
RaPId - A Parameter Estimation Toolbox
for Modelica/FMI-Based Models

Exploiting Global Optimization Methods

Meaghan Podlaski ∗ Luigi Vanfretti ∗ Tetiana Bogodorova ∗

Tin Rabuzin ∗∗ Maxime Baudette ∗∗∗

∗ Rensselaer Polytechnic Institute, NY, USA (e-mail: {podlam, vanfrl,
bogodt2}@rpi.edu).

∗∗ KTH Royal Inst. of Tech., Sweden (email: rabuzin@kth.se).
∗∗∗ Lawrence Berkley National Laboratory, CA, USA (email:

baudette@lbl.gov).

Abstract: This paper describes new additions to the Rapid Parameter Identification Toolbox
(RaPId), which is an open-source MATLAB toolbox for parameter estimation using models
developed with the Modelica language and exported with the functional mock-up interface (FMI)
Standard. These additions include an updated graphical user interface (GUI), an optimization
method utilizing multiple starting points for a gradient descent optimization, and examples for
different cyber-physical system applications such as the Duffing-Holmes equation modeling in a
form of electrical circuit and a hydroelectric power plant modeling.

Keywords: Dynamic models, Electric power systems, Global optimization, Parameter
estimation, Software tools

1. INTRODUCTION

1.1 Motivation

In complex cyber-physical systems where testing opportu-
nities are limited, such as power systems, reliable simula-
tion based studies are necessary. Improved models can be
created using parameter estimation methods from physical
system data. The Rapid Parameter Identification toolbox
(RaPId) was designed to carry out parameter identifi-
cation on models using MATLAB/Simulink (Vanfretti
et al., 2016). The toolbox was originally developed with
modularity and extensibility in mind. Models developed
using the equation-based, object-oriented modeling lan-
guage, Modelica, could be coupled with the measurements
and optimized using various gradient-based and heuristic
optimization methods.

In this work, new optimization methods utilizing multi-
start algorithms were added to the toolbox, as it was
previously limited in obtaining accurate parameters for
certain systems when the initial start point of the systems’

? This work was supported in part by the National Aeronautics and
Space Administration under award number 80NSSC19M0125 as part
of the Center for High-Efficiency Electrical Technologies for Aircraft
(CHEETA), by Dominion Energy, by the New York State Energy
Research and Development Authority (NYSERDA) under agreement
numbers 137940 and 137951, by the Engineering Research Center
Program of the National Science Foundation and the Department
of Energy under Award EEC-1041877, and in part by the Center
of Excellence for NEOM Research at King Abdullah University of
Science and Technology.
The first author is supported by the National Science Foundation
Graduate Research Fellowship Program under Grant No. DGE
1744655 and the Chateaubriand Fellowship of the Office for Science
& Technology of the Embassy of France in the United States.

parameters were far from global optimum. This toolbox is
open-source and avaliable on Github at: https://github.
com/ALSETLab/RaPId (ALSETLab (2020)).

1.2 Related Works

Model validation tools have become increasingly impor-
tant in analyzing highly complex cyber-physical systems,
such as power systems. Many analysis tasks would benefit
from a flexible parameter estimation tool like RaPId, such
as identification of aggregate model parameters (Kalsi
et al., 2011) and validation of overall grid dynamics
(NASPI, 2015).

The original version of RaPId is described in Vanfretti
et al. (2016), which outlines the software architecture for
a MATLAB parameter estimation toolbox for functional
mock-up units (FMU) (Modelica Association Project
(2020)). The toolbox’s goal is to offer a flexible solu-
tion that supports heterogeneous system models through
exchange using standardized software methods, i.e. the
Functional Mock-up Interface (FMI) standard, and en-
ables easy addition of new optimization algorithms, simu-
lation solvers, etc. The use of FMI allows users to import
models from other modeling and simulation environments.
Other MATLAB toolboxes are available for parameter
estimation of continuous time models such as the SysId
Toolbox (MathWorks (2020b)), CAPTAIN (Taylor et al.
(2018)) and CONSTID (Garnier and Gilson (2018)), how-
ever they require that the models are defined exclusively
in MATLAB/Simulink environment. The models used in
RaPId can be directly imported from different tools, where
models used in other toolboxes must be converted strictly
to a linearized state-space model of a Simulink model prior
to parameter estimation. RaPId aims to address this gap



and to provide certain automation features useful for the
parameter estimation process.

