaction in addition to using Modelica-specific libraries. The drone is
imported into the Unreal Engine, which is a platform for 3D game
development (Epic Games, 2021). Just as it has been adopted in the film and
television industry, the Unreal Engine can be used for 3D simulation and real-
time interaction using C++ to develop environments and simulate models,
however, that entails substantial efforts, which cannot be justified for initial
design phases. As an alternative, in order to facilitate early design interaction,
the model that was developed using Modelica can be imported into Unreal
Engine using an open-source plug-in for FMUs (Greenwood, 2020). This
provides a method such that the models developed and simulated using
Modelica can be re-used in other tools, substantially reducing effort thanks to
the underlying FMI standard.

As proof of concept, the drone FMU in the Unreal Engine is shown in Figure
15, where the drone is represented as a spherical object. Since the FMU
transfers all the mathematical modeling attributes of the drone into the Unreal
Engine, the visualization of the drone as a sphere does not impact the
simulation. In Unreal Engine, the drone would be visualized using 3D CAD
files, which will be completed and added in future work. Figure 16 shows the
drone FMU’s coordinates changing over time as the user commands XYZ
coordinate changes using the keyboard.

Figure 15: Drone model in simulated terrain environment using the Unreal Engine
controlled by keyboard input

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 13 25th-29th October 2021

Figure 16: Changes in drone model XYZ coordinates in the Unreal Engine controlled by
keyboard input

d. Unity

The Unity game engine provides another option for VR simulation and
interaction with the drone models by exploiting the FMI standard. Similar to
the Unreal Engine, the drone can be imported into Unity using an FMU using
an open-source FMI plug-in (CATIA Systems, 2018).

The drone is simulated and controlled in the Unity environment in Figures 17
and 18, providing another method to use the same model for virtual reality
interaction and simulation with one model. The drone can be controlled using
either keyboard commands in a XYZ plane orientation or a joystick gaming
controller. The ‘W’ and ‘A’ keys control the X direction, the ‘S’ and ‘D’ keys
control the Y direction, and the ‘O’ and ‘P’ keys control the drone in the Z
direction. The joystick gaming controller has two joystick inputs on it, where
one joystick controls the X and Y movement of the drone and the other
controls the Z directional movements.

The biggest obstacle with this method of simulation was to attain consistent
time synchronization between the game engine and the FMU. Since the FMU
requires real-time simulation to properly control the drone due to the HIL

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 14 25th-29th October 2021

inputs, the solver time in the FMU needs to be synchronized to prevent the
model from reaching an unstable state. In the future, the visualization will be
developed in more detail to include a richer model of the drone, e.g. separately
controlling the propellers from the body.

Figure 17: Drone model in simulated terrain environment using Unity with model
imported using FMU

Figure 18: Drone model in simulated terrain environment using Unity with controls
shown

7. Conclusions and Future Work

This work provides examples for different methods of simulation and
visualization of a quadcopter in three different virtual reality environments.
The same model is used for virtual reality interaction for all three methods

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 15 25th-29th October 2021

because of the flexibility provided by the open access Modelica and FMI
standards. In addition, this work lays down the proof-of-concept of how
models can be integrated into VR environments at early design phases without
substantial investments. This can be leveraged in the future to facilitate design
methodologies where the designer and end-user gather feedback on
requirements and specifications related to human interaction that are difficult to
capture with today’s

In the future, the visualization will be improved for all three methods. The
drone model itself will be enhanced with more dynamism, i.e. the rotors should
move separately from the body, so it is necessary to determine how to assign
outputs from the FMU to control the 3D objects on the drone. It is also
necessary to improve the drone visuals for the Unreal Engine example to
represent the drone as it would look in real life. Other goals for improvement
include collision detection and the corresponding physics for when the drone
runs into an obstacle. The drone will also be simulated and interacted with
multiple drones in one environment in future developments.

8. Acknowledgements

This work was supported in whole or in part by the National Aeronautics and
Space Administration under award number 80NSSC19M0125 as part of the
Center for High-Efficiency Electrical Technologies for Aircraft (CHEETA), by
the Center of Excellence for NEOM Research at the King Abdullah University
of Science and Technology under grant OSR-2019-CoE-NEOM-4178.12, and
in part by The Boeing Company through its Charitable Partnership with
Rensselaer Polytechnic Institute.

The first author is supported by the National Science Foundation Graduate
Research Fellowship Program under Grant No. DGE 1744655 and the
Chateaubriand Fellowship of the Office for Science \& Technology of the
Embassy of France in the United States.

9. References
Bellman, T. (2009). Interactive Simulations and advanced Visualization

with Modelica. 10.3384/ecp09430056

CATIA Systems. (2018). Unity FMI Add On. Github.

https://github.com/CATIA-Systems/Unity-FMI-Addon

Epic Games. (2021). Unreal Engine. Unreal Engine.

https://www.unrealengine.com/en-US/

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 16 25th-29th October 2021

FMI Standard. (n.d.). FMI Standard. FMI Standard. https://fmi-

standard.org/

Greenwood, S. (2020, November). Unreal Engine - FMI Plugin.

Github. https://github.com/ORNL-Modelica/UnrealEngine-FMIPlugin

Hellerer, M., Bellman, T., & Schlegel, F. (2014). The DLR

Visualization Library - Recent development and applications.

International Modelica Conference, 10, 899-911.

Martin-Villalba, C., Urquia, A., & Dormido, S. (2010). Development of

Virtual Training Simulators with Modelica. Proceedings of the 2010

Summer Computer Simulation Conference, 413-418.

Modelica Association. (n.d.). Modelica. Modelica Modeling Language.

https://modelica.org/

Otter, M., Elmqvist, H., & Mattsson, S. E. (2003). The New Modelica

MultiBody Library.

Podlaski, M., Vanfretti, L., Nademi, H., & Chang, H. (2020). UAV

Dynamics and Electric Power System Modeling and Visualization

using Modelica and FMI. Vertical Flight Society Annual Forum 76.

Thiele, B., Beutlich, T., Waurich, V., Sjölund, M., & Bellmann, T.

(2017). Towards a Standard-Conform, Platform-Generic and Feature-

Rich Modelica Device Drivers Library. International Modelica

Conference, 713-723.

https://2017.international.conference.modelica.org/proceedings/html/su

bmissions/ecp17132713_ThieleBeutlichWaurichSjolundBellmann.pdf

© NAFEMS 2021 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2021 17 25th-29th October 2021

