
A Novel Method for Despiking Spectra from
Synchrophasor Measurements

Marcelo de Castro
Rensselaer Polytechnic Institute

Troy, NY, USA
Email: decasm3@rpi.edu

Chetan Mishra
Dominion Energy

Richmond, VA, USA

Luigi Vanfretti
Rensselaer Polytechnic Institute

Troy, NY, USA

Kevin D. Jones
Dominion Energy

Richmond, VA, USA

Abstract—Periodic corrections to phase angle estimates are
performed inside PMUs to compensate for the internal clock
drift with respect to the GPS clock that PMUs experience. In
the frequency domain, this results in narrow bandwidth peaks
referred to as spikes. The amplitude of these spikes depends
on the amount of correction introduced and, consequently, the
spikes’ amplitude can sometimes be larger than the actual power
system’s dynamic system response under ambient excitation.
These spikes result in spurious poorly damped modes in data-
driven small signal analysis. To address this issue, this work
proposes a novel approach that removes these spikes from
the phase angle signal. The proposed approach is based on a
technique for baseline estimation combined with the Whitaker-
Hayes method for despiking spectra. The effectiveness of the
proposed approach is demonstrated on PMU data from Dominion
Energy’s substations with significant internal clock issues.

I. INTRODUCTION

Synchrophasor measurement technology has a wide variety
of applications in the power industry [1]. In fact, one of
the most consolidated ones is the near real-time monitoring
of small-signal electromechanical oscillations [2]. Electrome-
chanical modes are usually studied using angle or frequency
data. Furthermore, the study of oscillations using PMU data
relies in signal processing techniques and different examples
of such applications can be found in the literature [3]–[5].

The synchronized measurements from PMUs are not im-
mune to data quality issues [2] [6]. In fact, it is common
to implement procedures that replace defective data points to
increase the quality of the data set to be analyzed. Different
equipment issues inherent to PMUs can result in spurious
measurement data, for example, frequency estimates produced
by PMUs are susceptible to any failure that occurs in the angle
data [2].

Because the system operates largely under “ambient con-
ditions” [5], which are characterized by small, random per-
turbations around the equilibrium point, frequency domain
techniques for small signal stability analysis have been ex-
ploited for PMU applications. This is because they offer
the benefit of being robust to random noise while capable
of identifying small-amplitude periodic behavior. However,
applying these techniques becomes challenging when errors
in the PMU data exhibit some sort of periodicity. One such
situation arises from the periodic phase angle correction inside
the synchrophasor device to compensate for the drift between

the internal oscillator and the local GPS clock [6], [7]. This
introduces spikes in the frequency domain that can dominate
the ambient dynamics, as it will be illustrated in this paper.

Methods for removing spectral spikes coming from forced
oscillations have already been presented in the literature [8],
[9]. However, spikes coming from forced oscillations due
to natural disturbances are wider and, therefore, constitute a
different type of spike if compared to the ones studied here. On
the other hand, methods addressing narrower spectral spikes
are found in other fields of research. For instance, Raman
Spectroscopy is a technique used to determine vibration modes
of molecules and Raman spectral estimates are often corrupted
by spectral spikes resulting from cosmic rays. Therefore, the
identification and removal of spikes is a well studied problem
in Chemistry. The existing methods can be classified into
multi-scan or single-scan procedures. Multi-scan methods op-
erate by comparing results between consecutive scans based on
the assumption that the probability of same pixel experiencing
a cosmic spike is sufficiently low. Among a vast number of
approaches, the upper-bound spectrum method [10], second
difference comparison [11], and time domain comparison [12]
have received significant attention. However, in this paper
the spectral spikes resulting from phase angle correction are
not random, unlike the ones from cosmic rays. Hence, multi-
scan techniques cannot be applied to our case. Nevertheless,
single scan methods can be implemented effectively because
they use filters and smoothing to remove spikes. Katsumoto
et al [13] proposed the use of weighted moving window
filtering, and in [14] a wavelet transform was used to identify
and remove spikes. Meanwhile, [15] proposed fitting spikes
with predefined profiles. Whitaker Hayes Filter [16] identifies
spikes as outliers in the gradient of the spectrum owing to the
spikes having narrow bandwidth followed by flattening them
by averaging.