1.3 Paper Contributions

This paper builds off of the existing RaPId MAT-
LAB/Simulink toolbox to include the following new en-
hancements:

• Addition of multiStart as an option for optimiza-
tion. It uses gradient based optimization methods
(fmincon) for parameter estimation using multiple
starting points.
• Updated and improved GUI to include the multiStart

optimization processes.
• Parameter estimation for an electric circuit repre-

sentation of a Duffing oscillator validated against
measurements from a physical circuit. The data is
generated from an electric circuit to identify the pa-
rameters of a model developed using Modelica. This
provides another example for users who do not have
power systems experience.
• Parameter estimation for a new power plant using

phasor measurement (PMU) data added to RaPId.

2. SOFTWARE DESCRIPTION

The RaPId toolbox was originally developed to automate
model validation, calibration, and parameter estimation
for models available in Functional Mock-up Units (FMU)
using model exchange variant from the Functional Mock-
up Interface (FMI) standard Modelica Association Project
(2020). FMUs can be generated from a variety of tools
(see https://fmi-standard.org/tools/), and contain a
casual representation of the original mode (e.g. it has spe-
cific inputs/outputs defining the causality). The resulting
*.fmu is an archive file (i.e. a *.zip file) that contains the
following: (i) an *.xml file with static model information,
(ii) Source C/C++ code or a shared library (i.e. a *.dll in
Windows OS) with the model equations converted to ca-
sual form and implementing the FMU Advanced Program-
ming Interface, and (iii) additional resources (e.g. images,
licenses, etc.). To import the FMU, RaPId uses a Simulink
block or functions provided by the FMI Toolbox Modelon
(2018).

The parameter identification process for the software is
shown in Figure 1. RaPId takes reference time-series data
along with simulation results to minimize a cost function
and to determine an optimal set of parameters. The
user defines parameters from the FMU to be calibrated,
simulation and optimization solver to use, etc. The toolbox
calibrates the model through an the iterative process
shown in Figure 1:

(1) A reference measurement in the form of time series
data is provided to the toolbox.

(2) The RaPId container applies algorithms for parame-
ter identification, optimization method, and solver to
simulate the FMU in Simulink.

(3) The FMI block defines the Modelica model exported
as an FMU using model exchange in Simulink.

(4) The reference measurements and the simulation re-
sults are used to determine the error.

(5) RaPId uses the error to determine new parameters
using the specified optimization method.

Fig. 1. RaPId parameter identification process.

Fig. 2. RaPId software architecture implementation for
parallel optimization, new additions to the toolbox
are in bold.

2.1 Updated Software Architecture

The RaPId toolbox has the same architecture as de-
scribed in (Vanfretti et al. (2016)). Figure 2 shows the
relationship between each of the functions used in the
toolbox. In the core folder of the toolbox, the file
rapid.m manages all of the experiment settings such as
the parameters to optimize, starting guess values, op-
timization bounds, and other simulation settings. The
rapid objectiveFunction.m file defines the cost function
to determine the fitness of each parallel simulation result,
user-defined functions can be added. The optimization is
handled by a multiStart algorithm that can be found in
the algos folder of RaPId.

The simulation of the models are configured to use
FMI model exchange, so the solvers available in MAT-
LAB/Simulink can be used. The FMUs can be imple-
mented as FMU 1.0 and 2.0 by using the FMI Toolbox
from (Modelon (2018)), which interfaces FMUs generated
from Modelica tools with MATLAB/Simulink.

