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Abstract—Power system operators obtain information about
an electrical grid’s current condition using available tools in
control centers. These tools employ simple algorithms for data
analysis and processing to expedite decision making. We propose
to use Deep Learning algorithms to provide more information
about the power system’s operating condition without loss in
computational performance. This work performs a comparison
between several Deep Learning algorithms for time series-based
classification of power system small-signal stability, which can
be applied to both PMU data or synthetic measurements from
simulations. In particular, several case studies are performed
using line current and bus voltage data as input for the proposed
algorithms. To find the best method for the classification task,
the following neural network (NN) architectures are studied: a
multi-layer perceptron, a fully-convolutional NN, an inception
network, a time convolutional NN, and a multi-channel deep
convolutional NN. Training and testing data sets were obtained
from the IEEE 9 bus system by performing dynamic simulations
subjected to a vast array of operating conditions (i.e., different
power flow solutions, and contingencies). The computational time
of the implemented algorithms is measured. The multi-channel
deep convolutional NN shown the best performance in most of
the reviewed cases.

Index Terms—Deep learning, convolutional neural network,
power systems, small signal stability

I. INTRODUCTION

The standard approach of small-signal stability analysis
(SSA) [1] is to quantify the effects of the small disturbances,
such as a line trip, by analyzing the stability properties of
the linearized power system model. The obtained model is
usually presented in a form of a state-space representation.
Then, linear system analysis is applied to assess the small-
signal stability condition by evaluating the system’s eigen-
values, thereby obtaining the damping ratio of the dominant
modes [1]. When the model is not available, a measurement-
based mode identification technique, such as Prony [2], is
applied. Prony requires recording of several swing oscillations
to get acceptable accuracy in mode identification. Despite the
usefulness of the linear analysis and measurement-based mode
estimation techniques to evaluate SSA, their implementation
for a real-time analysis poses several challenges. Such draw-
backs arise from the complexity of the required computations
for a large-scale system (e.g. maintaining a validated model)
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or the measurement data requirements to obtain acceptable
accuracy (e.g. filtering).

Deep Learning (DL) is a family of Machine Learning (ML)
algorithms that are based on artificial Neural Networks (NNs)
with feature learning capability [3]. In other words, these
algorithms allow extracting essential elements of the data that
define an output that has to be learned by the DL algo-
rithm. Some of ML algorithms have been recently applied in
power systems to enhance and evaluate small-signal stability.
For example, the work of [4] performs coordinated tuning
of power system stabilizer (PSS) parameters using heuristic
optimization algorithms. Likewise, in [5], a cuckoo search is
employed to find optimal PSS parameters that guarantee small-
signal stability. Moreover, in [6], the parameters of a unified
power flow controller are tuned via an NN whose weights are
optimized using the Levenberg-Marquardt algorithm. Despite
some efforts to study SSA with conventional ML techniques,
there is no research on the small-signal stability assessment
using deep learning methods to the authors’ best knowledge.

Deep Learning algorithms can be trained using collected
measurements and data generated performing offline power
system simulations. The trained algorithm has to be deployed
for inference on real-time data to provide fast identification of
the state in which the system operates. However, in this new
approach, the main challenges are: (i) to choose the effective
DL algorithm, (ii) to select the best data and appropriate
amount of data to train the algorithm with sufficient accuracy
while (iii) ensuring an acceptable real-time performance. This
work aims to provide insight into these challenges.

A. Contribution

This paper’s main contribution is a proposal to use and
a comparison of the training results of the state-of-the-art
Deep Learning algorithms for small-signal stability assessment
using time-series input power system data (either synthetic
(simulated) or the measurements from a real power system).
Special attention is paid to the case studies on the measurement
selection (voltage or current measurements) and data prepara-
tion for the algorithms’ training. For this purpose, case studies
are performed for voltage and current measurements with
1% Gaussian noise (added in the preprocessing) and without
noise of a simulated model to assess small-signal stability.
The performance of studied architectures is discussed and
compared using the performance evaluation metrics such as



accuracy, precision and recall. The architectures are: a Multi-
Layer Perceptron, a Fully Convolutional NN, a Time Convolu-
tional NN (CNN), an inception network, and a Multi-Channel
Deep CNN. Hyperparameters of the algorithms, such as the
effective number of epochs, are also reported. Furthermore,
the trained algorithms’ prediction/classification time per data
sample is presented to analyze which model is most suitable
for a real-time application.