Overall, the above mentioned approaches are fairly effective
when dealing with flat baseline. However, for power system
phase angle spectrum, this is not the case, which results in
scenarios where a spike is masked by a steepness in the
spectral baseline thus rendering these approaches ineffective.
Therefore, this paper proposes a novel method to despike PMU
phase angle spectra by accounting for the non-flat baseline. In
the proposed approach, the baseline is corrected and, then, the
spikes are removed using the method presented in [16].



The paper is organized as follows: Section II describes the
information about the synchrophasor data and what is the main
issue related to angle data. Section III discusses the proposed
approach while Section IV enumerates the results for a case
study. Finally, Section V states the concluding remarks of this
paper.

II. SYNCHROPHASOR DATA AND SPECTRAL SPIKES

A. Fundamentals

The synchrophasor can be defined as an estimation of an
electrical quantity’s phasor (e.g. voltage or current) that is
associated with a time tag [1]. The phasor estimates provided
by a PMU are calculated using signal processing techniques,
which are applied to three-phase sampled-waveform measure-
ments. After the data acquisition and estimation stage, the
estimated phasors are given a time-tag related to a time-
synchronization signal coming from a GPS-enabled appa-
ratus [1], such as a substation clock. Because GPS time-
synchronization signals are distributed at 1 sample per sec.,
the PMU needs to provide sub-second time through an internal
oscillator (i.e. an internal clock). This clock can drift from the
“true” GPS time due to several factors discussed in [6], [7].

B. Issues with Angle Data

Angle data coming from synchrophasor measurements pro-
vided by PMU is prone to present different types of quality
issues, the most common being outliers, which are random
in nature. However, spurious data points that present a cer-
tain periodicity can be associated with time-synchronization
issues [6], which are observed as small repeated variations.
This can also be observed even after the angle data has been
filtered and detrended for use in spectral analysis.

To illustrate these issues, Figs. 1 and 2, show angle data
from a PMU in Dominion Energy’s service territory. In Fig. 1,
highlighted in light blue, a defective data point in the filtered
and detrended angle data is shown. While the outlier removal
process can usually deal with these kind of the deviations
in the measurement set [2], it will fail in this case. This
is because, as shown in Figure 1, the deviation is small
with respect to the other measurements in the data set. If
these spurious data points were only present sporadically,
they would not be of major concern because they deviate
little from the other data points. Note that conversely, large
outliers can introduce artificial transient behavior in filtered
data [2]. However, as shown in Fig. 2, these defective points
are periodic and occur at many different time-ranges in the
measured data sets.

Different methods to determine the frequency spectrum in
PMU data, one common approach is to compute the signal’s
Power Spectral Density (PSD). To compute a PSD estimate,
Welch’s method for PSD estimation [5], [17] can be used
for the identification of oscillatory modes in a power system
[5]. Therefore, it is also important to determine the impact of
the spurious data points shown in Figure 2 when the data is
transformed to the frequency domain. Indeed, because these
spurious data points are recurrent and have no relation to any

natural dynamic behavior of the system, they introduce steep
spikes in the signal’s PSD. This fact is illustrated in Figure 3.
Note that the sharp spikes are present at different frequencies
precluding the identification of other natural modes that might
be underneath. Furthermore, techniques such as Yule-Walker
that are used to estimate the frequency and damping of natural
modes will have their performance severely deteriorated [18]
if the spikes are not removed. Hence, the need for a technique
to remove the artificial spikes from data is evident.

Fig. 1. Examples of spurious data point in processed angle data.

Fig. 2. Angle time series with several defective data points.

Fig. 3. Welch power spectrum density estimate for angle data.