2.2 MultiStart Optimization

The capability to run objective functions with multiple
starting points has been added to RaPId to improve pa-
rameter identification results. It relies on the framework
outlined in (Ugray et al. (2007)). These algorithm files
can be found in the algos folder in Figure 2. When
the parallel option is selected, RaPId will use the
multiStart solver from the Global Optimization Toolbox
from MathWorks (2020a). This toolbox provides optimiza-
tion functions for problems that contain multiple minima
or maxima to find a global solution. This is useful for sys-
tems such as power grids, where parameter identification



process using grid measurements may result in identifying
a result at a local optimum.

The optimization routine using multiple user-defined start-
ing points and the multiStart solver method is shown in
Algorithm 1. After all of the inputs and settings for the
experiments are defined, multiple starting guesses for the
parameters are given as inputs to the multiStart solver
to find a global solution using the gradient based solver,
fmincon.

Algorithm 1 Using MultiStart with gradient solver

Set up simulation experiment using RaPId:
pi = i-th vector for all parameters to be calibrated
pmin = vector of lower limit of all parameters calibrated
pmax = vector of upper limit of all parameters calibrated
model-info = path to Simulink model and FMU, inte-
gration method.
tmeas = time vector of measurement data
ymeas = vector of measurement data
cost function = cost function to calculate error
ε0 = error tolerance
Set up FMU parameters, inputs, and outputs:
parameterNames = vector of names of parameters to be
updated in FMU
fmuInputNames = vector of names of inputs to FMU
(from measurements)
fmuOutputNames = vector of names of outputs from the
FMU (to compare with measurements)
Set up the optimization algorithm in RaPId:
case = ‘parallel’
Run parameter estimation with RaPId:
(1) Using Multistart, assign one solver to each vector in

xi. Find solution using fmincon.
(2) Compare simulation results to measurements by

computing error based off of the cost function de-
fined during initialization. This determines the er-
ror, ε.

(3) If the error, ε, is below the error tolerance or the
maximum number of iterations have been reached,
the parameter set obtained is the final solution. If
not, the parameters are then used as the input of
the next RaPId iteration.

2.3 Updated RaPId GUI

The optimization routines and parameter identification of
RaPId can be run from the command line or via a script
saved as a ‘*.m’ file or using a graphical interface. The
GUI has been improved and updated to include the new
parallel optimization algorithm settings, which is shown
in Figure 3. The GUI has the option to load a pre-
existing container in box A, which contains the experiment
data outlined in Algorithm 1. This includes the FMU
input, output, and parameter names, optimization starting
guesses, and optimization bounds. It also contains the
input data and reference data used to run the parameter
identification (as visualized in Figure 1).

If a new container needs to be created, there is an option
to load the FMU model path, input/output measurement
data and names, and parameter names by clicking the
‘ODE simulation settings’ box in box B. The parameter
limits and start values are defined under ‘Simulink set-
tings’. The drop down menu gives the options of multiple

Fig. 3. Updated RaPId GUI

optimization methods to use with RaPId, where the ‘par-
allel’ setting is new and allows for inputs specific to the
solver. The simulation settings can be saved in a container
as a ‘.mat’ file by pressing the ‘Save Container’ button.
Once the problem and container have been properly con-
figured, RaPId will start the optimization by pressing the
‘Run Optimization’ button. There are also options to plot
the results from Simulink with the GUI, or results can be
plotted by calling the variables from the command line.

3. UPDATED EXAMPLES

3.1 Model Development using Modelica and the FMI
Standards

Modelica is an object-oriented, equation-based modeling
language (Fritzson, 2004). These models are defined using
differential-algebraic equations (DAEs). The connections
to the model are not defined by input and output signals,
but by acasual physical ports that couple the DAEs.
Multiple engineering domains can be represented in the
models, as the equation-based features allow for these
aspects to be easily coupled together.

