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Enhanced LMI-based Damping Control
in Power Networks through a High Voltage Direct Current Line

Sjoerd Boersma!, Luigi Vanfretti? and Abdelkrim Benchaib®

Abstract— Large interconnected power networks are ar-
guably some of the most complicated man-made systems to
understand and characterize. This becomes even more com-
plicated due to the surge of renewables that are connected
(possible via HVDC lines) to the network. Faults, such as the
tripping of an electricity line, can easily occur in a network,
which can cause undesired oscillatory behaviour. This paper
proposes an output-feedback controller that aims at diminishing
these oscillations. The presented controller consists of a state-
feedback gain and a Kalman filter and is tuned by employing an
in this work identified model. The proposed controller ensures
a lower bound on the closed-loop damping coefficients of the
network.

I. INTRODUCTION

An electrical power system is a large-scale inter-connected
system (power network) that consists of generators, loads,
conductors, protective devices, power electronics and other
electrical components. An example of such a power network
is the electricity grid that generates, consumes and transports
electrical power from generators (such as a wind farm [1])
to consumers. This transport of bulk power can go through
conventional Alternating Current (AC) lines or High Voltage
Direct Current (HVDC) lines whereas the latter increases
in popularity due to the advantages it has regarding the
transport of large quantities of power over relatively long
distances. For example, a wind farm can be placed very far
in the sea, while its produced power is transported to the
grid through an HVDC line [2]. Traditionally HVDC links
are used to interface two asynchronous power systems, either
with different frequencies (e.g. 50 Hz to 60 Hz, in Japan)
or the same synchronous frequency but operated separately
(e.g. as in the USA). A less common approach is to have
an embedded HVDC link that interfaces two major areas of
a synchronous grid, as in the case of the US Pacific DC
link [2], which is gaining recent attention because of the
need to increase power transfer capabilities between specific
areas. In particular, in the Continental European power grid,
the French and Spanish networks have been recently coupled
through an HVDC link, connecting the Baixas (France) and
Santa Llogaia (Spain) substations [3].

A phase angle difference between areas gives a measure
of the power flow through the connecting AC lines form
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one to the other area, the larger the phase angle difference,
the larger the power transfer between those areas. As other
systems, a power network can also be characterized by a
number of modes. From these, there are only a couple of
dominant ones. These are local, which are found within
each area itself or inter-area modes, which are the modes
between different areas. When measurements are available,
system identification methods can be used to find these
dominant ones such that the derived model can be used
for monitoring [4] and control design. In general, the most
dominant modes are the inter-area ones and, when low-
damped, can cause undesired oscillatory behavior leading to
a system blackout [5]. For example, when a major power
line in the network trips, a low damped inter-area mode is
excited and undesired oscillatory behavior is observed in the
measurements. Controllers that aim to damp these oscilla-
tions are referred to as damping controllers. Conventional
damping controllers are deployed in synchronous generators
and are known as Power System Stabilizers (PSS), while
Flexible Alternating Current Transmission Systems (FACTS)
can include a supplementary damping controller [6]. Another
way to damp these oscillations is the utilization of an HVDC
line that is embedded in the network [7]. Consequently, the
HVDOC line is not only used for the transport of bulk power,
but also employed to provide other services like damping
control. The main idea is that when oscillations are measured,
the HVDC line counteracts these oscillations modulating
the active power flow that is transported [8]. This type of
damping control can be employed together with the usage of
standard techniques based on PSS and FACTS supplementary
controls. However, the world-wide installation of HVDC
damping control schemes is rather limited due to different
design and operational challenges.

In [9], the authors propose a damping controller using an
iterative LQR design method such that desired closed-loop
pole locations are obtained assuming full state knowledge.
The employed model for control design is obtained via
first principle modeling, which is challenging for real-world
large-scale grids. In [10], the authors propose a complete
control solution to the power network’s damping problem.
Subspace Identification is used to identify a model and it
is used to design a Luenberger observer and state-feedback
controller. The user has to specify desired closed-loop poles
in order to obtain the controller. In [11], the authors propose a
LQG (Kalman filter and LQR) damping controller. Standard
PSS are used to damp the local modes and the proposed LQG



controller is used to damp the inter-area modes. The utilized
controller design model is based on a linearized Simulink
(reduced order) model, which is a bold assumption. The
proposed framework does not entail system identification,
which is necessary for control design of these type of
systems [8]. More recent work on damping control via an
HVDC line is found in [12], where a damping controller
is proposed that contains a PI-controller and therein called
feed-forward term. The presented controller shows promising
results although it is not reported how the controller gains
are determined.