III. PROPOSED APPROACH

Raman Spectrum gives the the scattering intensity as a
function of frequency shifts. For our case i.e. the phase angle,
the Raman Spectrum can be replaced by the PSD estimate.
There is however one major challenge when directly using the
spike removal techniques on the phase angle spectrum. These
techniques rely on the spectral slope estimate for detecting
the spikes where they are marked by steep slopes. Now, the
spectral slope is not only a function of the spike’s slope
but also depends on the slope of the spectral baseline. For
phase angle spectrum, the baseline is especially steep for
lower frequencies due to the influence of various generator
controls. This can make it difficult to decide a threshold on



the calculated slope for distinguishing the normal part from a
spike. Therefore, our approach first processes the spectrum by
estimating and consequently flattening the baseline followed
by spike removal. The two key steps viz. baseline correction
and spike removal are done using standard techniques, which
are discussed next as applied to the phase angle data. The PMU
data received goes through standard pre-processing based on
the final application. Let this data be denoted by the uniformly
sampled time series X ∈ Rn : {xi}, i = 1 . . . n.

A. Spectrum Baseline Estimation and Correction

The spectral baseline b can be defined as a smooth, rel-
atively flat, under approximation of the original spectrum.
While in the current application, baseline is being estimated to
make it easier to detect spikes, baseline removal is also impor-
tant for effectively comparing multiple spectra. An asymmetric
least squares based approach has been proposed in [19], [20],
which is employed in this work with slight modifications.
Let the PSD (in dB) of X be denoted by Φ ∈ Rn : {φi}.
The estimation of baseline b for the PSD is modeled as the
following optimization problem,

b = arg min
b

{∑
i

wi(φi − bi)2 + λ
∑
i

(O2bi)
2

}
, (1)

where O is the difference operator. The weight wi assumes the
asymmetric form wi = p if φi > bi else wi = 1− p, and λ is
a parameter penalising the curvature. The effect of parameter
p is such that lower the value, more is the baseline b forced
to be smaller than the original spectrum. The minimization
problem give by (1) leads to

(W + λDᵀD) b = WΦ (2)

where W = diag(w1, w2, · · · , wi, · · · , wn) and D = O2 is
the second order difference matrix [21]. Equation (2) can be
solved for b through iteration. This is then removed from the
PSD to obtain the flat baselined PSD Φb : {φbi = φi−bi}. The
typical values used for λ are from 102 to 109 and p are from
0.0001 to 0.1.

B. Whitaker-Hayes Method for Despiking Spectra

For spike removal, the Whitaker-Hayes Method (WHM)
[16] is used. The WHM starts by estimating the spectral slope
using a detrended difference series OΨb as

Oψb
i = ψb

i − ψb
i−1, (3)

for i = 2, 3, ..., n. Here, Ψb : {ψb
i = antilog

(
φbi
)
}. Spikes

correspond to large values can be easily identified. To automate
this process, each index i in the spectrum value is given a score
as follows

Zi =
0.6745

(
Oψb

i −M
)

Mad
, (4)

where M is the median of the series {Oψb
i } and Mad is the

median of the absolute deviation, i.e. the median of the series
{|Oψb

i−M |}. More details can be found in [16]. Subsequently,
a threshold τ is defined such that the set of indices on the

spectrum corresponding to spikes is given as K = {k|Zk > τ}.
Let, Y ∈ Cn : {yi} denote the FFT coefficients of the original
phase angle time series X . Finally, the spikes are flattened in
the frequency domain using the spectrum values at neighboring
frequencies to obtain the de-spiked FFT coefficients Y∗ : {y∗i }
as follows

y∗i =

{
mean ([yj | j 6∈ K, j ∈Mi]) , if i ∈ K
yi, otherwise

(5)

whereMi = [i−m−1
2 , i+m−1

2 ]. Finally, the corresponding de-
spiked time series X ∗ : {x∗i } can then be obtained by inverse
FFT of Y∗.

C. Overall Approach

The overall proposed approach is summarized in Figure 4.
There are basically four parameters to be set. The parameters

time series is
processed: {xi}

filtered,
detrended,

and outliers
are removed

FFT and PSD coeff.
are calculated:
{yi} and {φi}

φi baseline is
calculated: {bi}

set
parameters
λ and p

Baseline is removed.
New PSD coeff.
have their score
calculated: {Zi}

Removing spikes.
For i in {Zi}:

set
tolerance τ

is Zi > τ?

replace {yi}

iterate i = i + 1

is i > n?

Calculate new
{x∗i } using IFFT

in new {y∗i }

no

no

yes

yes

Fig. 4. Flowchart describing the proposed algorithm.