The models written in Modelica can be coupled with other
simulation tools as an FMU through the FMI Standard
(Modelica Association Project, 2020). There are two op-
tions for coupling models to other tools: model exchange
and co-simulation. In model exchange, only the model is
included in the FMU and the model uses the solver of
the tool that is imported in for simulation (i.e. in the
case of RaPId that is MATLAB/Simulink. Co-simulation
includes the solver from the source of the FMU. RaPId
only supports FMU import using model exchange.

3.2 Illustrative Electric Circuit Example

This version of RaPId now includes an example using an
electric circuit of a Duffing oscillator to show flexibility
and application of the tool outside of power and control
system domains.

Electric Circuit Equivalent of the Duffing-Holmes Equa-
tion. The Duffing-Holmes equation (1) is a second order



Fig. 4. Duffing-Holmes equation represented as an RLC
oscillator circuit.

non-autonomous differential equation that can be repre-
sented physically as a second order analog circuit using
an operational amplifier, allowing for the generation of
chaotic waveforms (Tamaševiciute et al., 2008).

ẍ+ bẋ− x+ x3 = a sinωt (1)

The electrical circuit is shown in Figure 4. It is an RLC
oscillator with nonlinear elements in the positive feedback
loop that results in choatic behavior. The Duffing-Holmes
equation can be described using Kirchhoff’s laws in Equa-
tions 2 and 3. The function FE(VC) in Equations 3 and
4 is a nonlinear function of the capacitor voltage that
Tamaševiciute et al. (2008) reduces into a piecewise func-
tion with three segments. In Equation 4, k = R1/R2 + 1,
which is the gain of the amplifier and V ∗ is the bias voltage
of the diode. Silicon diodes are used in this circuit, which
have a voltage drop of approximately 0.5 V at 0.1 mA.

C
dVc
dt

= IL (2)

L
dIL
dt

= FE(VC)− ILR+A sin(ωt− π) (3)

FE(VC) =

{−(VC + kV ∗), VC < −V ∗

(k − 1)VC , −V ∗ ≤ VC ≤ V ∗

−(Vc − kV ∗), VC > V ∗
(4)

Circuit Model and Physical Prototype. The circuit in
Figure 4 is modeled in Dymola using the Modelica Stan-
dard Library (MSL) (Modelica Association, 2020). It is an
open source Modelica library with components to model
mechanical, electrical, thermal, fluid, and control systems.
The model is exported as an FMU to use in RaPId within
MATLAB/Simulink.

A physical electrical circuit was also constructed to record
measurements to identify the true parameters of the RLC
components in Figure 4. These measurements are recorded
using the Analog Discovery 2, which is a USB oscilloscope
and waveform generator (Digilent (2020)). This allows us
to drive the physical circuit and model with the same
sinusoidal input waveform.

Optimization Problem Setup. The parameter vectors,
parameterNames and pi, according to Algorithm 1 are the
values of all resistances in the circuit. The upper and lower
bounds have been determined based on the error tolerance
of the physical components (e.g. a 10kΩ resistor has a

Fig. 5. Duffing-Holmes equation represented as a function
of the capacitor voltage and the inductor current from
the circuit in Figure 4.

5% tolerance, so the realistic resistance of the component
ranges from 9.5kΩ to 10.5kΩ). The measurement data
is divided into a time vector, tmeas, and a measurement
vector, ymeas = [VC , IL]. The output measurements have
been selected to match the quantities needed to plot the
chaotic behavior of the oscillator (Tamaševiciute et al.
(2008)). In Equation (5), the lower and upper limits to
the optimization problem are defined as pmin and pmax.

min
x
f(x) such that { pmin ≤ x ≤ pmax } . (5)

Using the multiStart optimization method with the gra-
dient solver fmincon, the estimated parameter vector p̄
is continuously optimized and updated to simulate the
response of the system for each of the local solvers. The
absolute difference between the simulation and measure-
ments is calculated at each time step, as follows:

ε1 =

[
V simulated
c − V reference

c

Isimulated
L − IreferenceL

]T
(6)