This article expands the authors’ previous work in [7] by
considering a time-series data as input directly, rather than the
set of eigenvalues describing a particular operating condition.
In [7], we used the output from several dynamic simulations to
compute the eigenvalues characterizing a particular condition.
Eigenvalues had to be further preprocessed before classifying
the operational condition of the system using the decision
boundaries learned during training. In this work, the pre-
processing task of identifying the system eigenvalues is a
feature learning task performed by the particular layers of the
proposed NN architectures.
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Fig. 1. Approaches to small-signal stability assessment by conventional ML
and DL.

Since unstable operating conditions are rare, they are cre-
ated via model-based simulation. To this end, we follow the
automated phasor time-domain simulation approach that is
based on realistic selection of a set of contingencies for
power systems described in [8] to produce training data. The
procedure in [7] follows a different contingency generation
algorithm.

In contrast to our previous work, using time series data
as input expands the applicability of the methodology and
enables the potential inclusion of PMU data for training. Both
approaches require a time series pre-processing stage, but
the approach of this paper does not require any eigenvalue
computation. We emphasize that the feature engineering task
(i.e., computing eigenvalues from time-series data) is carried
out in the forward-pass of the NN. This is not possible with the
classic ML methods applied in [7] where the pre-processing
had to be done beforehand. The difference between both
approaches is underlined in Figure 1.

B. Paper Organization

This paper is structured as follows: Section II presents an
overview of SSA from time-series data and a description of
the studied DL architectures. Section III describes the data
generation and pre-processing stages. In Section IV, we show

the results of each case study and discuss NN performance
for SSA. Finally, Section V elaborates on common challenges
of the proposed deep learning application and Section VI
concludes the work.

II. SMALL-SIGNAL STABILITY AND DEEP LEARNING

A. Time Series-Based Small-Signal Stability Assessment

The proposed approach (Fig. 2) to perform SSA consists
of an offline and an online step. The former includes data
preparation (time series preprocessing and labeling) and the
deep NN training; the latter refers to exploitation with the
trained NN on non-labeled data to carry out SSA.

Fig. 2. Convolutional neural network structure for time series classification.

Fig. 3. An example of synthetic current and voltage magnitude measurements
for stable and marginally stable scenarios (the disturbance occurs at t = 1.0 s).

B. Deep Learning for Time-Series Classification

Since this is a supervised learning problem, we need to
provide a set of examples for the DL algorithms to learn
how to categorize the data. These examples are the time
series traces with labels. The labels indicate whether a trace
corresponds to either of the classification categories. Labeling
is performed using symbolic linearization of the grid model to
get a system matrix. Then, the dominant eigenvalue is used to
compute a damping ratio that defines the corresponding label



(stable/unstable) for a given scenario. Thus, in our experiments
a training instance is composed of a phasor time-domain
profile of a generator bus voltage or line current (see Fig. 3)
and a binary label calculated offline via model linearization.
During training, the NN learns to identify the characteristic
patterns of each category by updating its parameter values
iteratively. After training, a deployed NN can classify/define
the label for the operating condition by feeding voltage or
current data directly.

DL stands from a NN architecture with (deep) numerous
interconnected layers of reduced number of neurons in each
layer without loss in performance. In general, DL algorithms
consist of three main components: a NN architecture, a
cost/loss function, and an optimization method. The architec-
ture is related to the NN structure, which includes the number
of neurons in each layer, the number of layers, and the type of
layers. The cost/loss function represents the criterion based on
which the NN improves its performance while learning from
the given examples. Finally, the optimization method provides
the mechanism to update the NN parameters, such as weights
in the functions that represent the neurons. In this section,
several deep NN architectures recommended for Time Series
Classification (TSC) are introduced (see Table I).

1) Multi-layer Perceptron (MLP): An MLP [9], or a deep
feedforward network, computes an output by the weighted
sum of every input signal component, followed by a pointwise
nonlinear activation. When deployed for TSC, an MLP’s per-
formance may downgrade due to its architectural properties.
The temporal interdependence in the input is not captured
because all components are weighted individually before being
passed to each layer. Despite this drawback, an MLP [9] is
used as a base case to compare with more sophisticated NNs
for TSC since it represents a lower performance bound.