Because the operational experience with HVDC links for
damping control is limited, it not obvious for the majority
of Transmission System Operators (TSOs) what the desired
closed-loop pole locations are, specially since large-scale
models are difficult to maintain. In addition, tuning of
weighting matrices for control design is challenging in a
domain where most controls are designed with classical
control methods, e.g. root-locus [13]. Hence, for practical
purposes, it can be most beneficial to define a lower bound
on the network’s closed-loop mode damping and speed, and
successively find a controller to mitigate them. In addition,
it is necessary that the controller design model is updated
following time-varying network’s dynamics. With the con-
troller framework proposed in this work, both these criteria
are satisfied. More precisely, this paper proposes an output-
feedback damping controller that regulates the active power
through the HVDC line such that oscillatory behavior is
diminished. The output feedback controller contains a state-
feedback gain and a Kalman observer. The former is evalu-
ated after solving an optimization problem containing Linear
Matrix Inequalities (LMIs), which is different from the LQR
design method proposed in previous works. Via these LMIs,
an user-defined upper bound on the closed-loop damping
coefficient and the state’s speed of convergence are imposed
through control [14], [15]. The Kalman observer demands for
a model that is also identified, this is achieved in this work
by employing the Prediction Error Method (PEM) [16], [17].
The proposed identification method is executed when desired
such that an updated controller design model is evaluated.
The main contributions of this work to the power system
damping problem are:

1) A full control design solution is given that includes
system identification, control and observer design.

2) The application of an LMI-based controller with user-
defined upper bound on the closed-loop damping co-
efficient as tuning parameter.

The employed software are MATLAB (for system identifi-
cation and control design) and the Modelica tool Dymola in
combination with the OpenIPSL library [18] (for nonlinear
power system modeling and simulation). The library was
built to model nonlinear power system networks using the
phasor (i.e., positive-sequence) modeling approach.

This paper is organized as follows. Section II discusses
the nonlinear test network that is considered in this work.
Then in Section III, a linear model is identified and then is

used for control design, as discussed in Section IV. Finally,
Section V presents the simulation results and this paper is
concluded in Section VI.

II. TEST NETWORK

The test network used in this work is the 4-machine 2-area
Kelin-Rogers-Kundur power system model [19] (hereinafter
Kundur network) with an embedded HVDC line. The latter
is connecting the two areas as is illustrated in Fig. 1. Here
it is shown that the network consists of 4 generators (G;), 4
transformers, 11 buses and one HVDC line (turquoise). This
nonlinear network is simulated in the Modelica tool Dymola
and assembled using the OpenIPSL library [18] and contains
45 state variables.
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Fig. 1.  Schematic representation of the Kundur network that includes
an HVDC line with y(t) = d¢(t) the phase angle difference measured
relatively to a steady-state value yss and u(t) = Phyqc(t) the active power
through the HVDC line measured relatively to a steady-state value us;.

The network is characterized by the following nonlinear
model:

#(t) = f(z(t),u®)), y(t) = h(z(t),u(t),o@)) 1)

with time ¢, measurement y(t) = dp(t) € R the phase angle
difference between the two areas measured relatively to a
steady-state value ygs, control signal u(t) = Puyac(t) € R,
which is the active power through the HVDC line measured
relatively to a steady-state value ug, measurement noise v(t))
with standard deviation o, = 1073, state variable of the
nonlinear network x(¢) and unknown nonlinear mappings
f(e),h(e). In the following section, a linear (low-order)
model is identified that describes the dominant characteristics
of the network.

ITII. SYSTEM IDENTIFICATION

The system identification technique referred to as the
Prediction Error Method (PEM) [16], [17] is employed to
identify a linear model. The Output Error model structure is
assumed and defined as:

Ur = H(z,0)uy + ey, 2

with k the discrete-time, z € C, 6 the unknown parameter
vector and linear model H(z, #). Furthermore, {5, € R is the
identified model’s output that estimates the measured output



y(t), uy the control signal and e, € R represents Gaussian
distributed noise with standard deviation o, and zero mean.
The structure of H(z,0) is defined as:

ena-ﬁ-lznb_l +o+ ena-i-"b P O
zha + @zl ... 40,

with 6 = (61 6 0rn,+n, ). The parameters to be
determined in the identification procedure are n, ny, ng. For
the PEM, an experiment for system identification needs to
be conducted on the network in order to obtain information
(the measurement). This is done via perturbing the network
with an excitation signal during the experiment, which is
an acceptable assumption considering past and recent prac-
tices [20]. In this work, the network is excited with a multi-
sine signal, i.e.,