λ and p for the baseline calculation, the parameter τ , which is
the tolerance used to flag data considered to be part of a spike,
and the parameter m, which is the number of neighboring
spectrum points for flattening each spike.

IV. CASE STUDY RESULTS

The data used in this case study was measured on July 5th,
2019 in one of Dominion Energy’s substations. The data was
sampled with a frequency of 30 Hz during an interval of 20
minutes. The data was then pre-processed as recommended in
[2], i.e., the data was filtered, re-sampled, detrended and all the
outliers were removed. The filter was set to have a low-pass
frequency of 15 and a high-pass frequency of 0.1 Hz.

A Welch estimate of the PSD is calculated using the entire
time interval and the baseline is computed using this estimate.
The parameters for the asymmetric baseline calculation were
set to be p = 0.01 and λ = 107. Note that the baseline is
not used to remove the modes from the PSD estimate, but to
eliminate its trends as it is shown in Figure 5. Therefore, the
baseline does not need to be closely aligned with the spectrum,
but it should depict a trend instead. In addition, observe that,
in this particular case, the baseline removal results in minor
adjustments if compared to the original PSD estimate.

Fig. 5. Comparison of original PSD estimate and calculated baseline for
baseline removal procedure.

The score Zi is then calculated using the PSD data after the
baseline has been removed. The results for the score are shown
in Figure 6. Note that the spikes attain a high score while other
data, e.g. the modes at ≈ 1.9 Hz, are given a lower score. This
is important because PMU applications can be affected by the
spike [18], and thus, depend on removing spikes accurately.
In this step, the tolerance τ should be adjusted. In this case
study, the tolerance was set to be τ = 13 and is displayed
with a red dashed line in Fig. 6.

Next, the procedure of despiking the data is applied using
m = 50, where m is the number of neighbor samples for
which the average is calculated for FFT coefficient replace-
ment. The results for a 200-second interval of angle time-series
is shown in Fig. 7a. Note that the time-series obtained by
despiking the PSD estimate preserve the underlying physical
behavior contained in the original data, but with a smaller
variance. This is confirmed in Figure 7b where a comparison
between the Welch PSD estimates from filtered and original

Fig. 6. Modified Zi scores and comparison with tolerance τ .

(a) Comparison of original and filtered angle time series.

(b) Comparison of original and filtered angle PSD estimate.

Fig. 7. Outcome verification for proposed algorithm.

data is depicted. Note that many of the sharp spikes have been
removed.

In addition, the effectiveness of the proposed algorithm can
also be verified by using spectrograms [5], which are plots
that display the behavior of the PSD estimate over time. In this
work, the color scheme was chosen so the brightest color in the
spectrogram corresponds to the highest PSD estimated value
in dB. Note that the original spectrogram in Figure 8a, depicts
horizontal lines that are product of spikes. These represent the
artificial oscillations caused by the defective data. On the other
hand, observe how in the spectrogram shown in Figure 8b
the horizontal lines have been largely removed. This implies
that data coming from the despiking procedure also provide
spectrograms that allow for better interpretation of the physical
phenomena, which is, otherwise, difficult to understand due to
the effect of the spikes.



(a) Spectrogram created with original data.

(b) Spectrogram created with despiked data.
Fig. 8. Comparison of spectrograms.

V. CONCLUSION

The current work proposes a new algorithm to remove
spikes from Welch PSD estimates computed from angle data
from PMUs. The method proposed in this paper is based
on baseline removal and on the calculation of a modified Z
score. Both steps require the user to adjust two parameters,
respectively. The former requires the setting of p and λ such
that the baseline is calculated. The latter requires the user to set
a tolerance τ and how many samples m are used for average
calculation. All required parameters can be easily tuned but
the authors are currently investigating ways of automating this
step.

The proposed method was applied to real-world PMU data
from a unit at Dominion Energy’s network, which is known
to have time synchronization issues. The results show the
effectiveness of the proposed method in removing the spikes.
The results from the PSD and the spectrogram indicate that the
despiking routine improves interpretation and might improve
mode identification and damping estimation PMU data-based
applications. Hence, the proposed algorithm is now being
included as an initial step in frequency domain analysis of
angle data and has been implemented in the PredictiveGrid
PMU data platform at Dominion Energy.
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