2) Convolutional Neural Networks (CNNs): CNNs use
convolution as a mapping operator in at least one of their
layers. Convolution has several advantages: sparse interactions,
parameter sharing, equivariant representations, and ability to
work with inputs of variable size. Sparse interactions mean that
the output does not interact with every input unit, allowing
memory reduction (fewer parameters) and efficiency boost
(fewer operations). Likewise, parameter sharing indicates that
the same parameter is used on several layers, which improves
computational efficiency. The equivariance property for deal-
ing with time series data means that when different features
appear in the input, and a particular event is time-shifted, the
same signal will appear in the output, shifted equally [3].

A typical layer of a CNN includes three stages: convolution,
detector, pooling. In the convolution stage, the layer performs
convolutions on the input to get a set of outputs that run
through a nonlinear activation function (e.g., ReLU) in the
detector step. Finally, a pooling function replaces the output
at a certain location with a summary statistic of the nearby
outputs (e.g., max pooling returns the maximum value of the
particular neighborhood). Thus, the output is invariant to noise.

In this work, four CNN architectures –fully convolutional
NNs (FCNs), inception, Multi-channel Deep CNN (MCD-

CNN), and Time-CNN- are studied. The general structure of
the CNNs is shown in Fig. 2. The real and imaginary parts of
a phasor-domain time series are passed as inputs. The CNN
is composed of n convolutional layers (layers 1 − n in Fig.
2) that followed by a fully-connected layer (purple in Fig. 2)
and a softmax activation in the output layer (orange in Fig. 2).
Let z be the vector of values at the last NN layer. A softmax
activation σ for the binary case (i.e., z ∈ R2) is computed and
the category predicted as follows):

y = argmax
[
σ

([
z1
z2

])]
= argmax

 ez1

ez1 + ez2
ez2

ez1 + ez2

 (1)

A FCN (fcn in Table I) has three convolutional layers
followed by a batch normalization stage and a ReLU activation
function each. The training is performed minimizing a cross-
entropy loss function. The third convolutional layer’s output is
averaged over time dimension (global average pooling) before
being fed into an output softmax layer.

Time-CNN (cnn in Table I) [10] has two convolutional
layers followed by softmax activation and average pooling
operation each. The loss function is a mean squared error.

An inception network (inception in Table I) [11] consists
of 6 inception blocks –concatenated outputs of 4 conv layers
and one max pooling connected in parallel- followed with
batch normalization operation and activation function, a global
average pooling layer, and a fully-connected output layer.
Thus, it takes a previous input and passes it to the parallel
convolutional layers concatenating the outputs together with
the output of max pooling operation over the input. So, a
bigger variety of filters can be chosen in each layer.

A Multi-Channel Deep Convolutional Neural Network
(mcdcnn in Table I) [12] consists of typical CNN layers where
the convolutions are performed in parallel on each dimension
of the time series data. Each two convolutional layers have 8
output filters of length 5 with a ReLU activation function, fol-
lowed by a max-pooling operation. The convolutional layers’
output is flattened before entering a fully-connected layer with
a ReLU activation function. Finally, the output layer is fully-
connected of the size that corresponds to number of classes
with a softmax activation function (see Eq. (1)).

III. CASE STUDY

1) Data Generation: We have generated trajectories using
the IEEE 9 bus system (24 state variables; 203 algebraic
variables) initialized for a vast array of operating conditions
(i.e. power flows) and subjected to realistic contingencies that
are generated using the algorithm in [8]. Once the contingency
scenario is applied, a dynamic simulation is carried out for 4 s
to generate trajectories (see Fig. 3). A total of 1805 simulations
were generated, from where ntraining = 1083, ntesting = 602,
and nvalidation = 120.