H(Z,H) = ) (3)

M
up = Z Ay sin(wek + @) 4)
r=1
Here, A, ¢, w,., M are the user-defined magnitude, phase
and frequency of the r'" sinusoidal component, respectively,
and M the number of frequency components in the multi-
sine signal. In [4], the amplitudes A, are optimized to ensure
an upper bound on the damping estimation’s variance. In this
work, A, is found empirically such that a validated model
is obtained and ¢, is chosen randomly. Furthermore, w, is
defined as a grid containing the frequency components of
interest. These are the target frequencies around where the
identified model will be more accurately estimated than the
frequency components outside of this grid. Clearly, w, should
contain the frequency components of the closed-loop system
since it is here important that the identified model is the most
accurate. Note that the experiment for system identification
can easily be re-performed such that an updated controller
design model is obtained. This is important since network
dynamics are changing over time and the controller needs to
be updated accordingly.
The identified model H(z, ) has, after neglecting the pure
delays, the following continuous-time minimal (observable
and controllable) state-space realization:

z(t) = Az(t) + Bu(t),  §(t) = Ci(t) + Du(t), (5)

with A € R*%eX" B ¢ R™%*! C ¢ R'*™ and D € R.
The state-space matrices A, B, C, D are used for control and
observer design. Since the identified model has D = 0, it is
not further considered in the formulas presented in this work.

SYSTEM IDENTIFICATION RESULTS

One experiment for system identification is performed.
After re-sampling the measurement y;, and excitation signal
uy to a sample period of h, N data points are left in the
data. Indeed, h, N are seen as tuning parameters and depend
on the size of the network and on the dynamics that need to
be described by the identified model. A large N results in a
more accurate identified model, however a larger experiment
length is in practice not always desirable. Increasing the sam-
ple period h, will remove higher frequencies from the data

and, consequently, can not be identified anymore. The tuning
parameters A, w,, ng, Ny, ng are found such that a validated
identified model is obtained. This validation is ensured by
imposing a 1-standard deviation value requirement, which
gives 68.27% confidence region, so that each parameter is
below the 5% with respect to the estimated value. The 1-
standard deviation value for each parameter is evaluated
using the MATLAB function present .m and the final found
user-defined parameters for system identification are shown
in Table L.

TABLE I
SYSTEM IDENTIFICATION TUNING PARAMETERS.

wr Hz) ng np ng h(s) N
[0.1, 5] 3 3 3 0.05 1200

Parameter | A,
Value | 1

Figure 2 depicts the Bode magnitude plot of the identified
continuous-time model H(s) (black). This is compared to
the Bode magnitude plot of the linearized nonlinear network
(gray), which is obtained using [21]. As shown, the identi-
fied model approximates the linearized network around the
important frequencies (0.5-1 Hz). In this band, the resonance
(inter-area mode) and anti-resonance are found. On the
other hand, the comparison is less accurate for frequencies
above 1 Hz where the local modes are found. Consequently,
the HVDC damping controller will target the damping of
the inter-area mode and not the local modes. Note that
the linearized model contains 45 state variables, while the
identified model only contains 3 state variables. This is one
of the the reasons why the identified model is suitable for
control design. Also, the control results in Section V show
that the identified model is sufficient for this purpose.
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Fig. 2. A Bode magnitude plot comparison between the identified

continuous-time model H (s) (black) and the linearized nonlinear network
(gray).

IV. CONTROL DESIGN

The proposed control design approach is presented in
this section. The controller consists of a state-feedback
gain (Section IV-A) and a Kalman observer (Section IV-B).
Both form an output feedback controller that is defined in
Section IV-C.