The objective function computed using the Frobenius
norm from the mismatch ε1. The sum of mismatches is
calculated from the norms of the measurement/simulation
pair at each time step, returning the fitness of the simu-
lated model to the measurements for that parameter set.
The fitness of each type of signal are weighted equally
when optimizing the parameters by minimizing:

f(x) = Σm
i=1Σn

j=1(εij ∗ εij) (7)

Parameter Estimation Results. The parameter estima-
tion was completed using three different optimization
methods (fmincon, multiStart, and particle swarm op-
timization (PSO)) using measurement data collected from
the circuit. The behavior that this model aims to replicate
is shown in Figure 5; given the chaotic waveform, the
results are shown in tabular form in Table 1 for clarity.
The fmincon and PSO algorithms have an initial guess
of [20.5, 10020, 10010, 9990]; the multiStart algorithm
has an initial guess of [20.5, 10020, 10010, 9990; 19,10030,
10070,10000;20.1,11000, 10050,10300]. The stopping error
tolerance is 1e-3 and 50 iterations.The fmincon method
takes 12 iterations to solve with a residual of 1.82; PSO
method takes 33 iterations with a residual of 2.24, and the
multiStart method takes 17 iterations with a residual of
1.85.



Table 1. Resistance values and estimation re-
sults of the system in Figure 4.

Solver R (Ω) R1 (Ω) R2 (Ω) R3 (Ω) Time(s)

Physical 20 10000 10000 10000 N/A

fmincon 20.56 10151.35 9998.06 10011.32 519
PSO 20.38 10114.07 10364.86 10036.86 1325
multiStart 19.9 10498.71 9999.38 9999.2 772

The multiStart is superior in computing parameter estima-
tion in terms of computational time compared to the PSO
solver. It takes computationally longer than the fmincon
solver due to the fact that multiple starting points are
evaluated.

3.3 Hydroelectric Power Plant Example

The parallelization algorithm is tested using phasor mea-
surement data (PMU) obtained during the commission-
ing testing of a hydroelectric power plant. The model
of the power system has previously been developed us-
ing the OpenIPSL Modelica library, which is an open-
source power systems library that includes models veri-
fied against conventional power system software (Baudette
et al. (2018)).

Power System Model. The model consists of three main
components whose parameters need to be estimated: the
generator, the automatic voltage regulator (AVR), and
power system stabilizer (PSS). The system is configured as
a single machine infinite bus (SMIB) system. The Modelica
model is coupled to the SMIB line diagram is shown in
Figure 6. The models used in this example are derived from
the IEEE standard for power system excitation models
IEEE (2020). The components are labeled as follows:

A System data specifies the system’s frequency and
base power. The machineData block contains param-
eter data stored in a record, which is propagated to
the corresponding system components. An additional
sub-record with the results of every parameter cali-
bration test is also included.

B GENSAL generator model (with saliency effects).
C ST5B AVR model (power electronic-based excitation

system and Automatic Voltage Regulator (AVR)).
D PSS2B PSS model (power system stabilizer).
E Load, transmission line, and infinite bus connection.
F FMU outputs, which are Real outputs, represent the

simulated variables used in Eq.(8), i.e. P=P simulated
out

and Q=Qsimulated
out .

G Injected voltage disturbance to the voltage regulator.
H Generator field current XadIfd with uniform noise.

The power system model is exported as an FMU using
model exchange to optimize the parameters of the genera-
tor and the control system using phasor measurement unit
(PMU) data. The model uses the change in machine volt-
age as an input. The outputs are the active and reactive
power, terminal machine voltage, and field voltage of the
generator, which are compared to the PMU measurements.

Optimization Problem Setup. The parameter vectors,
parameterNames and pi, according to Algorithm 1 are
the generator impedances and control system gains and
time constants. The upper and lower bounds, pmin and
pmax, have been determined based on the physical limits of
the machines from Kundur (1994). The measurement data

Fig. 6. Modelica model of the generator, AVR, and PSS
connected to the rest of the system in Dymola.

is divided into a time vector, tmeas, and a measurement
vector, ymeas = [Pmeas, Qmeas].