2) Data Preparation: The voltage signals at generator
buses contain system dynamics that, in practice, can be mea-
sured by PMUs. Thus, the real and imaginary parts of voltage
at some generator buses and selected line current signals are



TABLE I
MODEL CHARACTERISTICS

Model
Parameters

Optimizer
Layers

Trainable (T) Non-
trainable (NT)

Layer
Number

Type
(activation) Hyperparameters

fcn 265,986 1,024 Adam 8 (4T + 4NT) 3x conv1d (relu)
1x dense (softmax)

nfilters = (128, 256, 218)
kernel size = (8, 5, 3)

padding = same

inception 422,850 2,048 Adam 64 (17T + 47NT) 16x conv1D (relu)
1x dense (softmax)

nfilters = 32
kernel size = 41
padding = same

mcdcnn 1,443,526 0 SGD 15 (8T + 7NT) 7x conv1D (relu)
1x dense (softmax)

nfilters = 8
kernel size = 5
padding = same

cnn 1880 0 Adam 7 (3T + 4NT) 2x conv1D (sigmoid)
1x dense (softmax)

nfilters = (6, 12)
kernel size = (7, 7)

padding = valid

mlp 1,007,502 0 Adadelta 8 (4T+ 4NT) 3x dense (relu)
1x dense (softmax) nneurons = 500

used to construct training and testing datasets. Normalization
is not required since all waveforms are per-unitized.

Fig. 4. Training results for 5-fold cross-validation (full length data set).

Also, 1% Gaussian noise, typical for PMU measurements,

is added to the voltage signals. In summary, three datasets
that include pairs of real and imaginary parts of each signal
(voltage, noisy voltage, and current) were generated.

The labeling of the datasets for training of the deep learning
NNs is performed using the classic small-signal stability
analysis. Small-signal stability is analyzed either by linearizing
a nonlinear grid model or identifying the excited dynamics
from measurements (e.g., PMU data).

For ease of interpretation, we limit the NN task (Fig. 2) to
the binary (two classes) problem of stable (when damping ratio
of the system ζ > 5%) and marginally stable (0% < ζ < 5%)
classification. To train and validate the models on the more
complex learning problem, the resulting data sets are further
preprocessed. Thus, to expedite SSA, the measurement length
has been reduced to 75% of the original simulation time. The
resulting length corresponds to a measurement window of 3 s.
This would require less information to be passed to the NN.
Likewise, the number of training instances is reduced by a
factor of 3 (ntraining ≈ 300) to account for data scarcity.

For all experiments, the input tensors’ shape is
(nscenarios, T, 2), where T is the number of points in the
time-series. The last element of the tuple, ’2’, indicates that
real and imaginary parts are input data features.

IV. RESULTS

Results for the experiments with full and reduced length
time series, with all and fewer instances, are presented in Figs.
4 and 5. Conventional splitting results are shown in Fig. 6.

1) Result Analysis: The number of samples for the pre-
sented case studies could be considered small when applying
DL. Thus, k-fold cross-validation (k = 5) was performed to
validate the performance of each DL model.

In Fig. 4, we observe that the CNN architectures with the
tuned hyperparameters (fcn and cnn) can achieve 100% per-
formance on the data generated for the experiment. This does
not mean that the NN will be fully accurate when deployed
but rather that the performance will be very high. Thus, in
our setup, CNNs successfully detect the oscillation patterns



allowing for distinguishing a stable operating condition from
a marginally stable one.

Fig. 5. Training results for 5-fold cross-validation (reduced length data set).

Fig. 5 shows that performance is not significantly
downgraded after reducing the time series length. Some
architectures can relate the oscillating behavior with a category
better than in the previous case. Nevertheless, we observe that
assessing the system’s condition from current measurements
could be more challenging than for voltage inputs. This is
due to presence of more prominent oscillations in voltage
measurements in comparison to the current traces from the
training data.

Purely convolutional architectures (fcn, mcdcnn, and cnn)
show metrics beyond 99% regardless of noise for both voltage
and current inputs. In fact, the performance of all models
is above 99% for noiseless voltage. However, the inception
model lost its classification capability when exposed to noisy
measurements (accuracy: 0.6761; precision: 0.3380; recall:
0.5000). For current data inputs (Fig. 6), the performance of
the MLP degrades which is expected due to the limitations of
this architecture for identifying patterns in time series data.

Fig. 6. Prediction results for line current input (reduced training data set).