A. STATE-FEEDBACK GAIN

An LMlI-based design technique is used to find a state-
feedback gain K that is used in the control law wu(t) =
—KZ(t). The user-defined options are a lower bound on
the closed-loop damping coefficient (.; and an upper and
lower bound on the decay rate of the closed-loop states,
which are amax and amin, respectively. The decay rate of
the states is seen as a measure of speed of the closed-loop
and depends, among others, on the actuators’ speed. In this
case, the actuator is an HVDC link, which is relatively fast.
The following optimization problem is solved to find K [14],
[15]:

YXS0a50 ©
subject to:
XAT + AX —YTBT — BY < 2amin X (7)

XAT + AX —YTBT — BY > 20X (8)

Hll HIZ
<H21 sz) <0 2
T
(g;‘a Yl ) >0 (10)
with
IT;; =sin(B) (XA + AX —Y"B” — BY)
I}y = cos(B) (—XA" + AX +Y"B” — BY) an
Iy = cos(B) (XAT — AX —YTB" + BY)

I, = sin(B) (XAT + AX —Y"B" - BY)
(

and 8 = arccos((.). The state-feedback gain is evaluated
as:

K=vYXx % (12)

The LMIs (constraints) given in (7), (8) and (9) impose
a bounded area in the complex plane where the closed-
loop poles are placed by the gain K. This is illustrated in
Fig. 3. The LMI in (10) together with the cost (6) minimize
the control action. Indeed the LMI in (10) is equivalent to
[lY]|oo < 7. Since < is minimized and K depends linearly
on Y, the state-feedback gain K is minimized only through
Y.

STATE-FEEDBACK GAIN DESIGN RESULTS

Table II shows the user-defined parameters that are used
to design the state-feedback controller. These parameters are
found such that the controller damps the oscillations without
over-actuation through the HVDC line.

TABLE I
CONTROL DESIGN TUNING PARAMETERS.

Parameter | (a
Value | 0.95

Qmin Qmax

45 5

In Fig. 4, the eigenvalues of the matrix (A — BK)
(eig(A — BK)) are depicted together with the open-loop
poles (eig(A)). The pole close to the imaginary axis causes

Im

Re

Fig. 3. Representation of the LMIs given in (7), (8) and (9) in the complex
plane. The gray area indicates the bounded are where the closed-loop poles
are going to be thanks to closing the loop with K. Furthermore, 8 =
arccos((c1) with ¢ the closed-loop damping coefficient.

the oscillatory behavior in the network, while the second
makes the control response stiff. These type of poles are
typical power networks. Imposing the control law u(t) =
—K#(t) and finding K by solving the optimization problem
presented in (6), moves the eigenvalues of the matrix (A —
BK) in such way that the damping and control response is
improved, and thus, less oscillatory behavior is observed as
shown in Section V.
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Fig. 4. Subset of the closed-loop poles (which are the eigenvalues of the
matrix (A — BK)) and open-loop poles (which are the eigenvalues of the
A matrix) depicted in the complex plane. The constrained area is shown in
gray as has been done in Fig. 3.

The designed state-feedback gain’s effectiveness can be
appreciated even more when inspecting the Bode magnitude
plots of both the open-loop case (identified model) and
the closed-loop case with u(t) = —K&(¢) in (5). These
frequency responses are depicted in Fig. 5. Clearly, the
low damped inter-area mode is diminished thanks the state-



feedback gain K. This inter-area mode is the most dominant
mode and causes the most oscillatory behavior in a network
as discussed previously.
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Fig. 5. The Bode magnitude plots of the identified continuous-time model
H(s) considered as the open-loop case (black) and the closed-loop case
(gray) where u(t) = —K&(t) in (5) is substituted.

Even though an identified model is available (and thus
also Z(t)), the initial conditions are not known. Therefore,
a Kalman observer is used that is providing a Z(t) that is
corrected by the measurement y(t).

B. KALMAN OBSERVER

In this work, a Kalman observer is designed. It takes on
measurements y(t) from the network and provides a state
estimation Z(t) that is an input to the previously defined
control gain. This assumption is valid in practice, as such
type of measurements can be made available by the use of
Phasor Measurement Units (PMUs) [22]. The observer has
the following state-space model:

Z(t) = (A — LC)i(t) + Bu(t) + Ly(t),
g(t) = Ca(2),

with L the Kalman gain that, after assuming that the state and
measurement noise are not correlated, is found by evaluating:

13)

L=pctv—1, (14)

where the steady-sate covariance matrix of the innovation
sequence P satisfies the Ricatti equation

AP+ PAT — pCcTv-lcp =W, (15)

with the matrices W,V the steady-state covariance matrices
of the assumed to be Gaussian white process and measure-
ment noise, respectively. These are seen as tuning variables
of the observer. Note that in order to derive (13) from (5), the

latter is appended with the additional input L(y(t) — §(t)).