Using the multiStart optimization method with the gra-
dient solver fmincon, the estimated parameter vector p̄
is continuously optimized and updated to simulate the
response of the system for each of the local solvers. The
absolute difference between the simulation and measure-
ments is calculated at each time step, as follows:

ε1 =

[
P simulated
out − P reference

out

Qsimulated
out −Qreference

out

]T
(8)

The objective function computed using the Frobenius
norm in Equation (7) from the mismatch ε1 between the
simulation and PMU measurements from the generator’s
active and reactive power.

Parameter Estimation Results. The parameters are
calculated using three different optimization methods:
fmincon, particle swarm optimization, and multiStart al-
gorithm. The multiStart solver is used with five starting
points derived from the results of the sequential parameter
updates from the results of the PSO optimization. The pa-
rameter bounds are defined from the machine parameters
in Kundur (1994). These tests are run on three different
computers 1 to compare the time to run the parameter
estimation. All computers were configured with the Win-
dows 10 OS and MATLAB 2020a. Table 2 shows the time
elapsed to run the parameter estimation for each method.
The EDGE solves the optimization problems on average
38.42 sec faster than the MSI GS65 and 20.67 sec faster
than the Dell; this shows the value of parallelization as the
EDGE has 12 cores while the MSI and Dell have 6 cores.
Meanwhile, the optimization is faster on the Dell than the
MSI with an average 17.75 sec, which is attributed to the
higher base clock speed and 4 × larger RAM of the Dell.

The simulated results for each optimization method com-
pared to the measurements are shown in Figure 7. This
test is configured such that the active power stays constant
throughout the simulation, and thus, the reactive power

1 NextComputing EDGE XTa2 Creative Pro Workstation with an
AMD Ryzen 9 3900x (12-core) CPU @3.8/4.6 GHz (base/max) and
128 GB of 36000 MHz DDR4 RAM, an MSI GS65 with an In-
tel® CoreTM i7-9750H (6-core) CPU @2.60/4.50 GHz (base/turbo)
and 32.0 GB of 2666 MHz DDR4 RAM, and a Dell Precision T3610
with Intel® Xeon®E5-1650 v2 (6-core) CPU @3.50/3.90 GHz
(base/turbo) and 128 GB of 1866 MHz DDR3 RAM



Table 2. Optimization Solution Time

Machine fmincon PSO MultiStart

EDGE XTa2 302.1489 453.4437 616.3450
Dell Precision T3610 311.2393 483.5012 630.4435

MSI GS65 329.1109 501.54 653.5334

Fig. 7. Power plant results where A: Qsimulated
out −

Qreference
out , B: Qsimulated

out −Qreference
out when uniform

standard noise with σ=0.05 is added to the signal
XADIFD in block H in Fig. 6.

undergoes a 0.4 p.u. step. The fmincon and PSO results
show how the model’s response overshoots when the step
is applied. The results obtained from the multiStart
method are the best fit to the measurements.

4. CONCLUSION AND FUTURE DEVELOPMENTS

A new example that models the equivalent of Duffing-
Holmes equation using the electrical circuit has been added
to the RaPId toolbox, showing the tool’s flexibility. It
provides users that are not familiar with power systems
a comprehensive example that is easy to understand.

An optimization using multiple starting points has been
added to the RaPId toolbox, allowing for multiStart
method for parameter estimation. This method has been
tested for a hydroelectric power plant and its control
system using commissioning test data. This optimization
method produces better results than the previous parti-
cle swarm optimization (PSO) and constrained gradient
optimization (fmincon) studied before. In the future, the
RaPId toolbox is planned to be extended with the option
for parallel simulation, where the optimization tasks are
distributed to parallel workers in MATLAB distributed
across multiple cores. It is expected that this would further
increase simulation speed and produce results for param-
eter estimation problems faster. Additional examples will
be added to the toolbox in the future using hardware-in-
the-loop to compare the models to measurements from an
automatic voltage regulator.