In the reviewed cases, the oscillatory pattern is easily
learned by the convolutional layers since it contains the excited
dynamics of the small system. In the cases of presence of
more complex dynamics in the large systems, achieving high
performance would require finer hyperparameter tuning such
as bigger number of neurons and larger data sets for learning,
which would be more computationally expensive. Despite this,
we conclude that DL methods are powerful to learn classifying
patterns that are typical for SSA.

2) Computational Performance Analysis: To measure the
computational performance of the NN models in production,
the prediction time per sample and the number of epochs to
train the best model (see Table II) were computed. The pre-
diction time per sample indicates how fast the NN computes a
prediction of the system stability given a time series input. The
number of epochs is a relative measure of the training effort
required to optimally tune the model. For all architectures,
prediction time is in the order of milliseconds which favors
the deployment in real-time pipelines.

MLP is the fastest architecture in terms of prediction, but
also the one requiring a larger number of epochs to achieve
its best performance. Moreover, there is a tradeoff between
production performance and training effort for all models. The
mcdcnn (Table II) is optimal in both senses.

TABLE II
PREDICTION TIME AND NUMBER OF EPOCHS FOR BEST MODEL

Model Voltage Noisy Voltage Current
Pred.
Time

Eph
Best

Pred.
Time

Eph
Best

Pred.
Time

Eph
Best

fcn 1.20 ms 58 1.21 ms 209 1.21 ms 133
inception 2.50 ms 8 2.43 ms 11 2.48 ms 8
mcdcnn 0.477 ms 59 0.478 ms 59 0.491 ms 45
mlp 0.234 ms 2226 0.225 ms 1760 0.235 ms 211
cnn 2.75 ms 248 0.282 ms 235 0.261 ms 165

V. DISCUSSION

The presented training pipeline of classical state-of-the-art
deep learning architectures is very common in the computer
science community. However, when solving specific field
engineering tasks such as small-signal stability assessment,
several issues arise and must be addressed. The first issue is



which data to use as an input to train the models and process
these data. In this case, when PMUs are widespread in the
power grid, we chose to use voltage or current data, either
noisy or noiseless, to validate the selected NN architectures’
ability to catch the patterns that define the system’s state
(stable or marginally stable). The second issue is to elicit
the data enriched with such distinctive patterns, meaning to
find the measured values after a contingency or create the
big enough dataset of such synthetic measurements to achieve
a good performance of the models. This challenge has been
addressed in [8] whose algorithm has been adopted in this
work to generate the data.

Another issue that is left open is a transfer learning possibil-
ity that can be applied to the best performance model. Transfer
learning is characterized as a possibility to use the trained
model for measurements collected from other power systems
without significant degradation of the model performance. This
point requires special attention and is left as future work. The
next issue connected with the NN architecture’s performance
is how much data is enough to get an acceptable performance
of the trained model. In this work, we gradually enlarged the
amount of data until at least one model of the compared deep
learning algorithms showed a good performance. But generally
speaking, the larger the model, the more extensive dataset is
required for training. In particular, if the power system is
characterized by the significant number of eigenvalues that
define the system’s state, more combinations of the excited
modes can be present after a contingency is applied. Therefore,
more data is needed to train a deep neural network.

Eventually, the issue of the computational performance is
significant if the trained model is applied in any control center.
In Table II the prediction time per data sample is presented
for each studied model. We consider that the trained model is
used in a plug-and-play manner. This means that the presented
time is enough to perform the small-signal assessment if the
input data chunk is available. But one has to be aware that
this chunk is of the length of 3 seconds. This is the time
series length to capture enough patterns to classify the state
of the system. Comparing the trained models to the classic
Prony method performance, the deep learning models give a
significant speedup in performance since the Prony method
is effective only after the oscillations caused by contingency
are fade out [2], [13]. Thus, for the Prony method to achieve
a good performance, the needed time series length is of
approximately 10 seconds in comparison to the 3 seconds that
have been used in the presented case studies.

VI. CONCLUSIONS

This work proposed a novel methodology for time series-
based power system small-signal stability assessment using
deep learning. The models are tested using the labeled current
and voltage measurements generated using massive dynamic
simulations after a realistic contingency scenarios were ap-
plied. The accuracy, precision and recall show a good perfor-
mance of the trained models with the selected hyperparameters
and for the generated data. Prediction time and performance

show the potential of NNs to be deployed in real-time control
center tools for operator decision support.
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