KALMAN OBSERVER DESIGN RESULTS

Table III presents the tuning variables that are found for
the Kalman observer. These parameters are found such that
the identified model’s output ¢(¢) tracks the measurement
y(t) and such that eig(A— LC') and eig(A — BK) are located
relatively closely together.

TABLE III
OBSERVER DESIGN TUNING PARAMETERS.

Parameter‘ Vv w
Value | 1073 10°

Another metric to asses the performance of the observer is
the comparison between «(t) and &(t). However, &(t) comes
from an identified model employing the PEM. Consequently,
the meaning of the states is not known, i.e., it can be a
linear combination of speeds, phase angles and other physical
parameters. It is therefore not useful to compare x(t) and

(%)
C. OUTPUT-FEEDBACK CONTROLLER

Both the state-feedback gain and the Kalman observer
are combined to form an output-feedback controller. This
controller has the following state-space realization [23]:

#(t) = (A— BK — LC)&(t) + Ly(t),
u(t) = —Kz(t).
In order to derive (16) from (13), simply substitute u(t) =
—K7(t) and take u(t) as the output of the output-feedback

controller. A schematic representation of the proposed con-
trol scheme is depicted in Fig. 6.

(16)

DC part ’U,(t) AC part y(t)
— Controller —— —
a(t) x(t)
Fig. 6. A schematic representation of the proposed closed-loop control

scheme. The controller is governed by the state-space model given in (16)
with state Z(t).

V. SIMULATION RESULTS

This section presents the open and closed-loop control
simulation results. The previously designed controller (16)
is implemented in the Modelica tool Dymola. The therein
simulated nonlinear network is subjected to a power line trip
between bus 7 and 8 (see Fig. 1), starting at ¢ = 5.0 and
restored at t = 5.3 seconds. Note that both the type and time
of disturbance are unknown to the controller. As discussed in
the introduction, these type of disturbances occur regularly
in power networks and result in oscillatory behavior in
the measurements. The proposed controller damps these
oscillations such that less stress in the network, which can
be seen in the phase angle difference response shown in
Figure 7. The figure shows a comparison between the open-
loop case and the closed-loop case. The results illustrate
the controller’s effectiveness since it is able to damp the
oscillation significantly with respect to the open-loop case
(see the first subplot). For this, the controller is injecting and
withdrawing active power from the grid via the HVDC link.
This is shown in the second subplot shown in Fig. 7. Observe
that the control response is commensurate (and lower) that
that seen in recent experimental results [8].
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Fig. 7.

Comparison between open-loop (gray) and closed-loop (black)
simulation results. During the simulation, one line is tripped between ¢ =
5.0 to ¢ = 5.3 seconds resulting in oscillatory behavior. The proposed
damping controller is able to diminish these oscillations with respect to the
open-loop case.

VI. CONCLUSIONS

Electrical power networks are complex large-scale inter-
connected systems that transport large amounts of electricity
from generation sites, e.g. wind farms, to consumption
centers, e.g. metropolitan and industrial cities. The existing
power transmission infrastructure is facing challenges to
meet new requirements for de-carbonization, which demands
to transport new renewable energy production across larger
geographical areas. To achieve this goal, AC interconnections
are being reinforced with HVDC lines to increase power
transfer. Next to that, they can provide ancillary services if
equipped with well designed control systems. An example
of such services is to damp oscillations that can emerge due
to a major network disruption. While current methods exist
to damp these oscillations, the usage of an HVDC links to
provide damping control is rather limited. This is due to
many challenges, among which adequate control design is
chief.

This paper proposed the utilization of an output-feedback
control design method capable of damping inter-area oscilla-
tions by exploiting an HVDC line equipped with a damping
control system. The control design method requires an iden-
tified model. This identification procedure was also presented
in this work. The user-defined parameters for the controller
design are the closed-loop damping coefficient and the rate
of convergence of the closed-loop states. The controller has
successfully been tested on a relatively small benchmark
network model by performing non-linear simulations. It has
been shown that oscillations are damped significantly with
respect to the open-loop case illustrating the controller’s
adequate performance.

Future work is focused on testing the damping controller
design method on larger networks and also on networks with
multiple HVDC lines. Other subsequent work is the design
of a damping controller that is not only focused on the inter-
are-modes, but also aims to damp the local modes.
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