ACKNOWLEDGEMENTS

The authors thankfully acknowledge the support of Zdravko
Rabuzin of Advensys Engineering Ltd. for providing the
data of the hydroelectric power plant.

REFERENCES

ALSETLab (2020). RaPId: Rapid Parameter Identifica-
tion. https://github.com/ALSETLab/RaPId.

Baudette, M., Castro, M., Rabuzin, T., Lavenius, J.,
Bogodorova, T., and Vanfretti, L. (2018). OpenIPSL:
Open-Instance Power System Library — Update 1.5
to “iTesla Power Systems Library (iPSL): A Modelica
library for phasor time-domain simulations”. SoftwareX,
7, 34–36.

Digilent (2020). Analog Discovery 2. https://tinyurl.
com/DigilentAD2.

Fritzson, P. (2004). Principles of Object Oriented Mod-
eling and Simulation with Modelica 2.1. doi:10.1109/
9780470545669.

Garnier, H. and Gilson, M. (2018). Contsid: a matlab tool-
box for standard and advanced identification of black-
box continuous-time models. IFAC-PapersOnLine,
51(15), 688 – 693. doi:10.1016/j.ifacol.2018.09.203. 18th
IFAC Symposium on System Identification SYSID 2018.

IEEE (2020). IEEE Recommended Practice for Excitation
System Models for Power System Stability Studies.
https://tinyurl.com/IEEEStd421p5.

Kalsi, K., Sun, Y., Huang, Z., Du, P., Diao, R., Anderson,
K.K., Li, Y., and Lee, B. (2011). Calibrating multi-
machine power system parameters with the extended
Kalman filter. In 2011 IEEE Power and Energy Society
General Meeting, 1–8. doi:10.1109/PES.2011.6039224.

Kundur, P. (1994). Power System Stability and Control.
McGraw-Hill.

MathWorks (2020a). Global Optimization Toolbox.
https://tinyurl.com/MatlabGOT.

MathWorks (2020b). SysId Toolbox. https://tinyurl.
com/MSITX.

Modelica Association (2020). Modelica Standard Library.
https://tinyurl.com/ModelicaMSL.

Modelica Association Project (2020). FMI Standard.
https://fmi-standard.org/.

Modelon (2018). FMI Toolbox User’s Guide 2.6.4. Tech-
nical report, Modelon AB.

NASPI (2015). Model Validation Using Measurement
Data. Technical report, North American Synchrophasor
Initiative. https://tinyurl.com/NASPImodelVal.

Tamaševiciute, E., Tamaševicius, A., Mykolaitis, G.,
Bumeliene, S., and Lindberg, E. (2008). Analogue
electrical circuit for simulation of the duffing–holmes
equation. Nonlinear Analysis, 13(2), 241–252.

Taylor, C., Young, P., Tych, W., and Wilson, E. (2018).
New developments in the CAPTAIN Toolbox for Matlab
with case study examples. IFAC-PapersOnLine, 51(15),
694 – 699. doi:10.1016/j.ifacol.2018.09.202. 18th IFAC
Symposium on System Identification SYSID 2018.

Ugray, Z., Lasdon, L., Plummer, J., Glover, F., Kelly, J.,
and Mart́ı, R. (2007). Scatter search and local nlp
solvers: A multistart framework for global optimization.
INFORMS Journal on Computing, 19(3), 328–340. doi:
10.1287/ijoc.1060.0175.

Vanfretti, L., Baudette, M., Amazouz, A., Bogodorova,
T., Rabuzin, T., Lavenius, J., and Goméz-López, F.J.
(2016). RaPId: A modular and extensible toolbox for
parameter estimation of Modelica and FMI compliant
models. SoftwareX, 5, 144 – 149. doi:10.1016/j.softx.
2016.07.004.


